- Timestamp:
- Dec 16, 2010, 8:38:30 PM (14 years ago)
- Location:
- liacs/TPFL2010/assignment3
- Files:
-
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
liacs/TPFL2010/assignment3/cyk.py
r254 r255 16 16 } 17 17 18 w = 'babb ab'18 w = 'babbbab' 19 19 cnf = { 20 20 'S' : ['AB','b'], … … 62 62 item = '' 63 63 for k in r[i][j]: 64 c = 64 c = from_cyk(k,i,j) 65 65 if c: 66 66 item += "%s: %s \\\\" % (k, c) … … 75 75 print ''' 76 76 \\end{tabular} 77 \\caption{$CYK(L(G),%s)$. Algoritme in \cite{JS2009}[pg.~142]}77 \\caption{$CYK(L(G),%s)$. Algoritme beschreven in \cite{JS2009}[pg.~142]} 78 78 \\end{table} 79 79 ''' % w -
liacs/TPFL2010/assignment3/report.tex
r254 r255 58 58 Gebruikmakend van het CYK algoritme gaan we aantonen dat $x = babbbab \in L(G)$ 59 59 zit. De ondersteunende tabel is van de grootte $6\times6$ omdat dit de lengte 60 van het woord $x$ is. In tabel~\ref{tb:cyk} staat cel $i,j$ voor welke 61 transities er gevolgt moet worden om het subwoord $x[i..j]$ te vormen. 60 van het woord $x$ is. In tabel~\ref{tb:opdr1} staat\footnote{Om de \LaTeX~tabel 61 automatisch te gegenereren vanuit een woord en een CFG gramatica heb ik 62 \url{http://rickvanderzwet.nl/svn/personal/liacs/TPFL2010/assignment3/cyk.py} 63 geschreven, vanwege de fouten ik met handwerk maakte.} cel $i,j$ voor welke 64 transities er gevolgt moet worden om het 65 subwoord $x[i..j]$ te vormen. Omdat de start transitie $S$ in $1,6$ staat zit 66 het woord $x$ in $L(G)$. De ontleedboom is te zien in figuur~\ref{fig:opdr1}. 62 67 63 68 64 69 \begin{sidewaystable}[htbp] 65 70 \center 66 \begin{tabular}{|c||c|c|c|c|c|c| }71 \begin{tabular}{|c||c|c|c|c|c|c|c|} 67 72 \hline 68 69 i\textbackslash j & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline\hline70 1 & \begin{tabular}{l} S \\B \\ \end{tabular} & \begin{tabular}{l} A: (B,C,1) \\ \end{tabular} & \begin{tabular}{l} C: (S,S,1) \\S: (A,B,2) \\B: (A,S,2) \\ \end{tabular} & \begin{tabular}{l} A: (B,C,1) \\B: (C,B,3) \\C: (S,S,3) \\ \end{tabular} & \begin{tabular}{l} A: (B,C,4) \\ \end{tabular} & \begin{tabular}{l} A: (B,C,1),(B,C,3) \\C: (S,S,1),(S,S,3) \\S: (A,B,2),(A,B,4),(A,B,5) \\B: (C,B,3),(A,S,4),(C,B,4),(A,S,5) \\ \end{tabular} \\ \hline71 2 & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} A \\C \\ \end{tabular} & \begin{tabular}{l} S: (A,B,2) \\B: (A,S,2),(C,B,2) \\ \end{tabular} & \begin{tabular}{l} C: (S,S,3) \\ \end{tabular} & \begin{tabular}{l} $\emptyset$ \end{tabular} & \begin{tabular}{l} S: (A,B,2) \\B: (C,B,2),(C,B,4) \\A: (B,C,3) \\C: (S,S,3) \\ \end{tabular} \\ \hline72 3 & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} S \\B \\ \end{tabular} & \begin{tabular}{l} C: (S,S,3) \\ \end{tabular} & \begin{tabular}{l} $\emptyset$ \end{tabular} & \begin{tabular}{l} A: (B,C,3) \\C: (S,S,3) \\B: (C,B,4) \\ \end{tabular} \\ \hline73 4 & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} S \\B \\ \end{tabular} & \begin{tabular}{l} A: (B,C,4) \\ \end{tabular} & \begin{tabular}{l} C: (S,S,4) \\S: (A,B,5) \\B: (A,S,5) \\ \end{tabular} \\ \hline74 5 & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} A \\C \\ \end{tabular} & \begin{tabular}{l} S: (A,B,5) \\B: (A,S,5),(C,B,5) \\ \end{tabular} \\ \hline75 6& \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} S \\B \\ \end{tabular} \\ \hline73 