Assignment 2: CPU Design and CPU Simulator

October 2006

In this exercise you will design a CPU and build a simulator for it. The end result is a C or C++
program that takes as input MIPS assembler code and that simulates the execution of this code
(as if the code was executed as a normal executable on a MIPS processor).

1 Part 2.a CPU Design

A CPU consists of (1) a datapath (with registers, memory, ALU and other logic), that processes
operations, and (2) a control unit that determines the order of these operations. It is your job
to implement, a micro-programmed control unit. Details about how to design this can be found
in CH. 7 and 8 of the book “Logic and Computer Design Fundamentals” by M. Morris Mano
en Charles R. Kime, which is the course book of “Digitale Technieken”. It is recommended you
study these chapters prior to making this assignment. In a previous edition of the Hennessy
and Patterson book, there is also a chapter that deals with microporgrammed (also known as
‘microcoded’) control. This will be made available in the form of a handout. The references to
Hennessy and Patterson (H&P) below refer to this handout.

1.1 Starting point

Design does not take place from scratch. As a starting point, take the MIPS implementation given
in H&P. In Figure 5.1 of the handout you will find a so-called single-cycle datapath that you may
use as the basis for your design. You will also find a first stab at a microcoded control for this
datapath in the handout. It is mandatory that you build on this design. Convince yourself (before
you hand in your solution) that whatever you want to remove from this design does no harm to
the rest of the design.

One exception: you may remove everything that concerns exception handling. In other words,
MOVI2S en MOVS2I-instructions need not be implemented. Furthermore, the IAR may be re-
moved from the datapath and you do not need to take overflow into account.

The most important shortcoming of this design is that it implements the DLX instruction set
and not the MIPS instruction set. Although the differences are minimal (as documented in the
handouts), you will have to correct these. For example, some MIPS instructions (like NOR) are
not implemented at all, wile others are not really executable with the given datapath and control.
This concerns mainly the immediate-type instruction and the shifts.

I-type R-type J-type
instr opcode opcode = $00 instr | opcode
BEQ 0x4 instr funcode J 0x2
BNE 0x5 SLL 0x0 JAL 0x3
ADDI 0x8 SRL 0x2
ADDIU 0x9 SRA 0x3
SLTI 0x0a SLLV 0x4
SLTIU 0x0b SRLV 0x6
ANDI 0x0c SRAV 0x7
ORI 0x0d JR 0x8
XORI 0x0e JALR 0x9
LUI 0x0f BREAK 0x0d
LH 0x21 ADD 0x20
LB 0x20 ADDU 0x21
LW 0x23 SUB 0x22
LBU 0x24 SUBU 0x23
LHU 0x25 AND 0x24
SB 0x28 OR 0x25
SB 0x28 XOR 0x26
SH 0x29 NOR 0x27
SW 0x2b SLT 0x2a

SLTU 0x2b

Table 1: Opcodes and Funcodes of the instructions to be implemented.
1.2 Assignments

It is your task to modify the datapath and the control in such as way that the MIPS instructions
mentioned in the table below, are fully supported. The relevant specifications of MIPS can be
found either in the handouts or on the assignments’ webpage. Your implementation must comply
with these specifications. The only exceptions concern the delay slots that are prescribed for some
operations (e.g. jumps and branches). These may be ignored.

1.3 Datapath

Concerning the datapath: copy Figure 5.1 and draw all wires, gates and other logic that are needed
to support all required MIPS instructions. Do this at “bit-level”, i.e. describe exactly which bits
are sent to the register file to read the right register, which bits go from the IR to the ALU to
determine the ALU operation, etc.

The ALU may be implemented at “word-level”; indicate only the new functions that the ALU
may require.

Memory is big-endian. Possible operations are reading (and writing) of bytes, halfwords and
words. However, the address should be chosen thus, that all bytes to be read (or written) are in
the same word (word-aligned access). In other words, valid addresses are (assuming A; Ag are the
least significant bits):

| type [A1Ap | byte 0 | byte 1 | byte 2 [byte 3]

word 00 X X X X
halfword 00 X X - -
halfword 10 - - X X

byte 00 X - - -

byte 01 - X - -
byte 10 - - X -

byte 11 - - - X

Table 2: Valid addresses

Take care with load and store instructions. For instance, according to the specification, the MIPS
load byte instruction

1b $reg, addr

should yield the full word of the 4-byte aligned address addr via the MDR (memory data register).
You are responsible for extracting the appropriate byte out of this word and writing it to $reg by
executing a few microinstructions.

