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Complex Numbers

Lecture 1

Number systems

• Positive numbers,
• Natural numbers, 
• Integers (or whole numbers),

• Rational numbers,

• Real numbers,

• New system: complex numbers
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Algebra of complex numbers
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Algebra (cont’d)

• Addition and multiplication are commutative:

• They are also associative:

• Multiplication distributes over addition:
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Algebra (cont’d)
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Algebra (cont’d)

• Absolute value for real numbers:

• Generalization for complex numbers:
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modulus of a complex number
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Algebra (cont’d)
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Algebra (cont’d)

• Summarizing, defined a set of numbers C with 4 
operations and following properties:
1) Addition is commutative and associative
2) Multiplication is commutative and associative
3) Addition has identity: (0,0)
4) Multiplication has identity: (1,0)
5) Multiplication distributes with respect to addition
6) Subtraction (i.e., inverse of addition) is defined everywhere
7) Division (i.e., inverse of multiplication) is defined everywhere

except when the divisor is zero.

• ĺ C is a 
– field

– algebraically complete: contains all solutions for any of its 
polynominal equations (R is not)

Algebra (cont’d)

• Unary operation ‘changing sign’:
1) change the sign of the real part
2) change the sign of the imaginary part
3) change both

• 3) is obtained by multiplication with (-1,0)
• What about 2) and 1)?

Algebra (cont’d)

• Conjugation

• Properties:

• Changing the sign of the real part has no 
particular name.
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Geometry of complex numbers

Complex or Argand plane Vector 3 + 4i

Modulus is the length of the vector

Geometry (cont’d)

Addition: Parallelogram rule

Subtraction

Geometry (cont’d)

• Cartesian representation (a,b)
• Polar representation (ȡ,ș), where ȡ represents 

the modulus/magnitude, and ș is called the 
angle/phase

Points with same ȡ

0≥ρ

Points with same ș

πθ 20 <≤

Geometry (cont’d)
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Errata chapter 1
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Reading

• This lecture: chapter 1, p 7-20

• Next lecture (next week?):                
chapter 2    Complex Vector Spaces
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Complex Vector Spaces

Lecture 2

CCn as an example

• C 4 = C x C x C x C, the vectors of length 4

• E.g.

• Addition (V + W)[j] = V[j] + W[j]
– Commutative  V + W = W + V
– Associative (V + W) + X = V + (W + X)

– Zero vector  V + 0 = 0 + V = V
– (Additive) inverse or negative  W + (–W) = (–W) + W = 0

Set with these properties is called an Abelian group.
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Complex vector space

• Complex number c (a scalar)

• Multiplication of a scalar and a vector (c · V)[j] = c x V[j], 
where x is the complex multiply

• Properties
– 1 · V = V
– c1 · (c2 · V) = (c1 x c2) · V
– c · (V +W) = c · V + c · W
– (c1 + c2 )· V = c1 · V + c2 · V

An Abelian group with these properties is called a 
complex vector space.

Formal definition

A complex vector space is a nonempty set V, whose elements we call vectors,           
with three operations
– Addition: + : V x V ĺ V
– Negation: – : V ĺ V
– Scalar multiplication: · : C x V ĺ V

and a distinguished element called the zero vector 0.

They must satisfy the following properties: 

i. Commutativity of addition: V + W = W + V
ii. Associativity of addition: (V + W) + X = V + (W + X)

iii. Zero is an additive identity: V + 0 = V = 0 + V
iv. Every vector has an inverse: V + (–V)= 0 = (–V) + V
v. Scalar multiplication has a unit: 1 · V = V
vi. Scalar multiplication respects complex multiplication: c1 · (c2 · V) = (c1 x c2) · V
vii. Scalar multiplication distributes over addition: c · (V +W) = c · V + c · W
viii. Scalar multiplication distributes over complex addition: (c1 + c2 )· V = c1 · V + c2 · V

Properties i, ii, iii, and iv: Abelian group;

all properties: complex vector space.

Real vector space

A real vector space is a nonempty set V, 

analogue to a complex vector space, but there is 

a scalar multiplication that uses R and not C, i.e.,

· : R x V ĺ V.

This set and these operations must satisfy the 

analogous properties of a complex vector space. 

Cn

• Cn, the set of vectors of length n with complex 
entries, will be complex vector space that serves 
as primary example for the class.

• It is also a real vector space, because every 
complex vector space is also a real vector 
space.

• Rn, the set of vectors of length n with real 
entries, is a real vector space.
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Cm x n

• Cm x n, the set of all m-by-n matrices with complex 
entries, is a complex vector space.

• A    Cm x n

• Addition: (A + B)[j,k] = A[j,k] + B[j,k]

• Inverse: (–A)[j,k] = –(A[j,k])

• Scalar multiplication: (c · A)[j,k] = c x A[j,k]
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Operations on matrices
• The transpose of A, denoted AT, is defined as

AT[j,k] = A[k,j]

• The conjugate of A, denoted A, is defined as

A[j,k] = A[j,k] 

• Combined gives this the adjoint or dagger operation A†, 
defined as                                                      

A† = (A)T = (AT) or A†[j,k] = A[k,j]

Properties

• Transpose is idempotent: (AT)T = A
• Transpose respects addtion: (A + B)T = AT + BT

• Transpose respects scalar multiplication: (c · A)T = c · AT

• Conjugate is idempotent: A = A
• Conjugate respects addtion: A + B = A + B
• Conjugate respects scalar multiplication: c · A = c · A

• Adjoint is idempotent: (A†)† = A
• Adjoint respects addtion: (A + B)† = A† + B†

• Adjoint respects scalar multiplication: (c · A)† = c · A†

Matrix multiplication

• Matrix multiplication is a binary operation

* : Cm x n x Cn x p ĺ Cm x p

• Formally

• When it is clear * will be omitted.
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Properties of matrix multiplication

• Associative: (A * B) * C = A * (B * C)

• In as unit: In * A = A = A * In with In identity matrix

• Distributes over addition: 

A * (B + C) = (A * B) + (A * C) 

(B + C) * A = (B * A) + (C * A)

• Respects scalar multiplication: 

c · (A * B)  = (c · A) * B = A * (c · B)

• Relates to the transpose: (A * B)T = BT * AT

• Respects the conjugate: A * B = A * B

• Relates to the adjoint: (A * B)† = B† * A†

• Note: commutativity is not a basic property!

• A complex vector space V with a multiplication * that satisfies the first four properties 
is called a complex algebra.

Complex subspace

• Given two complex vector spaces V and V’, we 
say that V is a complex subspace of V’ if V is a 
subset of V and the operations of V are 
restrictions of operations of V’.
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Linear map/operator/isomorphism

• Let V and V’ be two complex vector spaces. A linear map from V to V’ is 
a function f : V ĺ V’ such that
– f respects addition: f(V1+V2) = f(V1) + f(V2)

– f respects the scalar multiplication: f(c·V) = c·f(V)

• A linear map from a complex vector space to itself is called an operator. 
If F(V) = A*V is an operator, we say that F is represented by A.

• Two complex vector spaces V and V’ are isomorphic if there is a one-to-
one linear map f : V ĺ V’. Such a map is called an isomorphism. When 
two vector spaces are isomorphic, it means that the names of the
elements of the vector spaces are renamed but the structure of the two 
spaces are the same. Two such vector spaces are “essentially the 
same”.

Basis

• Linear combination:

V = c0 · V0 + c1 · V1 + · · · + cn-1 · Vn-1 .

• Linearly independent if

0 = c0 · V0 + c1 · V1 + · · · + cn-1 · Vn-1

implies that c0= c1= · · · = cn-1=0. 

Is equivalent that for any nonzero V there are unique coefficients 
c0, c1, · · · , cn-1 such that 

V = c0 · V0 + c1 · V1 + · · · + cn-1 · Vn-1 .

• A set B = {V0, V1, …, Vn-1} of vectors is called a basis of a 
(complex) vector space V if both
i. Every V can be written as a linear combination of vectors from B

ii. B is linearly independent.

Canonical or standard basis

• R3:

• Cn (and Rn):

• See book for matrices and others.
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Dimension

• Bases for R3, e.g.:

• For every vector space, every basis has the 

same number of vectors. This is called the 

dimension of the vector space.
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Transition matrix

• A change of basis matrix or a transition matrix

from basis B to basis D is a matrix MDĸB such 

that for any vector V we have

VD = MDĸB * VB

• Important example: Hadamard matrix
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Inner product
Inner product (or dot product or scalar product) on a complex vector 

space V is a function

satisfying the following conditions

i. Nondegenerate

ii. Respects addition

iii. Respects scalar multiplication

iv. Skew symmetric
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Examples

See book for other examples
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Norm or length

Norm or length is a function  

defined as 

i. Norm is nondegenerate:

ii. Norm satisfies the triangle inequality:

iii. Norm respects scalar multiplication:

RV →:   

VV,V =

0 and  if 0 =≠> 00VV
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Distance function

Distance function is a function

where

i. Distance is nondegenerate:

ii. Distance satisfies the triangle inequality:

iii. Distance is symmetric:
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Orthogonal and orthonormal basis

• Orthogonal basis B = {V0,V1,…,Vn-1}:

• Orthonormal basis B:

0, implies  ,orthogonal  pairwise  vectors =≠ kj VVkj

Not orthogonal Orthogonal but 

not orthonormal

Orthonormal

1 norm of is vector basisevery  and orthogonal

1
1

1

√2
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Hilbert space

• A Hilbert space is a complex inner product space 

that is complete (for definition see book).

• Every finite-dimensional complex vector space 

with an inner product is automatically a Hilbert 

space.

Errata chapter 2

All errata:

http://www.cambridge.org/resources/0521879965/7337_Errata.pdf

This link will be available soon on the QC-webpage.
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Reading

• This lecture: Ch 2.1-2.4, p 29-60.

• Next lecture: Ch 2.5-2.7 & (start of) Ch 3.
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Math background

The Leap from Classical to 
Quantum

Lecture 3

Eigenvalues and eigenvectors

• For a matrix A in Cm x n, if there is a number c
in C and a vector V ≠ 0 within Cn such that 

AV = c·V, then c is called an eigenvalue of A
and V an eigenvector of A associated with c.

• Some matrices have many eigenvalues and 

eigenvectors and some matrices have none.

Eigenspace

• If A has eigenvalue c0 with eigenvector V0, then for any c C we 
have 

A(cV0) = cAV0 = cc0V0 = c0(cV0)

which shows that cV0 is also an eigenvector of A with eigenvalue c0.

• If cV0 and c’V0 are two such eigenvectors, then because of

A(cV0+ c’V0) = AcV0+A c’V0 = cAV0+ c’AV0

= c(c0V0) + c’(c0V0) = (c + c’)(c0V0) = c0(c+c’) V0

we see that the addition of two such eigenvectors is also an 
eigenvector.

• Therefore, every eigenvector determines a complex subvector space 
of the vector space. It is known as the eigenspace associated with the 
given eigenvector.

∈

Hermitian matrices
• An n x n matrix A is called hermitian if A† = A. In other words A[j,k] = A[k,j].

• If A is a hermitian matrix then the operator that it represents is called self-adjoint.

• If A is a hermitian n x n matrix, we have <AV,V’> = <V,AV’>.

• If A is hermitian, then all eigenvalues are real.

• For a given hermitian matrix, distinct eigenvectors that have distinct eigenvalues are 
orthogonal.

• A diagonal matrix is a square matrix whose only nonzero entries are on the diagonal. 
All entries off the diagonal are zero.

• Every self-adjoint operator A on a finite-dimensional complex vector space V can be 
represented by a diagonal matrix whose diagonal entries are the eigenvalues of A, 
and whose eigenvectors form an orthonormal basis for V (we call this basis an 
eigenbasis).

• With every physical observable of a quantum system there is a corresponding 
hermitian matrix. Measurements of the observable always leads to a state that is 
represented by one of the eigenvectors of the associated hermitian matrix.

Unitary matrices

• An n x n matrix U is called unitary if U * U† = In.

• Unitary matrices preserve inner products <UV,UV’> = <V,V’>.

• Unitary matrices preserve distances d(UV1,UV2) = d(V1,V2). An operator 
that preserves distances is called an isometry.

• If U is unitary and UV = V’, then we can easily form U† and by multiplying 
both sides we get U† UV = U†V’ or V = U†V’. In other words U† can 
“undo” the action that U performs. In the quantum world all actions (that 
are not measurements) are “undoable” or “reversible”.

Tensor product

• Most difficult, most 

essential subject!

• Tensor product of 

vectors
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Separable versus Entangled
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The Leap from Classical to 
Quantum

Classical Deterministic Systems
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1053453

21 12

• 6 vertices in a graph

• 27 marbles

• X = [6,2,1,5,3,10]T

• 6 vertices in a graph

• 27 marbles

• X = [5,5,0,2,0,15]T

Classical Deterministic Systems

50

1550423

51 02

Dynamics

• arrow from vertex i to vertex j: in one time click all marbles on 

vertex i will shift to vertex j

• Boolean adjacency matrix M
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(see later)
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Dynamics (cont’d)

• In general: 

Mk[i,j] = 1 if and only if there is a path of length k from    

vertex j to vertex i.

