
Hierarchy &
Model checking

1

Lecture Outline

 Recap 3d lecture/concept check
 Classroom exercise
 Hierarchy in Petri nets
 Model checking

2

Recap 3d lecture

 What do we mean by the “structure” of a Petri net ?

 What do we mean by “behaviour” of a Petri net ?

 If we characterize a Petri-net as a “WF-net”, is that a
structural or behavioural characterization?

 If we characterize a WF-net as a “sound” WF-net, is
that a structural or behavioural characterization?

3

Recap 3d lecture

 Is characterization of a WF-net as :
 A Free-choice net
 A Well-structured net
 An S-coverable net

 A structural or a behavioural characterization?

4

Recap 3d lecture

 What do we mean if we talk about “state space
explosion” ?

5

Recap 3 lecture

 Why is this state space explosion a “problem” ?

6

Recap 3 lecture

 If you know that a Petri net is a workflow net, what
can you infer then about liveness of that Petri net?

7

Lecture Outline

 Recap 3d lecture/concept check
 Classroom exercise
 Hierarchy in Petri nets
 Model checking

8

Classroom exercise
9

Classroom exercise
10

Classroom exercise
11

Lecture Outline

 Recap 3d lecture/concept check
 Classroom exercise
 Hierarchy in Petri nets
 Model checking

12

Top down design
(level 0 : a house)

13

Top down design
 (level 1 : a floor)

14

Top down design
 (level 2 : a room)

15

Hierarchical Coloured
Petri nets

“Superpage”

“Subpages”

16

Substitution
transition

Hierarchical Coloured
Petri nets

17

Substitution
transition

Page
assignment
function

Hierarchical Coloured
Petri nets

18

“Port assignment function”
(to “glue” the places together)

Port place

Socket place

Port type= {in,out,i/o}

in

in

out in out

Example Hierarchical Coloured Petri net
producer consumer system

“Substitution
transitions”

19

Superpage

Example: CP net of our producer consumer
system

PRODUCER CONSUMER

 Sub
 pages

20

Hierarchical Coloured Petri nets

 Even coloured petri nets can become quite large!

 If we extend CP nets to hierarchical CP nets
they can become more readable and managable.

 It is similar to the concept of “subroutine” in
programming languages, which makes programs
smaller and easier to read.

21

Hierarchical coloured
Petri nets

 The subpage in Hierarchical Petri nets is a bit
like the subroutine in programming

 We can use for top-down process design, or
bottom-up

22

Hierarchical coloured
Petri nets

 Multiple superpages can be linked to one
subpage definition

 Multiple subpage instances each with their own
markings (Like a subprogram definition can have
multiple instances running, each with private
copies of local variables)

23

Lecture Outline

 Recap 3d lecture/concept check
 Classroom exercise
 Hierarchy in Petri nets
 Model checking

24

Model checking

 Introduction
 Formalizing specification of properties
 Examples

25

Introduction

 Definition model checking:
 Given a model of a system, verify automatically whether this

model meets a given specification

 Ingredients:
 Model : eg. the Reachability Graph of a Petri net
 Specification : eg. of properties like liveness, soundness etc.
 Verification: automatically eg. with CPN-tools

26

2

Introduction

Model
checker

Specification :
- Liveness
- Soundness
- Etc.

Model of system

Yes/No

Introduction

 Ingredients:
 Model : eg. Petri net model (i.e. its RG)
 Specification : eg. properties Liveness, soundness etc.
 Verification: automatically eg. with CPN-tools

28

1. We need a formal language to write down the specification  CTL

2. We will show some (simple) examples how you can do model checking
in CPN Tools

AND

Specification of properties in CTL
29

Specification of properties in CTL
30

Specification of properties in CTL
31

EF(g) in CPN Tools (ASK-CTL):

POS(g)= EXISTS_UNTIL(TT,g)

EF(g) is true, if there is a path from S0

to a state where g is true

REACHABILITY :

Specification of properties in CTL
32

AF(g) in CPN Tools (ASK-CTL):

EV(p) =FORALL_UNTIL(p)

AF(g) is true, if all paths from S0

eventually encounter a state
where g is true

LIVENESS :

Specification of properties in CTL
33

EG(g) in CPN Tools ASK-CTL:

ALONG(g) = ¬EV(¬(g))

EG(g) is true, if there is a path from
S0 along which g is true in every
state

Specification of properties in CTL
34

AG(g) in CPN Tools ASK-CTL:

INV(g)= ¬POS(¬(g))
[AG(g)= ¬EF(¬(g))]
EF(p) =POS(g)=EXISTS_UNTIL(TT,g)

AG(g) is true, if along all paths from
S0 , g is true in every state

BOUNDEDNESS :

Specification of properties in CTL

 Translations CTL  ASK-CTL (CPN-Tools):
 AG(p)= INV(p)
 EF(p) = POS(p)
 AF(p)= EV(p)
 EG(p)= ALONG(p)

35

PN-36

Example:
Dining philosophers

 5 philosophers sharing 5 chopsticks: chopsticks are
located in-between philosophers

 A philosopher is either in state eating or thinking and
needs two chopsticks to eat.

 Model as a Petri net.

36

37

Now consider a variation of the Dining Philosophers example. A number of
philosophers are initially outside a dining room. Each of them decides at some
point to enter the room bringing along one chopstick (for the left hand) to
be shared with the neighbor philosopher. Once in the room the philosopher
sits down and starts thinking. If both left and right chopsticks are unused
the philosopher can decide to start eating, thus occupying the two chopsticks.
When nished eating the philosopher can decide to think again making avail-
able again the left and right chopsticks. As life is unpredictable, a philoso-
pher can get poisoned and die while eating. In this case the chopsticks are
forever lost.

The Petri net model is on the next sheet. The exercise is to calculate, by hand, the
reachability graph and answer the questions:

- Is the initial state a home state?
- Is the transition “take chopsticks” a live transition ?
- Is there a state where the Petri net reaches a deadlock ?

Class room Exercise:
Dining philosophers

Reachability graph
39

Room entered (1)

Eating

Thinking

Poisoned

Examples

 Is initial marking a home marking ?
 AG (EF (g)) , g: current state=initial marking

 Is a transition t live ?
 AG (EF (g)), g: transition t is enabled in current state

40

val myASKCTLformula =
INV(POS(NF("initial marking",IsInitialMarking))) ;

val myASKCTLformula =
INV(POS(MODAL(AF("(take,<p=ph(2)>)",IsConsideredBE))));

