Changeset 48 for liacs/nc


Ignore:
Timestamp:
Dec 19, 2009, 1:36:27 PM (15 years ago)
Author:
Rick van der Zwet
Message:

Template holder for report

Location:
liacs/nc/laser-pulse-shaping
Files:
1 edited
2 copied

Legend:

Unmodified
Added
Removed
  • liacs/nc/laser-pulse-shaping/Makefile

    r34 r48  
     1SOURCE=$(patsubst %.m,%.m.tex, $(shell ls *.m))
     2
     3include latex.mk
     4
     5foo:
     6        echo $(SOURCE)
     7
    18pso.out: pso.m
    29        @octave -q pso.m
  • liacs/nc/laser-pulse-shaping/latex.mk

    r45 r48  
    5656.gs.png:
    5757        $(GNUPLOT) $?
     58
     59%.m.tex: %.m
     60        highlight --include-style --linenumbers --no-doc \
     61          --latex --input $< --output $@
  • liacs/nc/laser-pulse-shaping/report.tex

    r46 r48  
    2222\floatname{result}{Result}
    2323
    24 \input{highlight.sty}
    25 
    26 \title{The low-autocorrelation problem\\
     24\title{Laser Pulse Shaping problem\\
    2725\large{Practical Assignments Natural Computing, 2009}}
    2826\author{Rick van der Zwet\\
     
    3937
    4038\section{Introduction}
    41 The report is focused on the so-called \emph{low-autocorrelation problem of
    42 binary sequences}, is subject to actual research and is of big interest for
    43 industrial applications, e.g. communications and electrical engineering. Its
    44 description goes as follows.
     39The report is focused on the so-called \emph{laser pulse shaping problem}.
     40Todays lasers are also used within the range of atoms or mulecule research.
     41Using small pulses it is able to align and alter the movement of the atoms.
    4542
    46 \textbf{Feasible Solutions:} Binary Sequences $\vec{y} \in \{-1,+1\}^n$
     43The problem lies in the fact the atoms cannot be controlled by any type of
     44laser pulse. There are many parameters which could all be set to 'shape' the
     45laser pulse the way it can move the atoms.
    4746
    48 \textbf{Objective Function:}
     47\section{Problem description}
     48To determine the best solution a fitness function is needed, which could be
     49found in the shape of equation~\ref{eq:fitness}
    4950\begin{equation}
    50 f(\vec{y}) = \frac{n^2}{2 \cdot E(\vec{y})} \longrightarrow maximization
     51\label{eg:fitness}
     52SHG = \int_0^T E^4(t)dt \rightlongarrow maximization
    5153\end{equation}
    5254
    53 \begin{equation}
    54 E(\vec{y}) = \displaystyle\sum_{k=1}^{n-1} (\sum_{i=1}^{n-k} y_i \cdot y_{i+k})^2
    55 \end{equation}
    5655
    57 \section{Problem description}
    5856Due to the huge 'exploding' posibilities it is not possible to walk trough the
    5957whole list of posibities, so we need alternative approches to tackle this
Note: See TracChangeset for help on using the changeset viewer.