• In Quantum Computing we start with an initial state (vector of 

numbers), the “input” of the system. Operations correspond with 

multiplying the vector with matrices. The “output” is the state of the 

system when all operations are carried out.

• Summing up:

– The states of a system correspond to column vectors (state vectors).

– The dynamics of a system correspond to matrices.

– To progress from one state to another in one time step, one must

multiply the state vector by a matrix.

– Multiple step dynamics are obtained via matrix multiplications.

Probabilistic systems

• Quantum mechanics:
– Inherent indeterminacy in knowledge of a state

– States change with probabilistic laws

– States transfer with a certain likelihood.

• Instead of many marbles, just look at one:
– X = [1/5, 3/10, 1/2]T corresponds with

• 1/5 chance that marble is on vertex 0

• 3/10 chance that marble is on vertex 1

• 1/2 chance that marble is on vertex 2

• sum must be 1.

Modified dynamics
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• Multiplication also on the left of a matrix with a row vector (=state vector):
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multiply on the right of M takes states from time t to time t+1

multiply on the left of M takes states from time t to time t-1
time symmetry
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M2[i,j] = the probability of going from 

vertex j to vertex i in 2 time clicks.

In general for each positive integer k, we have Mk[i,j] = the 

probability of going from vertex j to vertex i in k time clicks.
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The stochastic billiard ball
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start single marble in vertex 0: [1,0,0,0]T

after one time click: [0,1/2,1/2,0]T

after another time click: [1/2,0,0,1/2]T

marble acts like a billiard ball that 

bounces back and forth between vertices 

1,2 and 0,3

quantum version will follow
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Probabilistic double-slit experiment (I)
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bullet always through one of the two slits

50% chance through top slit, 50% chance through bottom slit

three targets after each slit that can be hit with equal probability

one time click to a slit, one to a target

Probabilistic double-slit experiment (II)
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Probabilistic double-slit experiment (III)
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B2 probabilities of bullet’s position after two time ticks

Sure that we start with bullet in position 0: 

X = [1,0,0,0,0,0,0,0]T

After two time clicks:                                 

B2X = [0,0,0,1/6,1/6,1/3,1/6,1/6]T

B2[5,0] = 1/6 + 1/6 = 1/3, what we expect.

In QM strange things……

Summarizing

• The vectors that represent states of a probabilistic 
physical system express a type of indeterminacy about 
the exact physical state of the system.

• The matrices that represent the dynamics express a type 
of indeterminacy about the way the physical system will 
change over time. Their entries enable us to compute 
the likelihood of transitioning from one state to the next.

• The way in which the indeterminacy progresses is 
simulated by matrix multiplication, just as in the 
deterministic scenario.

Quantum Systems

• QM: weight is not a real number p
between 0 and 1, rather a complex 
number c such that |c|2 is a real number 
between 0 and 1.

• Real number probabilities can only 
increase when added; complex numbers 
can cancel each other and lower their 
probability. This is called interference.
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States and Graphs

• States: not sum of entries, but the sum of the modulus squared 

should be 1.

• Graphs: not with real number weights, but with complex number 

weights. Adjacency matrix not double stochastic, but unitary.
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note: sum of the modulus squares of Y is 1

If U is the matrix that takes a state from time t to time t+1,

then U† is the matrix that takes a state from time t to time t-1.

V ĺ UV ĺ U†UV = I3V = V

“undo” the operation

The quantum billiard ball
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start single marble in vertex 0: [1,0,0,0]T

after one time click: [0,√1/2,√1/2,0]T: 50-50%

after another time click: [1,0,0,0]T

other paths cancel each other out (interference)
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Double-slit experiment (I)

photons follow laws of quantum physics

each slit has a 50% chance of the photon’s passing through it

three measuring devices after each slit

one time click from laser to wall, one from wall to measuring devices
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Double-slit experiment (II)
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not unitary: many other paths

Double-slit experiment (III)
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exactly the same as with bullets: nothing 

strange happens after one time click.
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Double-slit experiment (IV)
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Almost exactly as B2, but one glaring 

difference: B2[5,0] = 1/3, but |P2[5,0]|2 = 0

Explanation

• Interference: waves?

• However, experiment can be done with a single 
photon: interference!

• Superposition: all positions simultaneously!

• Measurement: no longer superposition, but 

collapse to a single classical state.

Review

• States in a quantum system are represented by column vectors of 
complex numbers whose sum of moduli squared is 1.

• The dynamics of a quantum system is represented by unitary 
matrices and is therefore reversible. The “undoing” is obtained via 
the algebraic inverse, i.e., the adjoint of the unitary matrix 
representing forward evolution.

• The probabilities of quantum mechanics are always given as the 
modulus square of complex numbers.

• Quantum states can be superposed, i.e., a physical system can be
in more than one basic state simultaneously.

Errata

All errata:

http://www.cambridge.org/resources/0521879965/7337_Errata.pdf

This link can be found on the QC-webpage.

Reading

• This lecture: Ch 2.5-2.7 & Ch 3.1-3.3, p 60-97.

• Next lecture: Ch 3.4 & (start) Ch 4.
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Assembling Systems

Basic Quantum Theory

Lecture 4

Assembling Systems
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Assembling Systems (cont’d)
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Corresponding graph

Cartesian product GM x GN

(only third column of tensor 

product of M and N)

Assembling Systems (cont’d)

• Quantum theory:
– States can be combined using the tensor product of 

the vectors

– Changes of the system are combined by using the 
tensor product of matrices

– Important: there are many more states that cannot be 
combined from “smaller” ones:

• No tensor product of smaller states

• More interesting ones

• Called entangled states

– Similar for actions

Assembling Systems (cont’d)

• In general:
– Cartesian product of an n-vertex graph with an n’-vertex graph is 

an (n x n’)-vertex graph.

– If we have an n-vertex graph and we are interested in m different 
marbles within this system, this results in the graph with nm

vertices

– with the associated nm-by-nm adjacency matrix 

• Example: bit as a two-vertex graph with a marble on the 0 
vertex or a marble on the 1 vertex. For m bits with a single 
marble one needs a 2m vertex graph or a 2m-by-2m matrix, 
which demonstrates an exponential growth.

4434421 L
 timesm

m GGGG ×××=

4444 34444 21
L

 timesm

GGG
m

G MMMM ⊗⊗⊗=⊗

Basic Quantum Theory
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Why Quantum Mechanics?

• Classical mechanics:
– Dichotomy: particles (matter) ļ waves (light)

– Several experiments prove falseness

• New theory of microscopic world: both matter and light 
manifest a particle-like and a wave-like behavior.

• Double-slit experiment:
– Also with just one photon: which region is more likely for the single 

photon to land. The photon is a true chameleon: sometimes it 
behaves as a particle and sometimes as a wave, depending on 
how it is observed.

– Not only for light (photons), but also with electrons, protons, and 
even atomic nuclei. Clearly indicates: no rigid distinction between 
waves and particles.

Quantum states

Two examples:

I. A particle confined to a set of discrete 

positions on a line

II. A single-particles spin system

Subatomic particle on a line: can only be detected at one of the equally 

spaced points {x0, x1, …, xn-1}, where x1 = x0 + įx, x2 = x1 + įx.

x0 x1 xi Xn-1

įx can be made as small as one wishes.

Classical state

Associate to this current state of the particle an n-dimensional 

complex column vector [c0, c1, …, cn-1]
T. Particle at point xi shall be 

denoted by the Dirac ket notation |xi>.

To each of these n basic states, we assiciate:

[ ]
[ ]

[ ]      ,0 1, 0,|

,0 1, 0,|

,0 0, 1,|

1n

1

0

T

T

T

x

x

x
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〉

〉

〉

−

Canonical 

basis of Cn Classical viewpoint: 

that’s all we need!

Quantum state

• Experiments demonstrate that the particle can be in a strange fuzzy 
blending of these states. What does this mean?

• An arbitrary state (ci’s are the complex amplitudes)

• Represented in CCn as

• This state is a superposition of the basis states: it is simultaneously in all
{x0, x1, …, xn-1} locations.

• The complex numbers c0, c1, …, cn-1tells precisely which superposition 
our particle is in.

• We will detect the particle in point xi with a probability

• After the observation we will find the system in one of the basis states

〉++〉+〉=〉 −− 111100 |||| nn xcxcxc Lφ

[ ]T
nccc 110 ,,,| −〉 Kaφ
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j j
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Properties of kets

• Kets can be added

• Scalar multiply a ket by c

• A ket and all its complex scalar multiples describe the 
same physical state. So the length of a ket does not 
matter as far as physics goes.

• A normalized ket

• Given a normalized ket, we get

〉+++〉+=〉〉+ −−− 111000 |)'(|)'('|| nnn xccxcc Lφφ

〉++〉=〉 −− 1100 ||| nn xccxccc Lφ

〉
〉

φ
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2
)( ii cxp =

Spin

• What is spin? Stern-Gerlach experiment (1922)

• Split of beam electrons into two streams with opposite spin. 

Wrt a classical spinning top two striking differences:

– Electron does not have an internal structure, it is just a charged 

point.

– All electrons either at the top or at the bottom. Two states: it

spins either clockwise or anticlockwise. 

• Two basic spin states: spin up and down

↓〉+↑〉=〉 |
1

|| 0 ccφ
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Bra-ket
• Physical meaning of inner product: transition amplitudes, how 

likely will the state of the system change before a specific 
measurement (start state) to another (end state) after the 
measurement.

• How to calculate a transition amplitude? 

– Bra state:

– Transition amplitude: multiply as matrices

– Denoted as:

– Nothing else than the inner product: from states to state transitions.
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Summary Quantum States

• Association of a vector space to a quantum space. The dimension 
reflects the amount of basis states of the system.

• States can be superposed, by adding their representing vectors.

• A state is left unchanged if its representing vector is multiplied by a 
complex scalar.

• The state space has a geometry, given by its inner product. This
geometry has a physical meaning: it tells us the likelihood for a 
given state to transition into another one after being measured.
States that are orthogonal to one another are mutually exclusive.

Observables

• To each physical observable there corresponds a 
hermitian operator.

– An observable is a linear operator, which means it maps states to 
states. Apply ȍ to the state vector |ȥ>, the resulting state is ȍ |ȥ>.

– The eigenvalues of a hermitian operator are all real.

• The eigenvalues of a hermitian operator ȍ associated 
with a physical observable are the only possible values the 
observable can take as a result of measuring it on a given 
state. Furthermore, the eigenvectors of ȍ form a basis for 
the state space.

Position observable

• Where can the particle be found?

• Acts on the basic states:

– P acts as multiplication by position.

• On arbitrary states:

• Matrix representation of the operator in the standard basis:  
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Momentum observable

• Classical: momentum = velocity x mass

• Quantum analog: 

̇ Is the rate of change of the state vector from one point to the next.

̇ The constant ʄ (pronounced h bar) is a universal constant, called 

the reduced Planc constant.

̇ Many more observables, but position and momentum are 

in a sense building blocks.
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Spin operators

• Given a direction in space, in which way is the particle 
spinning?

• Is the particle spinning up or down in the z direction? 
Left or right in the x direction? In or out in the y
direction?

• The three corresponding operators:

• Orthonormal bases: 
– Sz has eigenbasis up and down

– Sy has eigenbasis in and out

– Sx has eigenbasis left and right
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More on operators/observables

• p117-125: FYI, not really important for 

quantum computation

Sum up on observables

• Observables are represented by hermitian
operators. The result of an observation is always 
an eigenvalue of the hermitian.

• The expression <ȥ|ȍ|ȥ> represents the 
expected value of observing ȍ on |ȥ>.

• Observables in general do not commute. This 
means that the order of observations matters. 
Moreover, if the commutator of two observables 
is not zero, there is an intrinsic limit to our 
capability of measuring their values 
simultaneously.

Measuring

• The act of carrying out an observation on a given 
physical system is called measuring.

• Classical:
– Measuring leaves the system in whatever state it already was, at

least in principle.

– The result of a measurement on a well-defined state is 
predictable.

• Quantum world:
– Systems do get perturbed and modified as a result of a 

measurement.

– Only the probability of observing specific values can be 
calculated: measurement is inherently a nondeterministic 
process.

What happens?

• Let ȍ be an observable and |ȥ> be a state. If the result 
of measuring ȍ is the eigenvalue Ȝ, the state after 
measurement will always be an eigenvector 
corresponding to Ȝ.

• The probability of the transition to an eigenvector is 
equal to |<e|ȥ>|2. It is the projection of |ȥ> along |e>.   

Measurement with more than one 

observable

• Beam of light:

– Vibrates along all possible directions 

orthogonal to its line of propagation.

– Vibrates only in a specific direction: 

polarization.

• Experiment: multiple polarization sheets.

One sheet

Light partially passing 

through one 

polarization sheet.



5

Two sheets

No light passing through 

two polarization sheets at 

orthogonal angles.

Three sheets
No effect if third sheets is placed on left or right of the two 

other sheets: no light!

However, placed in-between: only one-eight of the original 

light will pass through all three sheets!

Summary on measuring

• The end state of the measurement of an 

observable is always one of its eigenvectors.

• The probability for an initial state to collapse into 

an eigenvector of the observable is given by the 

length squared of the projection.