1.4 Control

The datapath that you have designed is controlled using a microporgrammed control. The micro-
program that you should build on is given in the handouts in Tables 5.23 and 5.25-5.29.

First scheck which modifications are needed in the microinstruction format (Figure 5.6). Leave
out the microinstructions that handle MIPS instructions that are not part of the assignment and
complete the microcode table. Also provide the definitive decode tables (Figures 5.24 and 5.26).

1.5 Getting started

The best way to inventorise everything that is missing in the initial design is the following. Take the
design (datapath and microcode) and for each instruction in Table 1 try to execute the instruction
on the datapath running the initial microcode. If this fails, then modify the datapath and/or
control (microcode, decode tables, control signals, etc.

1.6 Submitting your solutions.

Submit your results in writing (this includes datapath, microcode, and decode tables).

datapath. Hand in the modified diagram of the original design in the book. Describe all logic
that you added, what it does, and why it was needed.

control lines. Describe all control lines (both the old and the ones you modified). For each line,
mention all possible values of the control signals that are sent by this line. For each value of
these control signal, explain what will happen in the datapath if the signal has this value.

microinstructions. For each field of the microinstruction, describe all possible values and de-
scribe for each value which control lines are activated.

decode tables. For each decode table, describe the input (how many bits, coming from where?).

sequencing. Describe exactly how the address of the next microinstruction (microPC) is deter-
mined, depending on the current microPC, the current microinstruction, the values of the
control lines (e.g. the ‘MemReady?’ line) and/or the outputs of the decode tables. Present
this as short C pseudocode or a a block diagram.

2 Part 2b: CPU Simulator

For this part of the assignment, you will have to verify the paper design of the CPU that was
developed in the first part. This will be done by means of simulation. You have to write the
simulator, a C program which simulates the execution of a sequence of MIPS instructions on
the CPU which was designed previously. If your design is good, then you will have no problems
implementing it, so if you encounter problems then you should update your design (instead of
using dirty tricks in your program). Your implementation should be a consistent reflection of your
design. If your program is inconsistent with your design points will be deducted from your grade.

The choice of the programming environment is up to you. However, we require that the simulator
can be compiled with gcc on Linuz PCs and on solaris (beast) in LIACS without any changes.
If your simulator does not compile it will not be accepted and graded. We also require that
the C code is sufficiently commented and readable. The quality and readability of the code and
comments will influence the grade.

Below we describe the general structure of the simulator and give some details on each part of it.

2.1 ALU

The simulator should be built in a modular fashion. Each module consists o 2 files: a .c file which
contains the C code and a .h file which contains the definitions which will be used in the C files.
The simulator should contain the following modules:

A datapath module which implements the datapath. This module will make use of the alu
and mem modules.

A control module which implements the control. This module simulates the execution of
a (generic) microprogram. It also contains the particular microprogram and decode tables
developed in the 1st part of the assignment.

e an alu module which implements the ALU.

e a memory module which implements the memory.

e a sim module which combines the functions from control and datapath into a working
simulator.

Use the header files for defining constants, data ctructures, function prototypes, etc., that are
shared between multiple modules.

To get started, you can use the “skeletons” of a few header and C files that can be found in
directory “csca/edu/data/ca.opg3/. Using the command cp ~“csca/edu/data/ca.opg3/* .
you can copy them all to your current directory. In this directory you will also find the Makefile
which is used by the UNIX make command. In the Makefile you find the files which have to be
compiled and the dependencies between different files. For example, in order to compile the file
alu.c, you should type make alu.o. In order to compile the whole simulator, type make sim.

Now we desribe in more detail how each module will have to be implemented.

2.2 ALU

You have to write the function alu_operation which has 4 parameters: two 32-bit input integers,
one 32 bit output number and the operation to be performed. This operation is determined by the
corresponding control signal. Note that the generation of control signals zero? and negative can
happen in this functions as well as in the datapath. The ALU can be implenented on the word
level (bitwise approach is not necessary). See the example files in the “csca/edu/data/ca.opg3/
directory.