i\textbackslash j & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \hline 74 1 & \begin{tabular}{l} S \\B \\ \end{tabular} & \begin{tabular}{l} A: (B,C,1) \\ \end{tabular} & \begin{tabular}{l} C: (S,S,1) \\S: (A,B,2) \\B: (A,S,2) \\ \end{tabular} & \begin{tabular}{l} A: (B,C,1) \\B: (C,B,3) \\C: (S,S,3) \\ \end{tabular} & \begin{tabular}{l} C: (S,S,1) \\S: (A,B,2),(A,B,4) \\A: (B,C,3) \\B: (A,S,4),(C,B,4) \\ \end{tabular} & \begin{tabular}{l} A: (B,C,5) \\ \end{tabular} & \begin{tabular}{l} A: (B,C,1),(B,C,3),(B,C,4) \\C: (S,S,1),(S,S,5) \\S: (A,B,2),(A,B,4)\\...(A,B,5),(A,B,6) \\B: (A,S,2),(C,B,3)\\...(A,S,4),(C,B,4),(A,S,5)\\...(C,B,5),(A,S,6) \\ \end{tabular} \\ \hline 75 2 & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} A \\C \\ \end{tabular} & \begin{tabular}{l} S: (A,B,2) \\B: (A,S,2),(C,B,2) \\ \end{tabular} & \begin{tabular}{l} C: (S,S,3) \\ \end{tabular} & \begin{tabular}{l} S: (A,B,2) \\B: (C,B,2),(C,B,4) \\A: (B,C,3) \\ \end{tabular} & \begin{tabular}{l} A: (B,C,5) \\ \end{tabular} & \begin{tabular}{l} S: (A,B,2),(A,B,5),(A,B,6) \\B: (A,S,2),(C,B,2),\\...(C,B,4),(A,S,5),(A,S,6) \\A: (B,C,3) \\C: (S,S,5) \\ \end{tabular} \\ \hline 76 3 & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} S \\B \\ \end{tabular} & \begin{tabular}{l} C: (S,S,3) \\ \end{tabular} & \begin{tabular}{l} A: (B,C,3) \\B: (C,B,4) \\ \end{tabular} & \begin{tabular}{l} A: (B,C,5) \\ \end{tabular} & \begin{tabular}{l} A: (B,C,3) \\B: (C,B,4),(A,S,5),(A,S,6) \\S: (A,B,5),(A,B,6) \\ \end{tabular} \\ \hline 77 4 & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} S \\B \\ \end{tabular} & \begin{tabular}{l} C: (S,S,4) \\ \end{tabular} & \begin{tabular}{l} $\emptyset$ \end{tabular} & \begin{tabular}{l} A: (B,C,4) \\C: (S,S,4) \\B: (C,B,5) \\ \end{tabular} \\ \hline 78 5 & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} S \\B \\ \end{tabular} & \begin{tabular}{l} A: (B,C,5) \\ \end{tabular} & \begin{tabular}{l} C: (S,S,5) \\S: (A,B,6) \\B: (A,S,6) \\ \end{tabular} \\ \hline 79 6 & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} A \\C \\ \end{tabular} & \begin{tabular}{l} S: (A,B,6) \\B: (A,S,6),(C,B,6) \\ \end{tabular} \\ \hline 80 7 & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} \end{tabular} & \begin{tabular}{l} S \\B \\ \end{tabular} \\ \hline 76 81 77 82 \end{tabular} 78 \caption{$CYK(L(G),a)$. Algoritme in \cite{JS2009}[pg.~142]} 83 \caption{$CYK(L(G),a)$. Algoritme beschreven in \cite{JS2009}[pg.~142]} 84 \label{tb:opdr1} 79 85 \end{sidewaystable} 86 87 \begin{figure} 88 \center 89 \begin{tikzpicture} 90 [level distance=10mm,level/.style={sibling distance=40mm/#1}] 91 \node {S} 92 child {node {A} 93 child {node {B} 94 child {node {b}} 95 } 96 child {node {C} 97 child {node {a}} 98 } 99 } 100 child {node {B} 101 child {node {C} 102 child {node {S} 103 child {node {S} 104 child {node {b} 105 } 106 } 107 child {node {S} 108 child {node {b}} 109 } 110 } 111 child {node {S} 112 child {node {b}} 113 } 114 } 115 child {node {B} 116 child {node {A} 117 child {node {a}} 118 } 119 child {node {S} 120 child {node {b}} 121 } 122 } 123 } 124 ; 125 \end{tikzpicture} 126 \label{fig:opdr1} 127 \caption{Ontleedboom voor het woord $babbbab$} 128 \end{figure} 80 129 81 130 \section{Opgave 5.5}
Note:
See TracChangeset
for help on using the changeset viewer.