• When we measure several observables, the 

order of measurement matters.

Quantum dynamics

• Systems evolving in time.

• The evolution of a quantum system (that is not a 

measurement) is given by a unitary operator or 

transformation

• Unitary transformations are closed under composition 

and inverse:

– The product of two arbitrary unitary matrices is unitary.

– The inverse of a unitary transformation is unitary. 

( ) ( )〉=〉+ tUt φφ |1|

Quantum dynamics (cont’d)

• Assume we have a rule     that associates with each 
instance of time 

a unitary matrix

• Starting with an initial state vector 
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Quantum dynamics (cont’d)

Orbit of |ȥ>

A quantum computation will start with an initial state |ȥ>, followed by 

the application of a sequence of unitary operators to that state. When 

we are done, we will measure the output and get the final state.

Symmetric in time
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Quantum dynamics (cont’d)

• How is the sequence of unitary transformations 

selected in real-life quantum mechanics? 

• How is the dynamics determined? 

• How does the system change?

• Answer: the Schrödinger equation (see book)

Quantum dynamics: recap

• Quantum dynamics is given by unitary 
transformations.

• Unitary transformations are invertible: thus, all 
closed system dynamics are reversible in time 
(as long as no measurement is involved).

• The concrete dynamics is given by the 
Schrödinger equation, which determines the 
evolution of a quantum system.

Reading

• This lecture: Ch 3.4 & Ch 4.1-4.4, p 97-132.

• Next lecture: Ch 4.5 & start Ch 5.
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Assembling Quantum Systems

Architecture

Lecture 5

Two particles moving in a one-dimensional grid: first particle on {x0, x1, …, xn-1}, 

the second particle on {y0, y1, …, ym-1}.

Assembling Quantum States

k0 VVV ⊗⊗⊗ L1

xn-1x0 x1

……
yn-1y0 y1

……

Assume we have two independent quantum systems Q and Q’, represented 

respectively by the vector spaces VV and VV’’. The quantum system obtained by 

merging Q and Q’ will have the tensor product V V and VV’’ as a state space.

We can assemble as many systems as we like:

n x m possible basic states:

, meaning the first particle is at x0, and the second particle at y0.

, meaning the first particle is at xn-1 and the second at ym-1.

〉⊗〉 00 | | yx

〉⊗〉 −− 11 | | mn yx
M

Assembling (cont’d)

• Generic state vector:

which is a vector in the (n x m)-dimensional complex space CCnxm.

• The quantum amplitude |ci,j| squared is the probability of finding the 
two particles at positions xi and yj.

• Example:

• What is probability of finding first particle at x1 and second one at y1?

〉⊗〉++〉⊗〉+〉⊗〉=〉 −−−− 111,1,000,0 | || || || mnmnjiji yxcyxcyxc LLφ
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Assembling (cont’d)
• Entanglement:

– The basic states of the assembled system are just the tensor product of basic 
states of its constituents.

– Each generic state vector can be rewritten as the tensor product of two states, 
coming from one subsystem and a second one? NOT TRUE

• Example: simplest two-particle system, where each particle is allowed only in 
two points. Consider the state

In order to clarify what is left out, we might write this as

• Can we write this as the tensor product of two states coming from two 
subsystems? 1st particle                            , 2nd particle

Tensor product

• No solution: |ȥ> cannot be written as a tensor product.
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Assembling: Entanglement

• What does it physically mean?

• First particle 50-50 chance of being in x0 or x1.

• If in x0? Term                      has coefficient 0, so no chance that second 
particle in y1. We must conclude that it can only be found in y0.

• Similarly, if first particle in x1, second one must be in y1.

• Symmetrical with respect to the two particles: the same if we measure 
second particle first.

• The individual states of the two particles are intimately related to each other, 
or entangled.

• Amazing: the xi’s can be light years away from the yi’s!

• Sharp contrast: no clue

〉⊗〉 10 | | yx

〉⊗〉〉+⊗〉=〉 1100 | || || yxyxφ

〉⊗〉+〉⊗〉+〉⊗〉+〉⊗〉=〉 11011000
' | |1| |1| |1| |1| yxyxyxyxφ

Separable states

Entangled states

Assembling: spin systems

• Law of conservation of spin: in an isolated system the total amount 
of spin must stay the same.

• Fix on the z-direction and corresponding spin basis: up and down. 

• Consider a composite particle, whose total spin is zero.

• This particle might split up into two particles that do have spin:
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Assembling: spin systems (cont’d)

• Spin states of the two particles will be entangled.

• Spin of total system zero s sum of the spins of the two particles must 
cancel each other out:
– Measure spin of left particle along z axis |rL> s spin of right particle |tR>

– Similarly, |tL> s |rR> 

• Basis left particle BL={|rL>, |tL>}, basis right particle BR={|rR>, |tR>}, so 
basis of total system

• Entangled particles are described by

• Combinations             and              cannot occur because of the law of 
conservation of spin.

• Measuring left particle: if it collapses to |rL> then instantaneously right 
particle collapses to |tR>, even if the particle is millions of light years 
away.

• Entanglement plays role in: algorithms, cryptography, teleportation, 
and decoherence.

{ }RLRLRLRL ↓⊗↓↑⊗↓↓⊗↑↑⊗↑    ,   ,   ,

2

|| 〉↑⊗↓〉+↓⊗↑ RLRL

RL ↑⊗↑ RL ↓⊗↓

Assembling systems

Summarizing:

– We can use the tensor product to build complex 

systems out of simpler ones.

– The new system cannot be analyzed simply in terms 

of states belonging to its subsystems. An entire set of 

new states has been created, which cannot be 

resolved into their constituents.

Architecture

Bits and qubits

• A bit is a unit of information describing a two-dimensional 
classical system.

• A bit is away of describing a system whose set of states 
is of size 2, usually written as 0 and 1, or F and T, etc.

• By matrices:

• In a classical world: either in state |0> or in state |1>; in a 
quantum world this is not sufficient: a quantum system 
can be in state |0> and in state |1> simultaneously.

• A quantum bit or a qubit is a unit of information 
describing a two-dimensional quantum system.
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Qubits: representation

• Representation of a qubit where |c0|
2+|c1|

2=1

• |c0|
2 is the probability that after measuring the qubit, it will be found 

in state |0>, while |c1|
2 is the probability that it will be in state |1>

• Canonical basis of CC2: 
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Qubits: denotations and 

implementations

2

10

2

1
0

2

1
1

1

2
1
2

1

2
1

〉+〉
=+〉=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

2

10

2

1
0

2

1
1

1

2
1
2

1

2
1

〉−〉
=−〉=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
− −

2

01

2

10 〉+〉
=

〉+〉

2

01

2

10 〉−〉
≠

〉−〉 ( )
2

01
1

2

10 〉−〉
−=

〉−〉

Several ways of denoting qubits

Examples of qubit implementations (see chapter 11)

• An electron in an atom might be in one of two different energy levels 

(ground state and excited states).

• A photon might be in one of two polarized states.

• A subatomic particle might have one of two spin directions.

There will be enough quantum indeterminacy and quantum superposition 

effects within all these systems to represent a qubit.
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Qubits: more than 1 bit

• Only one bit of storage not very interesting. Consider a byte or eight 
bits 01101011

• Following the preceding method of describing bits

• To combine quantum systems one should use tensor products

• This is an element of 

• This vector space may be denoted as (CC2)  8. This is a complex 
vector space of dimension 28=256, isomorphic to CC256.

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
1

0
  ,

1

0
  ,

0

1
  ,

1

0
  ,

0

1
  ,

1

0
  ,

1

0
  ,

0

1

〉⊗〉⊗〉⊗〉⊗〉⊗〉⊗〉⊗〉 1 0 0 1 0 1 1 0

22222222 CCCCCCCC ⊗⊗⊗⊗⊗⊗⊗

⊗

Qubyte

• Another description: a 28=256 row vector

• Classical world: indicate the state of each bit of a byte s eight bits.

• Quantum world: a state of eight qubits is given by writing 256 complex 
numbers.

• A 64-qubit register: 264 = 18,446,744,073,709,551,616 complex numbers.

• Exponential growth: thought to the notion of quantum computing.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

0

0

1

0

0

0

M

M

M

M

    

11111111
11111110

01101100
01101011
01101010

00000001
00000000

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

255

254

108

107

106

1

0

c

c

c

c

c

c

c

M

M

M

M

    

11111111
11111110

01101100
01101011
01101010

00000001
00000000

∑
−

=
255

0

2
1

i
ic

Two-qubit system

• Qubit pair:

• Tensor product clear:

• Another way:  

• A general state of a two-qubit system:

• Tensor product of two states not commutative:

• Entangled states:

10or  10 ⊗⊗

01or  1,0,10

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0

0

1

0

  

11

10

01

00

11100100 1,10,11,00,0 cccc +++=φ

01010,110011,01010 ⊗=⊗==≠==⊗=⊗

00
2

1
11

2

1

2

0011
+=

+

Classical gates: NOT

NOT gate

– Input 1 bit or a 2x1 matrix

– Output 1 bit or a 2x1 matrix

–

– Consider the matrix

0 equals 1 of NOT and 1 equals 0 of NOT

⎥
⎦

⎤
⎢
⎣

⎡
=

01

10
NOT

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
1

0

0

1

01

10
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
0

1

1

0

01

10

Classical gates: AND

AND gate

– Input 2 bits, output 1 bit, so a 21-by-22 matrix

– Consider the matrix

111ANDor          
1

0

1

0

0

0

1000

0111
=⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=

1000

0111
AND

001ANDor          
0

1

0

0

1

0

1000

0111
=⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎦

⎤
⎢
⎣

⎡
1.4

5.5

1.4

0

2

5.3

1000

0111

NONSENS! Only classical 

states, i.e. columns matrices 

with a single 1 entry and all 

other entries 0. Later more……

Classical gates: OR

OR gate

– Consider the matrix

⎥
⎦

⎤
⎢
⎣

⎡
=

1110

0001
OR ?
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Classical gates: NAND

NAND gate

– Special importance because every logical gate can be 

composed of NAND gates.

– NAND = AND followed by NOT

⎥
⎦

⎤
⎢
⎣

⎡=
0 1  1  1

1 0  0  0

1

0
11100100

NAND

=

NAND 
0111

1000

1000

0111

01

10
  AND  NOT =⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
∗⎥
⎦

⎤
⎢
⎣

⎡
=∗

Sequential operations

A B = B * A B A

Convention: computation flows from left to right, 

so A followed by B shall be denoted as

A B

A nm

m input bits and n output bits

A will be of size 2n-by-2m

A nm B p

B*A is a (2p-by-2n)*(2n-by-2m)= (2p-by-2m) matrix

Parallel operations

=⊗ BA

A nm

Bm’ n’

''m''n 222-by-222 size of is mmmnnn ++ ==⊗ BA

Parallel operations: example

( )ANDNOTOR ⊗∗

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥
⎦

⎤
⎢
⎣

⎡
=⊗

00001000

00000111

10000000

01110000

1000

0111

01

10
ANDNOT

( ) ⎥
⎦

⎤
⎢
⎣

⎡
=⊗∗

10001111

01110000
ANDNOTOR

Example DeMorgan’s laws

( ) QPQP ∨=¬∧¬¬ =

( ) ORNOTNOTANDNOT =⊗∗∗

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥
⎦

⎤
⎢
⎣

⎡
=⊗

0001

0010

0100

1000

01

10

01

10
NOTNOT

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∗⎥
⎦

⎤
⎢
⎣

⎡
∗⎥
⎦

⎤
⎢
⎣

⎡
1110

0001

0001

0010

0100

1000

1000

0111

01

10

Reading

• This lecture: Ch 4.5 & Ch 5.1-5.2, p 132-151.

• Next lecture: Ch 5.3-5.5
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Architecture

Reversible Gates

Quantum Gates

Lecture 6

Reversible Gates

• In quantum world all operations that are not 
measurements:
– reversible

– represented by unitary matrices

– e.g., AND gate are not reversible

NOT gate and identity gate are reversible

• Today’s computers lose energy and generate 
heat. In 1960s Rolf Landauer showed:
– Erasing information causes energy loss and heat

– Writing information not                                         

Landauer’s principle

Landauer’s principle (I)

Intuition (not completely correct): tub of water

No state

In state |0> and in state |1>

State |0> dissipating 

and creating energy

Landauer’s principle (II)

Reversibility of writing

Irreversibility of erasing

Landauer’s principle (III)

• Intuition with two people, Alice and Bob

• Writing
– Alice writes letter on empty blackboard

– Bob walks into the room

– Bob erases the letter

– Blackboard in its original state

– Writing is reversible

• Erasing
– Blackboard with writing on it

– Alice erases the board

– Bob walks into the room

– Bob cannot write what was on the board

– Erasing not reversible

Landauer’s principle (IV)

• Erasing information is an irreversible, 
energy-dissipating operation.

