Hierarchy &
Model checking

O

Recap 3d lecture/concept check
Classroom exercise

Hierarchy in Petri nets

Model checking

What do we mean by the “structure” of a Petri net ?
What do we mean by “behaviour” of a Petri net ?

If we characterize a Petri-net as a “WF-net”, is that a
structural or behavioural characterization?

If we characterize a WF-net as a “sound” WF-net, is
that a structural or behavioural characterization?

Recap 3d lecture

O

Recap 3d lecture

O,

Recap 3 lecture

Q.

Recap 3 lecture

O

Recap 3d lecture/ concept check
Classroom exercise ¢

Hierarchy in Petri nets
Model checking

Classroom exercise

register incorming request

ready for request handling = % i
confirmation reques

handle complex request

‘handle password reset

prepare confrmation

password reset)
complex regyest handled = 5
confirmation prepared

close request

confirm request handled

Classroom exercise

register incoming regquesh

' reparefconfrmation (k4
andle password reset (£2) prep (k4

prepare-confrmation {H.]I handle cd

closg request (k&) : hanu:lle_ pdssword reset (£2)

@a10001) *

prepare confrmation

close request (&)

handle complex request (E3)

prepare [confrmation (k)

confirm reguest handled (£5)

@a0001)

Classroom exercise

reqgisker infoming request (1)

dle complex requesk (E3)

handle password ress
andle password reset (E2)

prepare

handle compites_request (E3)
prepare confrraaki ' o

prepate confrmation (k43 clasd request (k6]

handle password reset l{_t2_}

1™

kS

7 prepare confrmation|itd)

confirrn request handled (£S5)
v,

close request (k&)

regisker incoming requesh

{t1)

prepare

onfrmation (t4.)

‘confrmation (k)

handlg password reset (2]

close request (t6)

3

handle comple: request (£3)

prépare confrrmation (&

confirm refguest handled |

RN

Recap 3d lecture/concept check
Classroom exercise

Hierarchy in Petri nets
Model checking

Top down design
(level O Q% house)

Top down design
(level 1 ; a floor)

Top down design
(level 2 : a room)

©,

Substitution

transition /Superpagea,
.'/I ; -‘ﬁ

“Subpages”

Substitution
transition

Page I
aSSIrnnent
funC|on |

Socket place

Port type= {in,out,i/o}

Example Hierarchical Coloured Petri net
producer consumer system

Producer

Consumer

Example: CP net of our producer consumer
system
PRODUCER 20 CONSUMER | .
4 A
17 1++ 1°1++
1'2++ 1°2++
1"3 1°3
G a
PROD CONS
i [(#1m)=c] ¢
produce receive
P - c
° buffier c2
PROI?n MESSAGE CONS
p g
S u b send consume
pages at
P action c
((p,p+1));

Even coloured petri nets can become quite large!

If we extend CP nets to hierarchical CP nets
they can become more readable and managable.

It is similar to the concept of “subroutine” in
programming languages, which makes programs
smaller and easier to read.

The subpage in Hierarchical Petri nets is a bit
like the subroutine in programming

We can use for top-down process design, or
bottom-up

Multiple superpages can be linked to one
subpage definition

Multiple subpage instances each with their own
markings (Like a subprogram definition can have
multiple instances running, each with private
copies of local variables)

Recap 3d lecture/concept check
Classroom exercise

Hierarchy in Petri nets

Model checking

Model checking

®

Introduction

Introduction

Introduction

* Ingredients:
Model : eg. Petri net model (i.e. its RG)
Specification : eg. properties Liveness, soundness etc.

Verification: automatically eg. with CPN-tools

¥

1. We need a formal language to write down the specification = CTL

AND

2. We will show some (simple) examples how you can do model checking
in CPN Tools

Specification of properties in CTL

Formulas are constructed from path quantifiers and temporal operators:

1. Path quantifier:

e A—““for every path”
- o E—"“there exists a path”

2. Temporal Operator:
e Xy—p holds next time.

- e F—p holds sometime 1n the future
e Gp—p holds globally 1n the future
e pUg—yp holds until ¢ holds

Specification of operties in CTL

The four most widely used CTL
operators are illustrated below. (s, 1s the root of each computation tree.)

M.,sg = AGg M, sy = AF g

g

g g

M,sy = EFg M.s; = EGyg

Specification of properties in CTL

9,

REACHABILITY :

EF(q) is true, if there is a path from S,
to a state where g is true

EF(g) in CPN Tools (ASK-CTL):

POS(g)= EXISTS_UNTIL(TT,g)

Specification of properties in CTL

©,

LIVENESS :

AF(q) is true, if all paths from S,

eventually encounter a state
where g is true

AF(qg) in CPN Tools (ASK-CTL):

EV(p) =FORALL_UNTIL (p)

Specification of properties in CTL

®

BOUNDEDNESS :

p b AG(qg) is true, if along all paths from
9 9 §,, gis true in every state

V '

q g o q AG(qg) in CPN Tools ASK-CTL:
(d) AG g INV(g)= 7"POS(~(9))

[AG(g)= "EF(7(9))]
EF(p) =POS(g)=EXISTS UNTIL(TT,qg)

Specification of properties in CTL

&

Example:
Dining philosophers
36

* 5 philosophers sharing 5 chopsticks: chopsticks are
located in-between philosophers

- A philosopher is either in state eating or thinking and
needs two chopsticks to eat.

- Model as a Petri net.

Now consider a variation of the Dining Philosophers example. A number of
philosophers are initially outside a dining room. Each of them decides at some
point to enter the room bringing along one chopstick (for the left hand) to

be shared with the neighbor philosopher. Once in the room the philosopher
sits down and starts thinking. If both left and right chopsticks are unused

the philosopher can decide to start eating, thus occupying the two chopsticks.
When nished eating the philosopher can decide to think again making avail-
able again the left and right chopsticks. As life is unpredictable, a philoso-
pher can get poisoned and die while eating. In this case the chopsticks are

forever lost.

The Petri net model is on the next sheet. The exercise is to calculate, by hand, the
reachability graph and answer the questions:

- Is the initial state a home state?
- Is the transition “take chopsticks™ a live transition ?
- Is there a state where the Petri net reaches a deadlock ?

— w2 PH.al()
Wikl
valn = 2; 152%
colset PH = index ph with 1_.n;
colset CS = index ¢s with 1..n;
var p: PH; B Enter
Room
fun Chopsticks(ph(i})) =
1°cs(i) ++ 1°cs(if i=n then 1 else i+1);
fun LeftChopstick (ph(i)) =
cs(1);
LefRChopstick{p)

Chopsilicks{p)

Take
Chopsticks

Unused
Chopsticks

CS

Put Down
Chopsticks

—

Poisoned

Chopsilicks(p)

Reachability graph

Room entered (1) mmmmm—ms E;

b
Poisoned —— 7

* Is initial marking a home marking ?
AG (EF (g)) , g: current state=initial marking

val myASKCTLformula =
INV(POS(NF("initial marking"”,IsInitialMarking))) ;

* Is a transition t live ?
AG (EF (g)), g: transition t is enabled in current state

val myASKCTLformula =
INV(POS(MODAL(AF("(take,<p=ph(2)>)",IsConsideredBE))));