2.3 Memory

This module should implement a big-endian memory of 1024 words (one word is 4 bytes). The
modules should contain the three following functions which will be used in other modules: readmem,
writemem and mem_operation.

The readmem function will be called from the main simulator module. This function reads a
sequence of 4-byte integer numbers in hexadecimal format from the standard input. The integers
are separated by the newline character. Each number represents the contents of a word in memory.
The numbers should be stored consecutively in the simulator’s memory, starting at address 0. The
sequence will consist of at most 1024 numbers. If there are less than 1024 numbers, the remaining
memory should be filled with zeros.

The writemem function dumps the memory contents to standard output. If all the memory contents
after a certain address are zero, it should not print this ‘tail’.

The function mem_operation should implement execution of one read from, or one write to the
memory. In other words, it either reads 1 full word (in MIPS the memory always returns the
whole word, as extracting the right byte, or halfword is the responsibility of the CPU), or it
writes the appropriate byte, halfword or word. Note that one of the parameters of this function is
the set of control signals, because the operation that should be performend is determined by the
memory_operation control signal (which is determined by the misc field of a microinstruction.
This function also sets the mem_ready control signal. Finally this function should detect misaligned
accesses and give an error message on stderr.

TIP. Have a look at the data structure union when thinking how to implement memory.

2.4 Control

This function implements the microcoded control unit in C. It should have at least the following 3
functions: set_signals, find_new_mPC and control_init. The first function is responsible for
setting up the control signal appropriately (given a microinstruction). The 2nd function determines
the address of the next microinstruction to executed (i.e. it determines the next value of the
microprogram counter mPC). The new value of mPC depends on the current value of mPC, Cond
and JumpLabel fields in the current microinstruction and the values of certain control signals that
are generated by the datapath, ALU or memory. These 2 functions should be called every clock
cycle. The 3rd function is responsible for initialising the control (and datapath, think of the PC).
It should be called once per simulator execution.

This module should also contain the tables for microcode and the decode tables developed in the
1st part of this assignment. Think of using the struct data structures and arrays of structs
when implementing these tables. We require that the functions described above should be generic,
i.e. they should not depend on particular microcode/decode tables. This will make your simulator
flexible: simply change the microcode/decode tables but not any of the functions if you need to
implement different microprogram or decode tables.

2.5 Datapath

Implement the datapath designed in the first part of the assignment. Choose the appropriate data
structure for the datapath. Think of the difference between the ‘state’ elements (registers, latches)
and the combinatorial logic that does not have its own state and, therefore, does not require a
datastructure (see Ch.7 of “Logic and Computer Design Fundamentals” by Morris Mano). TIP:
use the struct datastructure.

This modules should contain at least the function: update_state, which takes the control signals
as the parameters and updates the state of the datapath according to the value of these signals.
It will call the alu_operation function of the ALU module and, possibly, the mem_operation
function of the memory module. The update_state should be called by the simulator every clock
cycle.

2.6 The simulator

Combine the modules described above to make a simulator which reads the initial memory contents
from standard input, executes the program starting from address 0 till the break is encountered
and then writes the contents of the memory to standard output.

The simulator should also print the follwoing data on stderr: authors of the simulator and
their student numbers, total number of dynamic instructions executed by the simulator (including
break), and total number of clock cycles required for the simulation (including break).

In the directory “csca/edu/data/ca.opg3.data/ one can find the following files to test the sim-

ulator:

e rfac.i: the example input file

e rfac.s: the corresponding MIPS assembly file

TIP: use UNIX redirection to redirect the input file to standard input: sim < rfac.i

2.7 Deliverable

You should hand in all the . [ch] files, the Makefile, the executable sim and the README files
electronically as described later in this section. All the text files hould be printed and submitted
as well. All the code files should be sufficiently commented, the quality of the comments and
the readability of the code will influence your grade. The simulator should be compatible with
gee and should work on Linux and Solaris (beast) without any modifications. Solutions that do
not compile will be rejected. In the README file you should describe the general structure of the
simulator and how different modules interact. If you have introduced changes to your original
design, describe them in this file as well.

Technical issues. Deliver files both electronically and as printouts. To deliver the files electron-
ically, use the following:

tar cvzf yourname_opg2.tgz [list of file you want to send]

uuencode yourname_opg2.tgz yourname_opg2.tgz | elm -s "Opgave2" ca