• Charles H. Bennett in 1970s: if erasing 
information is the only operation that uses 
energy, then a computer that is reversible 
and does not erase would not use any 
energy ĺ reversible circuits and 
programs.
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Reversible gates: controlled-NOT gate

• Identity gate

• NOT gate

• Controlled-NOT gate:

y yx ⊕

xx

Top input is control bit:

• if |x›=0 then bottom output of |y› will be the same as the input

• if |x› =1 then the bottom output will be the opposite

Controlled-NOT gate can be reversed by itself

binary exclusive or

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0  1  0  0

1  0  0  0

0  0  1  0

0  0  0  1

11

10

01

00
11100100

Reversible gates: Toffoli gate

( )yxz ∧⊕z

yy

xx

Similar to the controlled-NOT gate, but with two controlling bits:

• the bottom bit flips only when both of the two top bits are in state |1›.

• can be written as ( )yxz ∧⊕

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

01 0 0 00 0  0  

10 0 0 00 0  0  

00 1 0 00 0  0  

00 0 1 00 0  0  

00 0 0 10 0  0  

00 0 0 01 0  0  

00 0 0 00 1  0  

  0    0    0   0    0    0     0     1   

111

110

101

100

011

010

001

000
111110101100011010001000

Toffoli gate (cont’d)

• Toffoli gate is universal: with copies one can make any logical gate.

• You can make a reversible computer using only Toffoli gates.

• In theory this computer will neither use any energy nor give off any 
heat.

yx ∧0

yy

xx

AND gate

z¬z

11

11

NOT gate

0

yy

11

fanout gate

y

Fredkin gate

• Fredkin gate is also universal:

– the top input is the control input

– |0, y, z ›ĺ |0, y, z › and |1, y, z ›ĺ |1, z, y›

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

10 0 0 00 0  0  

00 1 0 00 0  0  

01 0 0 00 0  0  

00 0 1 00 0  0  

00 0 0 10 0  0  

00 0 0 01 0  0  

00 0 0 00 1  0  

  0    0    0   0    0    0     0     1   

111

110

101

100

011

010

001

000
111110101100011010001000

'zz

'yy

'xx

Fredkin gate (cont’d)

Universal:

( ) zx ∧¬z

zx∧0

xx

AND gate

x0

x¬1

xx

NOT gate

Both the Toffoli and the Fredkin gates are universal. 

Not only are both reversible gates, their matrices 

are also unitary.

Quantum gates

• A quantum gate is an operator that acts on qubits. Such operators 
will be represented by unitary matrices.

• Examples: identity operator I, the Hadamard gate H          , the NOT 
gate, the controlled-NOT gate, the Toffoli gate, and the Fredkin gate.

• Pauli matrices:

• Other important matrices:

• Several relations between these operators (see book)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−11

11

2

1

⎥
⎦

⎤
⎢
⎣

⎡
===

01

10
NOTxX σ ⎥

⎦

⎤
⎢
⎣

⎡ −
==

0

0

i

i
Y yσ ⎥

⎦

⎤
⎢
⎣

⎡
−

==
10

01
zZ σ

⎥
⎦

⎤
⎢
⎣

⎡
=

i
S

0

01
⎥
⎦

⎤
⎢
⎣

⎡
= 4/0

01
πie

T
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Square root of NOT gate

• Matrix representation:

• Not its own inverse: √NOT ≠ √NOT†

• Reason for name: 
– Put qubits |0> and |1> through √NOT gate twice:

– Performs same operation as the NOT gate.

⎥
⎦

⎤
⎢
⎣

⎡ −
=

11

11

2

1
NOT

( ) ⎥
⎦

⎤
⎢
⎣

⎡ −
==∗

01

10
NOTNOTNOT

2

[ ] [ ] 11,0
2

1
,

2

1
0,10 =⎥

⎦

⎤
⎢
⎣

⎡
=

T
T

T
aa

[ ] [ ] 0 as state samerepresent  ,010,1
2

1
,

2

1
1,01 −=−⎥

⎦

⎤
⎢
⎣

⎡
−=

T
T

T
aa

Measurement operation

• Not unitary

• Not reversible

• Usually performed at the end of a computation

• Denoted as

Geometric representation of 

qubit states and operations

Complex numbers c with |c|2 = 1, 

only identified by one number, the 

angle ș between vector and x-axis

x

Qubits |ȥ>=c0|0>+c1|1>, where 

|c0|
2+|c1|

2=1 can be identified by 

two numbers, the latitude ș and 

the longitude ĳ on a three-

dimensional sphere of radius1, 

known as the Bloch sphere.

Bloch sphere

( ) ( )1sin0cos θθψ ϕie+=

20 and 20 πθπφ ≤≤<≤

θ

θφ

θφ

cos

sinsin

sincos

=

=

=

z

y

x

θ

θφ

θφ

cos

2sinsin

2sincos

=

=

=

z

y

x

Qubit:

Standard parametrization of the unit sphere:

( ) ( )

1)-factor   the to(up

bit  same therepresent 

 ,- and , πφθπφθ +

Bloch sphere (cont’d)

• North pole corresponds to state |0>and south pole 
to |1>.

• Angle ĳ is the angle that |ȥ> makes from x along 
the equator (longitude) and ș is half the angle that 
|ȥ> makes with the z axis (latitude).

• When a qubit is measured in the standard basis, it 
collapses to the north or south pole of the Bloch 
sphere. The probability depends on the latitude, 
so on ș.

• Rotation around the z axis, changing the 
longitude: does not affect the probability to which 
classical state it will collapse. It is called a phase 
change, altering the phase parameter eiĳ.

2ș Bloch sphere: dynamics

• Every unitary 2-by-2 matrix will ‘manipulate’ the sphere.

• The X, Y, and Z Pauli matrices “flip” the Bloch sphere 

180o about the x, y, and z axes, resp.:

– X is a NOT gate taking |0> to |1> and vice versa, and even more: 

it takes everything above the equator to below the equator. 

Similar for the other Pauli matrices: e.g., Y operation
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Bloch sphere: dynamics/rotations

• Phase shift gates:

• Following operation on an arbitrary qubit:

Leaves the latitude alone and just changes 

the longitude. New state will remain 

unchanged, only the phase will change.

⎥
⎦

⎤
⎢
⎣

⎡
=

θ
θ

e
R

0

01
)(

( ) ( )
( )

( )
( )

( )⎥⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=+

'sin

'cos

'sin

'cos
1'sin0'cos

θ

θ

θ

θ
θθ

φθφ

φ

ii
i

eee
e a

Bloch sphere: dynamics/rotations
• Rotation of ș degrees around x, y, or z axis:

• General rotation around vector D=(Dx,Dy,Dz) with size 1 
from the origin:

( )

( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡
=−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

=−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=−=

−

2/

2/

0

0

2
sin

2
cos

2
cos

2
sin

2
sin

2
cos

2
sin

2
cos

2
cos

2
sin

2
sin

2
cos

2
sin

2
cos

θ

θθθ
θ

θθ

θθ
θθ

θ

θθ

θθ
θθ

θ

i

i

z

y

x

e

e
ZiIR

YiIR

i

i
XiIR

( ) ( )ZDYDXDiIR zyxD ++−=
2

sin
2

cos
θθ

θ

Bloch sphere: higher dimensions

• Valuable tool for understanding qubits and one-
qubit operations.

• For n-qubits there is a higher-dimensional 
analog of the sphere.

• Research challenge: visualizing what happens 
when we manipulate several bits at once.

• Entanglement lies beyond the scope of the 
Bloch sphere.

controlled-U or CU

This operation will 

perform the U operation if 

the top |x> is a |1> and 

will perform the identity 

operation if |x> is |0>. 

Equivalent to an IF-THEN 

statement.

⎥
⎦

⎤
⎢
⎣

⎡
=

db

ca
U

xx

U
nn

For the simple case of

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

dc

ba
UC

00

00

0010

0001

Universal quantum gates

• Universal logical gates can simulate every 
logical circuit: 
– {AND, NOT} gates

– NAND gate

• Universal reversible gates:
– Toffoli gate

– Fredkin gate

• Universal quantum gates:
– {H, CNOT, R(cos-1(3/5))}

Universal quantum gates (cont’d)

• Deutsch gate D(ș)

'zz

yy

xx

R(ș)

If the inputs |x> and |y> 

are both |1>, then the 

phase shift operation R(ș) 

will act on the |z> input. 

Otherwise, |z’> will be the 

same as |z>.
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No-Cloning Theorem

• It is impossible to clone an exact quantum state.

• In other words, it is impossible to make a copy of an 
arbitrary quantum state without first destroying the 
original.

• We can “cut” and “paste” a quantum state, we cannot 
“copy” and “paste”.

• Move is possible, copy is impossible.

• Transporting arbitrary quantum states from one system 
to another is no problem.

• See book for “proofs”.

No-Cloning Theorem (cont’d)

• What about the fanout gate? The Toffoli and 
Fredkin quantum gates can mimic the fanout
gate.

• Fredkin gate:                                  Cloning?

• Assume x input is superposition           , while 
leaving y = 1 and z = 0.

• This corresponds to the state

( ) ( )xxxx  , ,0 ,1 , ¬a

2

10 +

[ ]T000000
2

1
2

1

No-Cloning Theorem (cont’d)

Multiply with Fredkin state:

Resulting state:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

0

0

0

0

0

0

0

0

0

0

0

10000000

00100000

01000000

00010000

00001000

00000100

00000010

00000001

2
1

2
1

2
1

2
1

2

1,0,10,1,0 +

So for a classical bit x 

the Fredkin gate 

performs the fanout

operation, but for a 

superposition:

2

1,0,10,1,0
0,1,

2

10 +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
a

Not a fanout operation, 

no-cloning theorem 

safely stands.

Reading

• This lecture: Ch 5.3-5.4.

• Next lecture: Ch 6.1-??.
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Algorithms

Lecture 7

Algorithms

• Deutsch’s algorithm: {0,1} ĺ {0,1}

• Deutsch-Jozsa algorithm: {0,1}nĺ {0,1}

• Simon’s periodicity algorithm: {0,1}nĺ {0,1}n

• Grover’s search algorithm: unordered array of 
size n in √n time instead of n time

• Shor’s factoring algorithm: factor numbers in 
polynomial time.

Basic steps in a quantum algorithm

• All quantum algorithms:

– The system will start with the qubits in a 

particular classical state.

– The system is put into a superposition of 

many states.

– Acting on this superposition with several 

unitary operations.

– A measurement of the qubits

Deutsch’s algorithm

• Simplest quantum algorithm

• Concerned with functions from the set {0,1} to the set 
{0,1}

• A function f: {0,1} ĺ {0,1} is balanced if f(0) ≠ f(1), i.e. 
it is one to one; in contrast it is constant if f(0) = f(1).

• Deutsch’s algorithm: given a function f: {0,1} ĺ {0,1}  
as a black box, where one can evaluate an input, but 
cannot “look inside” and “see” how the function is 
defined, determine if the function is balanced or 
constant.

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Classical computer

With a classical computer f must be 

evaluate twice; can we do better on a 

quantum computer?

f(0) = 0 f(0) = 1

f(0) = 0

f(1) = 0

constant

f(0) = 0

f(1) = 1

balanced

f(0) = 1

f(1) = 0

balanced

f(0) = 1

f(1) = 1

constant

A quantum computer can be in a 

superposition of two basic states 

at the same time. 

Evaluation of a function

• Classical:

• Quantum system

– Unitary (reversible) 

⎥
⎦

⎤
⎢
⎣

⎡
01

10

1

0
10

f
x f(x)

0

1

0

1

ļ

XOR

to be evaluated

UUf

|x>|x>

|y> |y    f(x)>
controls the output

Uf is its own reverse: 

( ) ( ) yxyxxfxfyxxfxfyx

xfyxyx

,0,)()(,)()(,         

)(,,

=⊕=⊕⊕=⊕⊕

⊕

a

a

)(,)(0,0, xfxxfxx =⊕a

0

1

0

1

ļ
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000

0100

0001

0010

11

10

01

00
11100100

    fU
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Quantum “trick”

• Rather than evaluating f twice, put the top input in superposition:

• This can be achieved by the Hadamard matrix:

• Following quantum circuit:

• In terms of matrices:

2

10 +

2

10

0

1
0

2
1
2

1

2
1

2
1

2
1

2
1 +

=⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=H

( )( ) ( )( )0,000 IHUIHU ff ⊗=⊗⊗

Quantum “trick” (cont’d)

2

0,10,0
0

2

10
1

+
=⎥

⎦

⎤
⎢
⎣

⎡ +
=ϕ

2

)1(,1)0(,0
2

ff +
=ϕ

The system starts in

Apply Hadamard matrix on top input 

Multiplying with Uf

If we measure the top qubit, there will be a 50-50% chance of 

finding it in state |0> and a 50-50% chance of finding it in state |1>. 

Similarly, there is no real information to be gotten by measuring 

the bottom qubit.

So the obvious algorithm does not work, we need a better trick!

0,0000 =⊗=ϕ

Better “trick”
• Put the bottom qubit in the superposition state        , notice the minus sign!

