Changeset 137 for liacs/SCA2010/BDD
- Timestamp:
- Jul 1, 2010, 1:06:58 AM (14 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
liacs/SCA2010/BDD/report.tex
r135 r137 13 13 \usepackage{fancybox} 14 14 \usepackage{amssymb,amsmath} 15 \usepackage{subfig} 16 \usepackage{tikz} 17 \usetikzlibrary{scopes} 18 \usetikzlibrary{positioning} 15 19 16 20 \author{Rick van der Zwet, Universiteit Leiden} … … 28 32 daarin genoemde opgave 60 en 63 uit het college boek~\cite{DK2009} na 29 33 aanleiding van het vak Seminar Combinatorial Algorithms 2010~\cite{SCA2010}. 30 34 \begin{figure}[htbp] 35 \begin{tikzpicture}[on grid] 36 \tikzstyle{true}=[] 37 \tikzstyle{false}=[dashed] 38 \tikzstyle{state}=[circle, draw] 39 \tikzstyle{leaf}=[rectangle, draw] 40 \begin{scope}[xshift=0cm,node distance=10mm and 10mm] 41 \node (1) [state]{1}; 42 \node (2) [state, below=of 1]{2}; 43 \node (3) [state, below=of 2]{3}; 44 \node (4) [state, below=of 3]{4}; 45 \node (F) [leaf, below left=of 4]{$\bot$}; 46 \node (T) [leaf, below right=of 4]{$\top$}; 47 \path[-] 48 (1) edge[false] (2) 49 (1) edge[true, bend left=45] (3) 50 (2) edge[false, bend right=45] (F) 51 (2) edge[true] (3) 52 (3) edge[false] (4) 53 (3) edge[true, bend left=45] (T) 54 (4) edge[true] (T) 55 (4) edge[false] (F) 56 ; 57 \draw[left, inner sep=6mm] 58 (1) node {$\alpha$} 59 (2) node {$\beta$} 60 (3) node {$\gamma$} 61 (4) node {$\delta$} 62 ; 63 \end{scope} 64 65 \begin{scope}[xshift=9cm,node distance=10mm and 10mm] 66 \node (1) [state]{1}; 67 \node (2-1) [state, below left=of 1]{2}; 68 \node (2-2) [state, below right=of 1]{2}; 69 \node (3) [state, below left=of 2-2]{3}; 70 \node (4-1) [state, below left=of 3]{4}; 71 \node (4-2) [state, below right=of 3]{4}; 72 \node (F) [leaf, below=of 4-1]{$\bot$}; 73 \node (T) [leaf, below=of 4-2]{$\top$}; 74 \path[-] 75 (1) edge[false] (2-1) 76 (1) edge[true] (2-2) 77 (2-1) edge[false] (3) 78 (2-1) edge[true, bend left=70] (T) 79 (2-2) edge[false, bend left=45] (T) 80 (2-2) edge[true] (3) 81 (3) edge[false] (4-1) 82 (3) edge[true] (4-2) 83 (4-1) edge[false] (T) 84 (4-1) edge[false] (F) 85 (4-2) edge[false] (T) 86 (4-2) edge[true] (F) 87 ; 88 \draw[left, inner sep=4mm] 89 (1) node {$\omega$} 90 (2-1) node {$\chi$} 91 (2-2) node {$\psi$} 92 (3) node {$\varphi$} 93 (4-1) node {$\tau$} 94 (4-2) node {$\upsilon$} 95 ; 96 \end{scope} 97 98 \begin{scope}[xshift=5cm,yshift=-5cm, node distance=15mm and 20mm] 99 \node (1) [state]{1}; 100 \node (2-1) [state, below left=of 1]{2}; 101 \node (2-2) [state, below right=of 1]{2}; 102 \node (3-1) [state, below left=of 2-1]{3}; 103 \node (3-2) [state, below left=of 2-2]{3}; 104 \node (3-3) [state, below right=of 2-2]{3}; 105 \node (4-1) [state, below left=of 3-1]{4}; 106 \node (4-2) [state, below=of 3-1]{4}; 107 \node (4-3) [state, below left=of 3-2]{4}; 108 \node (4-4) [state, below left=of 3-3]{4}; 109 \node (4-5) [state, below right=of 3-3]{4}; 110 \node (FT) [leaf, below right=of 4-1]{}; 111 \node (FF) [leaf, below right=of 4-2]{}; 112 \node (TT) [leaf, below=of 4-4]{}; 113 \node (TF) [leaf, below=of 4-5]{}; 114 \path[-] 115 (1) edge[false] (2-1) 116 (1) edge[true] (2-2) 117 (2-1) edge[false] (3-1) 118 (2-1) edge[true] (3-2) 119 (2-2) edge[false] (3-2) 120 (2-2) edge[true] (3-3) 121 (3-1) edge[false] (4-1) 122 (3-1) edge[true] (4-2) 123 (3-2) edge[false] (4-3) 124 (3-2) edge[true,bend left=90] (TT) 125 (3-3) edge[false] (4-4) 126 (3-3) edge[true] (4-5) 127 (4-1) edge[false] (FF) 128 (4-1) edge[true] (FT) 129 (4-2) edge[false] (FT) 130 (4-2) edge[true] (FF) 131 (4-3) edge[false] (FT) 132 (4-3) edge[true] (TT) 133 (4-4) edge[false] (FF) 134 (4-4) edge[true] (TT) 135 (4-5) edge[false] (TT) 136 (4-5) edge[true] (TF) 137 ; 138 \draw[left, inner sep=6mm] 139 (1) node {$\alpha \diamond \omega$} 140 (2-1) node {$\beta \diamond \chi$} 141 (2-2) node {$\gamma \diamond \psi$} 142 (3-1) node {$\bot \diamond \varphi$} 143 (3-2) node {$\gamma \diamond \top$} 144 (3-3) node {$\gamma \diamond \varphi$} 145 (4-1) node {$\bot \diamond \tau$} 146 (4-2) node {$\bot \diamond \upsilon$} 147 (4-3) node {$\delta \diamond \top$} 148 (4-4) node {$\delta \diamond \tau$} 149 (4-5) node {$\top \diamond \upsilon$} 150 (FF) node {$\bot \diamond \bot$} 151 (FT) node {$\bot \diamond \top$} 152 (TF) node {$\top \diamond \bot$} 153 (TT) node {$\top \diamond \top$} 154 ; 155 \end{scope} 156 157 \end{tikzpicture} 158 \caption{Voorbeeld: twee \emph{BDD}s die samengesmolten worden} 159 \end{figure} 31 160 32 161 \section{Introductie BDD} … … 132 261 Dan is $B(f) = 2^{m+2}-1 \approx 4n$, $B(g) = 2^{m+1}-2^{m} \approx 3n$ en $B(g 133 262 \hat f) = 2^{m+1}+2^{m-1}-1 \approx 2n^{2}$. Om aan deze 'magische' reeksen te 134 komen is het belangrijk eerst naar de profielen te kijken .263 komen is het belangrijk eerst naar de profielen te kijken van $f$ en $g$ om daarna met sommering van deze tot de antwoorden te komen. 135 264 136 265
Note:
See TracChangeset
for help on using the changeset viewer.