• Quantum circuit:

• In terms of matrices:

• Start with

• After the Hadamard matrix

• Applying Uf

( )( )1,xHIU f ⊗

1,0 x=ϕ

2

1,0,

2

10
1

xx
x

−
=⎥

⎦

⎤
⎢
⎣

⎡ −
=ϕ

[ ]
[ ]⎪⎩

⎪
⎨
⎧

=

=
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡ ⊕−⊕
=

−

−

1)( if ,

0)( if ,

2

)()(

2

)(1)(0

2

01
2

10

2
xfx

xfxxfxf
x

xfxf
xϕ

2

10 −

Better “trick” (cont’d)

[ ]
[ ]⎪⎩

⎪
⎨
⎧

=

=
=

−

−

1)( if ,

0)( if ,

2

01
2

10

2
xfx

xfx
ϕ

with (a–b)=(–1)(b–a)

⎥
⎦

⎤
⎢
⎣

⎡ −
−=

2

10
)1( )(

2 xxfϕ
Evaluate top or bottom state?

No information: top qubit will be in 

state |x> and the bottom qubit either 

in state |0> or in state |1>……

Deutsch’s algorithm

• Combine both “tricks”:

– Both top and bottom qubits in superposition

– Result of top qubit through Hadamard matrix

• In terms of matrices:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊗⊗⊗⊗

0

0

1

0

11

10

01

00

)()(or      1,0)()( HHUIHHHUIH ff

Deutsch’s algorithm (cont’d)

• Start with

• and

• We saw that with bottom qubit in superposition and then 

multiply by Uf

• with |x> in a superposition, we have

1,00 =ϕ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

+

−

+

=
−+−+

=⎥
⎦

⎤
⎢
⎣

⎡ −
⎥
⎦

⎤
⎢
⎣

⎡ +
=

2
1

2
1

2
1

2
1

1

11

10

01

00

2

1,10,11,00,0

2

10

2

10
ϕ

⎥
⎦

⎤
⎢
⎣

⎡ −
−

2

10
)1( )( xxf

⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −+−
=

2

10

2

1)1(0)1( )1()0(

2

ff

ϕ
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Deutsch’s algorithm (cont’d)

• We have

• Let have a look at

– if f is constant

– if f is balanced

• So we have

• Hadamard matrix is its own reverse 

• Apply it to top qubit

• Measure top qubit: if |0> then f is constant, otherwise balanced. 

Only one evaluation of f.

⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −+−
=

2

10

2

1)1(0)1( )1()0(

2

ff

ϕ

1)1(0)1( )1()0( ff −+−

( ) ( ) resp.) 1,or  0y (constantl    101or      101 +−++

( ) ( )101or      101 −−−+

[ ][ ]
[ ][ ]⎪⎩

⎪
⎨
⎧

±

±
=

−−

−+

balanced is  if , )1(

constant is  if , )1(

2

01

2

10
2

10

2

10

2
f

f
ϕ

1   and   0
2

10

2

10
aa

−+

[ ]
[ ]⎪⎩

⎪
⎨
⎧

±

±
=

−

−

balanced is  if ,1)1(

constant is  if ,0)1(

2

01
2

10

3
f

f
ϕ

Deutsch’s algorithm (cont’d)

Remarks:

– The ±1 tells us which of the two balanced or constant functions 

we have, but can not be measured.

– Output of top qubit of Uf not the same as the input: inclusion of 

Hadamard matrices makes top and bottom qubits entangled.

– Trick? No changing around the information:

1. Is the function balanced or constant?

2. What is the value of the function on 0?

Deutsch-Jozsa algorithm
• Generalization:

– f : {0,1}n ĺ {0,1}, which accepts a string of n 0’s and 1’s (natural 
numbers from 0 to 2n-1) and outputs a zero or one.

– f is called balanced if exactly half of the inputs go to 0 (and the 
other half go to 1).

– f is called constant if all the inputs go to 0 or all the inputs go to 1.

• Problem:
– Given a function of {0,1}n to {0,1}, which you can evaluate but 

cannot “see” the way it is defined.

– The function is either balanced or constant.

– Determine if the function is balanced or constant.

– n=1: Deutsch algorithm.

• Classically:
– Evaluate the function on different inputs.

– Best scenario: first two different inputs have different outputs ĺ
balanced function.

– Worst scenario: 2n/2+1 = 2n-1+1 evaluations.

Solution: superposition

• In Deutsch’s algorithm we used the superposition of two possible input 

states. Now we enter a superposition of all 2n possible input states.

yf ⊕)(xy

x x

fU

n/ n/

110 −nxxx K

qubit  control

qubits n fUby   changednot 

Tensor product of 

Hadamard matrices
• Single qubit in superposition: single Hadamard matrix; 

n qubits in superposition: tensor product of n

Hadamard matrices:

• Hadamard matrix definition:

0 and 1 as Boolean values, and (-1)0=1 and (-1)1=-1. 

nHHHHHHHHH ⊗⊗⊗ =⊗⊗=⊗  ,, , , 32 K

[ ] ⎥
⎦

⎤
⎢
⎣

⎡

−−

−−
=−=⎥

⎦

⎤
⎢
⎣

⎡
−

=
∧∧

∧∧

∧

1101

1000

2
1

)1()1(

)1()1(

2

1
   :)1(,or      

11

11

2

1
HjiHH ji

Tensor product of 

Hadamard matrices (cont’d)
• We can calculate

• We are not interested in (-1)x+y, but in the parity of x and y (exclusive-or):

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−∗−−∗−−∗−−∗−

−∗−−∗−−∗−−∗−

−∗−−∗−−∗−−∗−

−∗−−∗−−∗−−∗−

∗=

⎥
⎦

⎤
⎢
⎣

⎡

−−

−−
⊗⎥

⎦

⎤
⎢
⎣

⎡

−−

−−
=⊗=

∧∧∧∧∧∧∧∧

∧∧∧∧∧∧∧∧

∧∧∧∧∧∧∧∧

∧∧∧∧∧∧∧∧

∧∧

∧∧

∧∧

∧∧

⊗

1111011111010101

1011001110010001

1110011011000100

1010001010000000

1101

1000

1101

1000
2

)1()1()1()1()1()1()1()1(

)1()1()1()1()1()1()1()1(

)1()1()1()1()1()1()1()1(

)1()1()1()1()1()1()1()1(

2

1

2

1

)1()1(

)1()1(

2

1

)1()1(

)1()1(

2

1
HHH

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−−−−

−−−−

−−−−

=

∧⊕∧∧⊕∧∧⊕∧∧⊕∧

∧⊕∧∧⊕∧∧⊕∧∧⊕∧

∧⊕∧∧⊕∧∧⊕∧∧⊕∧

∧⊕∧∧⊕∧∧⊕∧∧⊕∧

⊗

1111

1111

1111

1111

2

1

)1()1()1()1(

)1()1()1()1(

)1()1()1()1(

)1()1()1()1(

2

1

1111011111010101

1011001110010001

1110011011000100

1010001010000000

2H
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Tensor product of 

Hadamard matrices (cont’d)
• Proved by induction that

• Useful operation

– Basically it gives the parity of the number of times that both bits are 1.

• If x and y are binary strings of length n, then x y is the pointwise

(bitwise) exclusive-or operation

22
2

1
  is  oft coefficienscalar  the

n

n

nH
−⊗ =

{ } { } { }1,01,01,0: , →×
nn

)()()(         

,

 have  we,                 

 and  ,length  of stringsbinary  given two :Definition

111100

12101210

1210

1210

−−

−−

−

−

∧⊕⊕∧⊕∧=

=

=

=

nn

nn

n

n

yxyxyx

yyyyxxxx

yyyy

xxxxn

L

KK

K

K

yx,

y

x

⊕

111100 ,,, −− ⊕⊕⊕=⊕ nn yxyxyx Kyx

3⊗H

Tensor product of 

Hadamard matrices (cont’d)
• General formula

• What happens if we multiply a state with this matrix? Notice all

elements of the leftmost column of       are +1. So if we multiply 

with the state |0> = |00…0> = [1,0,…,0]T  this will be equal to the 

leftmost column of       :

[ ] ( ) binary.in  numberscolumn  and row  theare  and   where,1
2

1
, , jiji ji

−=
⊗

n

nH

[ ]
{ }
∑

∈

⊗⊗ =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=−=
nnn

nn HH
1,02

1

1

1

1

1

1

11111111

11111110

00000010

00000001

00000000

2

1
,

x

x00
MM

nH ⊗

nH ⊗

Deutsch-Jozsa algorithm
• Bottom control qubit in a superposition:

• In terms of matrices

• We start with

• After the bottom Hadamard matrix

• Applying Uf

• Useless!

( ) 1,xHIU f ⊗

1,0 x=ϕ

[ ]
[ ] ⎥

⎦

⎤
⎢
⎣

⎡ −
−=

⎪⎩

⎪
⎨
⎧

=

=
=

⎥
⎥
⎦

⎤

⎢
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⎡ ⊕−⊕
=

−

−

2
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2
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2

1)(0)(

)(

2
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2

x
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x

xx
x
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f

f

ffff
ϕ

2

1,0,

2

10
1

xx
x

−
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⎦

⎤
⎢
⎣

⎡ −
=ϕ

Deutsch-Jozsa algorithm (cont’d)

• Put |x> into a superposition in which all 2n possible strings have 

equal probability

• In terms of matrices ( ) ( ) 1,  0HHUIH n
f

n ⊗⊗ ⊗⊗

Deutsch-Jozsa algorithm (cont’d)

{ }
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=
∑ ∈

2

10

2

1,0
1 n

nx
x

ϕ

1,0 0=ϕ

{ }
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=
∑ ∈

2

10

2

)1(
1,0

)(

2 n

f
nx

x x
ϕ

( ) ( ) 1,  0HHUIH n
f

n ⊗⊗ ⊗⊗

We start with

Then

Applying Uf

{ }{ }
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −−
=
∑ ∑∈ ∈

2

10

2

)1()1(
1,0 1,0

,)(

3 n

f
n nx z

xzx z
ϕ

Make a superposition of a superposition on the top qubits
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Deutsch-Jozsa algorithm (cont’d)

{ }{ }

{ }{ }

{ }{ }
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −
=

⎥
⎦

⎤
⎢
⎣
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⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −−
=

⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥

⎦

⎤

⎢
⎢

⎣
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=

∑ ∑

∑ ∑

∑ ∑

∈ ∈

⊗

∈ ∈

∈ ∈

2

10

2

)1(

2

10

2

)1()1(

2

10

2

)1()1(

1,0 1,0

,)(

1,0 1,0

,)(

1,0 1,0

,)(

3

n

f

n

f

n

f

n n

n n

n n

x z

xzx

x z

xzx

x z

xzx

z

z

z
ϕ

Measure top qubit of ĳ3; what is the probability that it will collapse to state |0>?

Answer: set z = 0 and realize that <z,x> = <0,x> = 0 for all x. Then

{ }
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=
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2

10

2

)1(
1,0

)(

3 n

f
nx

x 0
ϕ

Deutsch-Jozsa algorithm (cont’d)

{ }
⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=
∑ ∈

2

10

2

)1(
1,0

)(

3 n

f
nx

x 0
ϕ

{ } ( )
0

00
x 1

2

2

2

)1(
1,0

−=
−

=
−∑ ∈

n

n

n

n

{ } 0
00

x 1
2

2

2

1
1,0

+==
∑ ∈

n

n

n

n

Probability of collapsing to |0> is 

totally dependent on f (x).

If f (x) is constant 1, the top qubits become

If f (x) is constant 0, the top qubits become

If f (x) is balanced, then half of the x’s will cancel the other half 

and the top qubits become

{ } 0
00

x

x

0
2

0

2

)1(
1,0

)(

==
−∑ ∈

nn

f
n

We only get |0> if the function 

is constant. If anything else is 

measured, then the function is 

balanced.

Only one function evaluation instead 

of 2n-1: exponential speedup!

Simon’s periodicity algorithm

• Finding patterns in functions.

• Given a function f : {0,1}n ĺ {0,1}n that we can evaluate, but is 
given as a black box.

• There is a secret (hidden) binary string c = c0c1c2…cn-1, such that 
for all strings x, y we have 

• In other words, the values of f repeat themselves in some pattern, 
and the pattern is determined by c, the period of f.

• Goal of Simon’s algorithm is to determine c.

( ) ( ) cyxyx ⊕==    ifonly  and if   ff

Example
• Let n = 3. Consider c = 101. Then we have the following 

requirements on f:

• Notice that if c = 0n, then the function is one to one; otherwise it is 
two to one.

).010()111( hence, ;010101111

).011()110( hence, ;011101110

).000()101( hence, ;000101101

).001()100( hence, ;001101100

).110()011( hence, ;110101011

).111()010( hence, ;111101010

).100()001( hence, ;100101001

).101()000( hence, ;101101000

ff

ff

ff

ff

ff

ff

ff

ff

==⊕

==⊕

==⊕

==⊕

==⊕

==⊕

==⊕

==⊕

)(xy f⊕y

x x

fU

n/ n/

n/n/

Classically

• Evaluate f on different binary strings.

• After each evaluation, check if the output has already been found.

• If for two input x1 and x2 holds f(x1) = f(x2) then

• and can c be obtained by

• If the function is two-to-one, we do not have to evaluate more than 
half the inputs before we get a repeat. If we have to evaluate more, 
we know c = 0n. So, the worst case is 2n/2 + 1 = 2n-1 + 1.

• Can we do better?

cxx 21 ⊕=

cxcxxx 2221 =⊕⊕=⊕

Quantum version
• Performing the following operations several times:

• We start with

• Put the input in a superposition of all possible inputs

• Evaluation of f on all these possibilities

• Apply n Hadamard tensor product

00,0 =ϕ

{ }

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=
∑ ∈

n

n

2

,
1,0

1
x

0x
ϕ

{ }

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=
∑ ∈

n

n f

2

)(,
1,0

2
x

xx
ϕ

{ }{ }

n

n n f

2

)(,)1(
1,0 1,0

,

3

∑ ∑∈ ∈
−

=
x z

xz xz
ϕ
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Quantum version (cont’d)

• For each input x and for each z, we know that the following kets are equal

• The coefficient for this ket is

• <–,–> is an inner product, so

• If <z,c> = 1, the terms will cancel each out and we would get 0/2n. In 
contrast, if <z,c> = 0, the sum will be ±2/2n = ±1/2n-1.

• So we will only find those binary strings such that <z,c> = 0.

)(,   and   )(, cxzxz ⊕ff

n2

)1()1( cxz,xz, ⊕
−+−

n

nn

2

)1()1()1(

2

)1()1(

2

)1()1(

cz,xz,xz,

cz,xz,xz,cxz,xz,

−−+−
=

−+−
=

−+−
⊕⊕

Quantum version (cont’d)

• Some concrete examples in the book! Pages 190-195.

• In conclusion, for given periodic f, we can find the period c
in n function evaluations. This in contrast to the 2n-1 + 1 
needed classically.

???

Reading

• This lecture: Ch 6.1-6.3

• Next lecture: Ch 6.4-6.5
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Algorithms

Grover’s search algorithm

Shor’s factoring algorithm

Lecture 8

Grover’s search algorithm

• Search element in an unordered array of size m in √m
time instead of m/2 time on average.

• In terms of functions, given a function f : {0,1}n ĺ {0,1}, 
where there exists exactly one binary string x0, such that:

• Find x0. Classically, in the worst case, we have to 
evaluate all 2n binary strings. Grover’s algorithm 
demands only √2n = 2n/2 evaluations.

⎩
⎨
⎧

≠

=
=

0

0

xx

xx
x

 if   ,0

 if   ,1
)(f

First try

• Put |x> into a superposition of all possible strings and then evaluate Uf

• In terms of matrices

• The states are

• Measuring the top qubits will, with equal probability, give one of the 2n

binary strings. Measuring the bottom qubit will give |0> with probability 
2n-1/2n, and |1> with probability 1/2n. If one is lucky enough to measure 
|1>, the top qubits will have the correct answer, because of the 
entanglement. However, probably not so lucky.

( ) 0,0IHU n
f ⊗⊗

{ } { }

nn

nn f

2

)(,
   ,0

2
    ,0, 1,0

2
1,0

10

∑∑ ∈∈
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
==

xx
xxx

0 ϕϕϕ

First trick: phase inversion

• Change the phase of the desired state.

• Take Uf and place the bottom qubit in the superposition (|0> – |1>)/√2:

• In terms of matrices:

• The states are:

( ) 1,xHIU nf ⊗

[ ]
[ ]⎪⎩

⎪
⎨
⎧

≠+

=−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡ ⊕−⊕
=

⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡ −
=

=

−

−

0

0

xxx

xxxxx
x

xx
x

xx
x

x

 if ,1

 if ,1

2

)()(

2

1)(0)(

,
2

)1,)0,

2

)1)0

,1,

2

10
2

10

2

1

0

ffff
ϕ

ϕ

ϕ

Example: [½,½,½,½]T and f 

chooses string “10”, then after 

phase inversion: [½,½,-½,½]T . 

Measuring |x> does not give 

any information |½|2= |-½|2=¼.

Second trick: inversion about the mean or 

inversion about the average

• Boosting the separation of the phases.

• Explain with an example: 
– 53, 38, 17, 23, and 79

– Average a = 42

– Sum of the lengths of lines above the average is the same as the
sum of lines below.

– Invert each element around the average: v’ = a + (a-v); example 
[53, 38, 17, 23, 79] ĺ [31, 46, 67, 61, 5]

– In terms of matrices: V’=(-I +2A)V, with A[i,j]=1/n.

Inversion about the mean or 

average (cont’d)
• In general: n qubits, 2n possible states, where a state is 2n vector. Then 

2n-by-2n matrix

• Multiply any state by a will give state where each amplitude will be the 
average of all amplitudes.

• The 2n-by-2n matrix 

• Multiply a state by –I+2A will invert amplitudes about the mean.

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nnn

nnn

nnn
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2
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2
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2
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2
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2
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2
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2
1

2
1

L

OMM

L
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−

+−

+−

=+−

nnn

nnn

nnn
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2
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2
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2
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OMM

L

L



2

Phase inversion and inversion 

about the mean
• Combination is a powerful operation that separates the 

amplitude of the desired state from those of all other 
states.

• Example that demonstrates the combined techniques:
– Vector [10,10,10,10,10]T

– Phase inversion to the fourth element: [10,10,10,–10,10]T

– Inversion about the mean (=6; -v+2a=2 or 22): [2,2,2,22,2]T

– Another phase inversion: [2,2,2,–22,2]T

– Inversion about the mean (=–2.8, -v+2a=–7.6 or 16.4):               
[–7.6,–7.6, –7.6,16.4,–7.6]T

– Another time? No, ʌ/4√n times, otherwise the numbers will be 
“overcooked”.

Repeat ʌ/4

Grover’s algorithm

1) Start with a state |0>

2) Apply 

3) Repeat ʌ/4√2n times:
a) Apply the phase inversion operators: 

b) Apply the inversion about the mean operation: 

4) Measure the qubits.

nH ⊗

( )HIU f ⊗
AI 2+−

Example Grover’s algorithm

• Let f be a function that picks out the string “101”.

• The states:

• The average is:

• Calculating the inversion about the mean:

[ ]
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8
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Example Grover’s algorithm (cont’d)

• Another phase inversion:

• The average is:

• Calculating the inversion about the mean:

• 11/4√8=0.97 and -1/4√8=-0.088, and squaring these numbers gives 
us the probability of measuring the corresponding states. Most likely 
we will measure:
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[ ]T001000004 =ϕ
OK!

Generalizations Grover’s algorithm

• Search an unordered array of size m in m time 

ĺ √m time: quadratic speedup.

• What if there is more than one hit? Assume t 

objects: Grover’s algorithm still works, but one 

must go through the loop ʌ/4√(2n/t) times.

• Many other types of generalizations and 

assorted changes.

Shor’s factoring algorithm

• Factoring integers important: security

• “Hard” on classical computers

• Peter Shor: in polynomial time on quantum computers

• Based on the fact that the factoring problem can be 
reduced to finding the period of a certain function (see 
Simon’s algorithm)

• In practice N will be a large number

• Assume N is not a prime number. However, there exists 
a deterministic, polynomial algorithm that determine if N
is prime.
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Modular exponentiation

• Modular arithmetic: for a positive integer N and any integer a, we 
write a mod N for the remainder (or residue) of the quotient a/N, e.g. 
99 mod 15 = 9.

• aŁa’ mod N, if and only if (a mod N) = (a’ mod N) or equivalent, if N is 
a divisor of a–a’, i.e. N|(a–a’).

• Start of the algorithm: choose randomly an interger a that is less than 
N, but does not have a nontrivial factor in common with N. This can 
be tested by Euclid’s algorithm to calculate GCD(a,N):
– GCD ≠ 1: found a factor of N and done;

– GCD = 1: a is called co-prime to N and we can use it.

• We need to find the powers of a mod N, that is, a0 mod N, a1 mod N, 
a2 mod N, a3 mod N, …

• In other words, we need to find the values of the function

Naxf x
Na mod)(, =

Examples     Naxf x
Na mod)(, =

…1842184218421f2,15(x)

…1211109876543210x

…1414141414141f4,15(x)

…1211109876543210x

…1741317413174131f13,15(x)

…1211109876543210x

In book: N = 371

Not the values, but the period

• Not the values of                              , but the period of this function, 

i.e., we need to find the smallest r > 0 such that

• Theorem in number theory that for any co-prime a ≤ N, the 

function fa,N will output a 1 for some r < N. After it hits 1, e.g., 

Naxf x
Na mod)(, =

1mod)(, == Narf r
Na

)()(   generalin  and

)1()1(then   

1)(   if

,,

,,

,

sfsrf

frf

rf

NaNa

NaNa

Na

=+

=+

=

Examples     

…1842184218421f2,15(x)

…1211109876543210x

…1414141414141f4,15(x)

…1211109876543210x

…1741317413174131f13,15(x)

…1211109876543210x

period  4

period  2

period  4

Quantum part of the algorithm

• For small numbers it is easy to determine the periods of these 

functions. But what if N is hundred digits long? This will be 

beyond the ability of any conventional computer: we need to 

calculate fa,N for all needed x: superposition.

• First we have to show that there is a quantum circuit that can 

implement fa,N (later). 

• The output of this function will always be less than N, so we need 

n = log2 N output qubits.

• We will need to evaluate fa,N for at least N2 values of x, so we will 

need at least m = log2 N2 = 2 log2 N = 2n input qubits.

Quantum circuit for Ufa,N

• Operator Ufa,N

• where 

• How is it formed? Later…

( ) Naf Na mod,,, ,
xyxxyxyx ⊕=⊕a
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Quantum circuit

( )( )( ) ( ) nm
m

f IHUMeasureIIQFTIMeasure
Na

00 ,
,

⊗⊗⊗⊗ ⊗†

States |ĳ0>, |ĳ1>, and |ĳ2>

• We start at

• Then we place the input in an equally weighted superposition of all 

possible inputs

• Evaluation of f on all these possibilities gives us

• These outputs are periodic, e.g., for N = 15, we have n = 4 and m = 8. 

For a = 13 we have

nm 00 ,0 =ϕ

{ }

⎥
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⎦
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⎣

⎡
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∑∑ ∈∈

mm

Na mm Naf

2

mod,

2

)(,
1,01,0 ,

2
x

x

x
xxx

ϕ

256

7,2554,2541,47,34,213,11,0
2

++++++
=

L
ϕ

Measure |ĳ2>

• Measuring the bottom qubits gives us                        for some 

• However, by periodicity we also have          

• How many of the 2m superpositions x have                      as output? 

• Answer:

Na modx x

NaaZ

NaaNaa
sr

rr

mod   :sany for  fact,in  and

   ,mod   and   mod 2

+

++

≡∈

≡≡

xx

xxxx

Na modx

⎥
⎦

⎥
⎢
⎣

⎢
r

m2

State |ĳ3>
• So

• We might also write this as

• Here t0 is the first time that the measured value occurs. It is called the 
offset of the period.

• Example (cont’d), let us say that we measure 7 for the bottom qubits:

⎣ ⎦ ⎥
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⎡
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∑ ≡
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⎢
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r
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3

mod, x

ϕ
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2563

7,2557,2517,157,117,77,3 +++++
=

L
ϕ

Vandermonde matrix

• Evaluating polynomials:

• This polynomial can be represented by a column vector

• Suppose we want to evaluate this polynomial at numbers 

• This can be achieved by

1
1

3
3

2
2

1
10)( −

−+++++= n
n xaxaxaxaaxP L

[ ]T
naaaa 1210 ,,,, −L

1210 ,,,, −nxxxx L

Every row is a geometric series, matrix 

is called the Vandermonde matrix , 

denoted by ),,,,V( 1210 −nxxxx L

Vandermonde matrix (cont’d)
• Elements changed to “powers of one of the Mth roots of unity Ȧ1

M”

(chapter 1)

• M = 2m is fixed, so ȦM is simply Ȧ. We obtain the M-by-M

Vandermonde matrix V(Ȧ0, Ȧ1, Ȧ2, …, ȦM-1)

• To evaluate P(x) at the powers of one of the Mth roots of unity
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Discrete Fourier transform

• Definition of discrete Fourier transform (DFT)

• Formally, DFT is defined as

• Two tasks:

– It modifies the period from r to 2m/r

– It eliminates the offset.

( )1210 ,,,,
1 −= M

M
DFT ωωωω KV

jk

M
DFT ω

1
=

Quantum Fourier transform

• Denoted by QFT.

• Same operation, but more suitable for quantum computers.

• This quantum version is very fast and made of “small” unitary 

operators that are easy to implement.

Measure the top qubits

• Assumption that r evenly divides into 2m (not in Shor’s actual 

algorithm: finding period for any r). So we measure the top qubit

and we will find some multiple of 2m/r . We will measure

• We know 2m and after measurement also x, so we get

• Reduce this number to an irreducible fraction and take the 

denominator to be the period r. If we don’t make the simplifying 

assumption, given above: perform this process several times.

λ
λ

number   wholesomefor    
2

r
x

m

=

rr

x
m

m

m

λλ
==

2

2

2

From the Period to the Factors
• Assumption the period r is an even number; if not, choose another a.

• So ar Ł 1 mod N and we may subtract 1 from both sides to get                 

ar – 1 Ł 0 mod N, or equivalently N | (ar – 1).

• Or N | (√ar + 1)(√ar – 1) or N | (ar/2 + 1)(ar/2 – 1), remember r is even.

• So any factor of N is also a factor of either (ar/2 + 1) or (ar/2 – 1) or both.

• Either way, a factor for N can be found by looking at GCD((ar/2 + 1), N) 

and GCD((ar/2 – 1), N), which can be done by the classical Euclidean 

algorithm.

• One problem: be sure that ar/2 ≠ –1 mod N. Solution: start over again.

• Example: period f2,15 is 4. So GCD(5,15)=5 and GCD(3,15)=3.

Shor’s algorithm

• Putting all pieces together, see p217 of the book.

• Complexity of this algorithm? O(n2 log n log log n), where n is the 

number of bits to represent the number N.

• The best classical algorithms demand

• This is exponential in terms of n.

• Implementation of Ufa,N: see p217-218.

constant some is     where)(
3/23/1 log ceO ncn

Final remark

“Even if a real implementation of large-

scale quantum computers is years away, 

the design and study of quantum 

algorithms is something that is ongoing 

and is an exciting field of interest.”
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Reading

• This lecture: Ch 6.4-6.5

• Next lecture: Ch 9
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Cryptography

Lecture 9

Classical Cryptography

ENC DEC

encryption decryption

T TE

Alice

sender

Bob

receiver

plaintext ciphertext

insecure channel

̇ ENC(T, KE) = E, with KE the encryption key

̇ DEC(E, KD) = T, with KD the decryption key

̇ combining: DEC(ENC(T,KE),KD) = T

Eve

eavesdropper

Encryption protocols

• Caesar’s protocol: 

– ENC = DEC = shift(–,–), where shift (T,n)=T’, the string 

obtained from T by shifting each character n steps

– Original message and encrypted one highly correlated.

• One-Time-Pad protocol of Vernam cipher:

– Alice generates a random number of bits and uses that 

as her random key K.

– Assume Alice and Bob both share K:

• KE = KD = K
• ENC(T, K) = DEC (T, K) = T    K
• DEC(ENC(T,K),K) = DEC(T   K,K) = (T   K)   K = T   (K   K) = T

One-Time-Pad protocol example

Original message T                0 1 1 0 1 1

Encryption key K                    1 1 1 0 1 0

Encrypted message E            1 0 0 0 0 1

Public channel                        t t t t t t

Received message E             1 0 0 0 0 1

Decryption key K                    1 1 1 0 1 0

Decrypted message T            0 1 1 0 1 1

Two issues:

1) Generation of a new key K is required each time a new message is 
sent. Otherwise, the text can be discovered through statistical 
analysis. Hence the name “One-Time-Pad”.

2) The protocol is secure only insofar as the key K is not intercepted 
by Eve.

Private key

So far, we assumed that the pair of keys 

KE and KD are kept secret. In fact, only one 

key was needed. A protocol where the two 

keys are computable from each other, and 

thus requiring that both keys be kept 

secret, is said to be private key.

Public-key cryptography

• RSA (Rivest, Shamir, and Adleman, 1978): the knowledge 
of one key does not enable us to calculate the second 
one, since the computation will be hard (more than 
polynomial in the length of the first key).

• Suppose Bob has such a pair of keys KE and KD: 
– KE in public domain.

– He can safely advertise the protocol, i.e., ENC(–,–) and DEC(–,–).

– He guards KD for himself.

– Alice uses KE on her message.

– If Eve intercepts the encrypted text, she cannot retrieve Bob’s 
decryption key, so the message is safe.

– Bob has two computable functions:

• FE(–) = ENC(–, KE)

• FD(–) = DEC(–, KD)
FE is a trapdoor function: easy to compute, 

hard to invert without extra information
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Pros and cons of public-key cryptography

• Pro:
– It solves the key distribution problem.

• Cons:
– The computation of the private key from the public key appears to 

be hard.

– Public-key protocols tend to be considerable slower than their 
private-key peers.

• Best of both worlds:
– Use public-key cryptography to distribute a key KE of some private-

key protocol, rather than the entire text message. Once Alice and 
Bob safely share KE they can use the faster private-key scheme. 

– Sending a binary KE will be the only concern the rest of this class.

Other topics in cryptography

• Secure communication

• Intrusion detection: Alice and Bob would like to 

determine whether Eve is, in fact, eavesdropping.

• Authentication: we would like to ensure that 

nobody is impersonating Alice and sending false 

messages (outside the context of this course).

Quantum Key Exchange I:

The BB84 Protocol
• 1984: Charles Bennett & Gilles Brassard introduced the 

first quantum key exchange (QKE) protocol, named 
BB84.

• Why using the quantum world?
– Classical: Eve can make copies of arbitrary portions of the 

encrypted bit stream and store them somewhere.

– Quantum: With qubits Eve cannot make perfect copies of the 
qubit stream due to the no-cloning theorem.

– Classical: Eve can listen without affecting the bitstream, i.e., her 
eavesdropping does not leave traces.

– Quantum: Measuring the qubit stream alters it.

BB84 protocol

• Alice wants to send Bob a key via a quantum channel.

• As in the One-Time-Pad protocol this key is a sequence of random 
(classical) bits.

• Alice will send a qubit each time she generates a new bit of her key.

• But which qubit should she send?

• She will use two different orthogonal bases:

{ } [ ] [ ]{ }TT 1,0,0,1,   basis plus"" =↑→=+ { } [ ] [ ]
⎭
⎬
⎫

⎩
⎨
⎧

−==× TT 1,1
2

1
,1,1

2

1
    ,       basis times""

• Basis states given by the table.

• What about superpositions?

– If Bob measures photon using the + basis, he will only see 

photons as       or       .

– What if Alice sends a         and Bob measures it in the + basis? 

Then it will be in a superposition of states

So there is a 50-50% chance of Bob’s recording a      or a     .

x+State/Basis

0

1

→

↑

→ ↑

→+↑=
2

1

2

1

0 1

Four possible superpositions

• with respect to +, will be

• with respect to +, will be

• with respect to x, will be

• with respect to x, will be→

↑

→−↑
2

1

2

1

→+↑
2

1

2

1

2

1
           

2

1
+

2

1
           

2

1
−
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BB84 step 1

• Alice flips a coin n times to determine which classical bits 
to send. She then flips the coin another n times to 
determine in which of the two bases to send those bits. 
She then sends the bits in their appropriate basis.

• Example for n = 12

Quantum channel

Alice sends

+xxx+x+++x++Alice’s random basis

010101110110Alice’s random bits

121110987654321Bit number

→↑ →→→ ↑

⇓⇓ ⇓ ⇓ ⇓ ⇓ ⇓⇓⇓⇓⇓ ⇓

↑ 010101011110Bob;s bits

Bob observes

+xxx++x+xx+xBob’s random bases

121110987654321Bit number

BB84 step 2

• As the sequence of qubits reaches Bob, he does not know which 
basis Alice used to send them, so to determine the basis by which to 
measure them he also tosses a coin. He then goes on to measure 
the qubit in those random bases. 

• In our example:

→↑ →↑

For about half of the time, Bob’s basis will be the same as Alice’s, in which case 

his result after measuring the qubit will be identical to Alice’s original bit. The other 

half of the time, Bob’s basis will differ from Alice’s. In that case, the result of Bob’s 

measurement will agree with Alice’s original bit about 50% of the time.

↑

• If Eve is eavesdropping, she must reading the 
information that Alice transmits and sending that 
information onward to Bob.

• Eve also has to toss a coin each time (Alice’s 
basis unknown)

– Basis identical: accurate measurement, and she will 
send accurate information to Bob.

– Basis different: agreement with Alice’s only 50% of 
the time. However, the qubit has now collapsed to 
one of the two elements of Eve’s basis. Bob will 
receive it in the wrong basis. His chances are 50-50 
of getting the same bit as Alice has. Therefore Eve’s 
eavesdropping will negatively affect Bob’s chances of 
agreement with Alice, which can be detected.

01010111Shared secret keys

okokokokokokokokWhich agree?

+xxx++x+xx+xBob’s random basis

Public channel

+xxx+x+++x++Alice’s random basis

121110987654321Bit number

BB84 step 3
• Bob and Alice publicly compare which basis they used or chose at

each step. Each time they disagree, Alice and Bob scratch out the 
corresponding bit. At the end they are each left with a subsequence 
of bits sent and received in same basis. If Eve was not listening to 
the quantum channel, this subsequence should be exactly identical. 
On average its length will be n/2.

• For our example

c c c c c c c c c c c c

1011Unrevealed secret keys

okokokokWhich agree?

01010111Shared secret keys

Public channel

yyyyRandomly chosen to compare

01010111Shared secret keys

121110987654321Bit number

BB84 step 4

• What if Eve was eavesdropping? Bob randomly chooses half of the 
n/2 bits and publicly compares them with Alice. 
– If they disagree by more than a tiny percentage (e.g., due to noise), they 

know Eve was listening in and then sending in what she received.

– If the sequence is mostly similar, it means that either Eve has great 
guessing ability (improbable) or Eve was not listening in. They will use 
the remaining bits as private key.

• For our example

c c c c

BB84: #qubits?

• If we begin with n qubits, only n/2 qubits will be 
available after step 3.

• Furthermore, Alice and Bob publicly display half 
of the resulting qubits in step 4. This leaves n/4 
of the original qubits.

• However, Alice can make her qubit stream as 
large as she wants: if she wants an m bit key, 
she simply starts with a 4m qubit stream.
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Quantum Key Exchange II:

The B92 Protocol

• Simplification of the BB84 protocol: the use of two 
different bases is redundant s

• The B92 protocol, invented by Charles Bennett, 
published in 1992.

• Main idea: Alice uses only one nonorthogonal basis.

• We will work out the protocol with the following 
example:

{ } [ ] [ ]
⎭
⎬
⎫

⎩
⎨
⎧

= TT 1,1
2

1
,0,1        ,      →

Alice takes        to be 0 and         to be 1.→

Role of the nonorthogonal basis:

– All observables have an orthogonal basis of 

eigenvectors.

– Nonorthogonal basis s no observable whose basis of 

eigenvectors is the one we have chosen.

– No single experiment whose resulting states are 

precisely the members of our basis.

– In other words, no single experiment can be set up for 

the specific purpose of discriminating unambiguously 

between the nonorthogonal states of the basis.

B92 step 1

• Alice flips a coin n times and transmits to Bob n random 
bits in the appropriate polarization with a quantum 
channel.

• An example:

Quantum channel

Alice’s qubits

011101010100Alice’s random bits

121110987654321Bit number

→ → →→→ →

⇓ ⇓ ⇓ ⇓ ⇓ ⇓⇓⇓⇓⇓⇓ ⇓

B92 step 2

For each of the n qubits, Bob measures the received 

qubits in either the + or x basis. He flips a coin to 

determine which basis to use. Possible scenarios:

???x

x

???+

+

Then Bob should 

have received
If Alice had sent

Bob knows Alice 

must have sent
Bob observesUsed basis by Bob

↑ → →

→ → or 50%)or  (100%   →

→

50%)or  (100% →or

??1???010??0Bob’s bits

Bob’s observations

+x+x++x+xx+xBob’s random basis

Quantum channel

Alice’s random bits

121110987654321Bit number

B92 step 2 (cont’d), 3 & 4

For our example:

→→ → →→ →

⇓ ⇓ ⇓ ⇓ ⇓ ⇓⇓⇓⇓⇓⇓ ⇓

→→→→ ↑↑

Step 3. Bob publicly tells Alice which bits were uncertain and they both

omit them.

Step 4. To detect whether Eve was listening in, they can sacrifice half 

of their hidden bits, as in Step 4 of BB84.

Quantum Key Exchange III:

The EPR Protocol
• A completely different type of QKE protocol based on entanglement, 

proposed by Artur K. Ekert in 1991.

• We will discuss a simplified version of the protocol and point to the original 
version.

• It is possible to place two qubits in the entangled state:

• We have seen that when one of these qubits is measured, they both will 
collapse to the same value.

• Suppose Alice wants to send Bob a secret key. 
– A sequence of entangled pairs of qubits can be generated and sent. 

– When Alice and Bob wants to communicate, they can measure their respective 
qubits.

– It does not matter who measures first, because both qubits will collapse to the 
same value.

– Ready: Alice and Bob have a sequence of random bits that no one else has.

2

1100 +
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Bob’s observations

+xx++++xx++xBob’s random bases

Alice’s observations

x+x++x+x++xxAlice’s random bases

121110987654321Bit number

EPR protocol steps 1&2

→→ → →→

→ →→→→ ↑

↑

Step 1. Alice and Bob are each assigned one of each of the pairs of a 

sequence of entangled qubits. When they are ready to communicate, they 

move to step 2.

Step 2. Alice and Bob separately choose a random sequence of bases 

to measure their particles. They then measure their qubits in their 

chosen basis.

→

okokokokokokokWhich agree?

+xx++++xx++xBob’s random bases

Public channel

x+x++x+x++xxAlice’s random bases

121110987654321Bit number

EPR protocol step 3
Step 3. Alice and Bob publicly compare what bases were used and keep 

only those bits that were measured in the same bases.

c c c c c c c c c c c c

If everything worked fine, Alice and Bob share a totally random secret key. 

Problems:

1. the entangled pairs could have become disentangled; 

2. Eve could have taken hold of one of the pairs, measured them, and sent along 

disentangled qubits.

Solution: step 4 of BB84, compare half of the bits

Ekert’s original protocol

• More sophisticated, measurements with three instead of 
two different bases.

• Bell’s inequality:
– Requires three different bases.

– If particles are independent, then the measurements will satisfy
the inequality.

– If the particles are dependent, i.e., entangled, then Bell’s 
inequality fails.

• Ekert proposed to use Bell’s inequality to check if Alice 
and Bob’s bit sequences were entangled, when they 
were measured.

• Details: see book, page 277.

Reading
• This lecture: Ch 9.1-9.4 Cryptography

• Next (last) lecture: Ch 9.5 Teleportation &           

Ch 11 Hardware

Exam
• Mon Jan 25, 2010, 10-13h
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Quantum Teleportation

Hardware

Lecture 10

Quantum Teleportation

• It is the process by which the state of an arbitrary qubit is 
transferred from one location to another.

• Not science fiction, it has been performed in the 
laboratory.

• No-cloning theorem: not possible to make a copy of the 
state of an arbitrary qubit ĺ when the state of the 
original qubit is teleported to another location, the state 
of the original will necessarily destroyed. “Move is 
possible, copy is impossible.”

Some preliminaries

• Switching between a canonical and a 

noncanonical basis can be helpful (see 

B92 protocol).

• A single qubit

– Canonical basis

– Noncanonical basis

{ }1,0

⎭
⎬
⎫

⎩
⎨
⎧ −+

2

10
,

2

10

• The teleportation algorithm works with two entangled qubits, one held 
by Alice and one held by Bob.

• Obvious canonical basis for this 4-dimensional space

• A noncanonical basis, called the Bell basis, consists of

• Every vector in this basis is entangled. See book for prove that it is 
indeed a basis.

{ }BABABABA 11,01,10,00

2

0110 BABA +
=Ψ +

2

0110 BABA −
=Ψ −

2

1100 BABA +
=Φ +

2

1100 BABA −
=Φ −

• How are the Bell basis vectors formed?

• In the 2-dimensional case the elements of the noncanonical

basis can be formed by the Hadamard matrix:

• In the 4-dimensional case:

• It can be shown that this quantum circuit with appropriate 

inputs creates the elements of the Bell basis:

2

10
1     and     

2

10
0

−
→

+
→

−−++ Ψ→Φ→Ψ→Φ→ 11      ,10      ,01      ,00

Quantum teleportation protocol

• Alice has qubit in an arbitrary state that she would like to 
teleport to Bob.

• Step 1. Two entangled qubits are formed as        . One is given to Alice 
and one is give to Bob. Three qubits as three lines:

• The top two lines are in Alice’s possession and the bottom line in Bob’s.

10 βαψ +=

+Φ
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Step 1

( )

( ) ( )
2

1100111000

2

1100
10

2

1100

,0
2

10

,0000

2

1

0

BABABABA

BABA

BABA

B
AA

BABA

+++
=

+
⊗+=

+
⊗=Φ⊗=

⊗
+

⊗=

⊗=⊗⊗=

+

βα

βα

ψψϕ

ψϕ

ψψϕ

Step 2
• Alice lets her        interact with her entangled qubit.

• We have

ψ

( ) ( )

( )( ) ( )( )( )

( ) ( )( )101110001010111100011000
2

1

100110110010
2

1

2

1001111000

4

3

−−+++++=

+−+++=

+++
=

βα

βαϕ

βα
ϕ

BABABABA

BABABABA

Step 2 (cont’d)

• Regrouping these triplets         in terms of      , which is in Alice’s 

possession

• So the system of three qubits is now in a superposition of four 

possible states.

xyz xy

( ) ( ) ( ) ( )( )1011101010011000
2

1
4 αββααββαϕ +−+−++++=

Step 3

• Alice measures her two qubits and determines to which of 

the four possible states the system collapses.

• At the moment Alice measures her two qubits, all three 

qubits collapse to one of the four possibilities. So if she 

measures        then the third qubit is in state                .

• Two problems:

– Alice knows this state but Bob does not.

– Bob has                    , not the desired .

• Both problems are solved in Step 4.

10 10 βα −

10 βα − 10 βα +

Step 4
• Alice sends copies of her two bits (not qubits) to Bob who uses that 

information to achieve the desire state       .

• E.g., if Bob receives        from Alice, he then knows that his qubits is 
in a state

• Hence he should act on his qubit with the following matrix

• Bob must apply the following matrices

10

⎥
⎦

⎤
⎢
⎣

⎡
−

=−
β

α
βα 10

ψβα
β

α

β

α
=+=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−

10
10

01

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
01

10

10

01

01

10

10

01
11100100

ψ

• Space-time diagram, where straight arrows correspond to movement of bits 
and curvy arrows correspond to qubits on the move.

• Notice that        moves from the lower-left corner in Alice’s possession to 
the upper-right corner in Bob’s possession. Mission accomplished!

ψ
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Remarks

• Alice is no longer in possession of the original state. She has only 
two classical bits.

• To “teleport” a single quantum particle, Alice has to send two 
classical bits. Without these Bob cannot know what he has. The 
classical bits travel via a classical channel (less than the speed of 
light). So entanglement does not allow you to communicate faster
than the speed of light.

• Į and ȕ were arbitrary complex numbers. So they could have had an 
infinite decimal expansion. This potentially infinite amount of 
information goes from Alice to Bob via only two bits. However, it is 
passed as a qubit and useless to Bob. As soon as he measures the 
qubit, it will collapseto a bit.

• Is it teleportation? No particle has been moved at all! However, two 
particles having exactly the same quantum state are, from a 
standpoint of physics, indistinguishable and can therefore be treated 
as the same particle.

Hardware

• Do we actually know how to build a quantum computer?

• Formidable challenge to engineers and applied 
physicists

• Considering the amount of resources (academia, private 
sector, military) it would not be surprising if noticeable 
progress will be made in the near future.

• Disclaimer: area of research that requires a deep 
background in quantum physics and quantum 
engineering. Therefore a rather elementary discussion.

Goals and challenges

• Generic architecture:
– Number of addressable qubits

– Capable of initializing them properly

– Apply a sequence of unitary transformations

– Finally measuring them.

• Initialization: set machine in a well-defined state
– Problem: entanglement between subsystems 

regardless their physical separation

– Entanglement between machine and environment
• Pure state

• Mixed state

– Problem:
• No idea about the precise state of the environment’s 

electrons

• No details of their interaction with the electrons in the 
quantum register.

Pure and mixed states

• What’s the difference?

• Consider the following family of spin states:

• For every choice of the angle ș, there is a distinct pure state. 

• Each state is characterized by a specific relative phase (difference 
between angles of |0> and |1> in the polar representation).

• How can we detect their difference?
– In standard basis will not work

– A change of basis will do: the average spin value A along the x-axis 
depends on ș (see book): A = cos(ș)

– Tossing a coin contains no relative phase ĺ mixed state.

• The loss of purity of the state of a quantum system as the result of 
interaction with the environment is known as decoherence.

2

1)exp(0 θ
ψθ

i+
=

Decoherence

• We always implicitly assumed that we knew exactly how the 
environment affects the quantum system.

• More realistic scenario: a single electron is immersed in a vast
environment, e.g., a single external electron.

• Electron has become entangled with another electron

• What is the spin of our electron in the x-direction? 0 instead of a 
dependence on ș! (see book) It turns out that we should measure 
both electrons to get the dependence on ș.

• In general: we should measure all electrons of the environment. This 
is impossible, so our pure state is turned into a mixed one. 

• Decoherence does not collapse the state vector: all information is 
still available!

2

11)exp(00
global

θ
ψ

i+
=
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Challenge due to decoherence

• On the one hand, adopting basic quantum systems that 
are very prone to “hook up” with the environment makes 
it difficult to manage the state of the machine.

• On the other hand, we do need to interact with the 
quantum device. Systems that tend to stay aloof makes 
it difficult to access their states.

• Can we hope to build a reliable quantum computing 
device if decoherence plays such an important role?
– Fast gates execution: make decoherence sufficient slow 

compared to our control.

– Fault-tolerance: 
• Quantum error-correcting codes

• Repeat calculations

DiVincenzo’s wish list

1. The quantum machine must have a sufficient 
large number of individually addressable 
qubits.

2. It must be possible to initialize all the qubits to 
the zero state.

3. The error rate in doing computations should be 
reasonable low, i.e., decoherence time must 
be substantially longer than gate operation 
time.

4. We should be able to perform elementary 
logical operations between pairs of qubits.

5. Finally, we should be able to reliably read out 
the results of measurements.

Implementing a quantum computer

• A qubit is a state vector in a two-dimensional Hilbert 
space.

• Any physical quantum system whose state space has 
dimension 2N can, in principle, be used to store an 
addressable sequence of N qubits.

• Options
– Standard: quantum system with a two-dimensional state space.

– Quantum register can be implemented by a number of copies.

– Canonical two-dimensional quantum systems are particles with 
spin, e.g., electrons and single atoms.

– Another choice is excited states of atoms.

Ion traps

• Oldest, most popular proposal

• Core idea: an ion is an electrically charged atom. Two types:
– Positive ions or cations (lost one or more electrons)

– Negative ions or anions (acquired some electrons)

• Ions can be acted upon by means of an electromagnetic field, or 
even better they can be confined in a specific volume, known as ion 
trap

• Practice: Ca+

• How are qubits encoded? Ground state and exited state.

• Initialization:
– Optical pumping: a laser pumps energy into an atom, that absorbs a photon, and 

raises from ground state to excited state. It can lose energy by emitting a photon. 

– Initialization of a register to some initial state possible with a high degree of fidelity 
(almost 100%).

• Manipulation: 
– Single-qubit rotation: by “hitting” the single ion with a laser pulse of a given amplitude, 

frequency, and duration, one can rotate its state appropriately.

– Two-qubit gates: the ions in the trap are strung together by what is known as their 
common vibrational modes. A laser can affect their common mode, achieving the 
desired entanglement.

• Measurement:
– Two main long-lived states |0> and |1>, and also a short-lived state |s> in the middle 

of |0>and |1>.

– If ion is in ground state, gets pushed to |s>, it will revert to ground state and emits a 
photon. If it is in the excited state, it will not. Repeat this many times, and detect if 
photons are emitted to establish where the qubit is.

+ and – of ion trap

• On the plus side

– Mode has a long coherence time, order 1-10s.

– Measurements quite reliable, close to 100%.

– Qubits can be transported around in the computer.

• On the minus side

– Ion trap is slow in terms of gate time (order of 10ms)

– Not apparent how to scale the optical part to 

thousands of qubits.
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Linear optics

• Qubits: 
– Polarized photons

• Initialization: 
– Polarization filter

• Gates: 
– Nontrivial, since photons have a tendency to stay aloof

– Implement some small universal set of quantum gates, e.g., 
controlled NOT gate

• Measurement:
– Polarization filters and single-photon detectors.

Optical controlled-NOT gate

• Linear optics quantum computing (LOQC)

• LOQC-based controlled-NOT gate

+ and – of the optical scheme

• On the plus side:
– Light travels. This means that quantum gates and 

quantum memory devices can be easily connected 
via optical fibers.

• On the minus side:
– It is not easy for photons to become entangled. Also 

a plus wrt decoherence, but it makes gate creation 
challenging.

Nuclear Magnetic Resonance 

(NMR)
• Idea: encode qubits not as single particles or atoms, but 

as global spin states of many molecules in some fluid.

• These molecules float in a cup which is placed in an 
NMR machine.

• Contains plenty built-in redundancy ĺ maintain 
coherence for a relatively long time span (several 
seconds).

• 1998: first two-qubit NMR computers.

Superconductor Quantum 

Computers (SQP)
• NMR uses fluids, SQP employs superconductors.

• By means of Josephson junctions – thin layers of nonconducting
material sandwiched between two pieces of superconducting metal.

• At very low temperatures, electrons within a superconductor pair up 
to form a “superfluid” flowing with no resistance and as a single, 
uniform wave pattern.

• The current flows back and forth through the junction, like a ping-
pong ball, in a rhythmic fashion.

• Implementation of qubits: 
– Through the Josephson junction qubit

– The |0> and |1> states are represented by the two lowest-frequency 
oscillations of the currents.

Where are we now?

• In 2001 the first execution of Shor’s algorithm was 
carried out at IBM’s Almaden Research Center and 
Stanford University: 15 = 5 x 3!

• In 2005 a 12-bit NMR quantum register was 
benchmarked. Scalability seems to be a major hurdle.

• Recent news: NIST Road Map
– NIST = US National Institute of Science and Technology

– Major directions toward quantum hardware

– http://qist.lanl.gov/qcomp_map.shtml

• Companies whose main business is developing 
Quantum Computing.
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Future of Quantum Ware

• Quantum computing may become a reality in the future, 
perhaps even in the relatively near future.

• Likely that many areas of information technology will be 
affected, in particular communication and cryptography.

• If sizeable quantum devices become available: impact of 
artificial intelligence. 

• Science fiction…

• The dreams of today are the reality of tomorrow. 

Exam

Date: Mon Jan 11th, 10-13h (not Jan 25th!)

Location: to be determined

Book: chapters 1, 2, 3, 4, 5, 6, 9 &11


