Performance analysis with
Timed Petri nets

O

Recap second lecture <5

Finish remainder of WF-net theory
Performance analysis with Petri nets

Recap 2 lecture

O,

Exercise 1.1.1.

register

pl

Fairness
assumption

egin lesson p32 end lessan

Recap 2 lecture

O

Exercise 1.1.5. repeat

Still sound?

register

Recap 2 lecture

request for Used find used Used car found

Custorner request l :

~search used searching used sell used

successfull termination

,a

nzﬁuest_fnr Mew search new searching new find new new car found order new

Recap 2" lecture

= ' jSiahuew-nri:ﬂ:}w Analysis
- P Net statistics
9

ﬂ Mumber of fransitions with empty preset: 0

ﬂ Mumber nfh’mhms Hﬂrmpt‘yrpﬂﬂmet 0
ﬂ Mumber of not strongly-connected nodes: 0

-: ' llllll E llll Hfﬁlllllallllll%l;ﬁ.ﬁ:li llllllllllllllllllllllll

@ Number of wrongly-used operator transitions: 0
E:I 0 Well-structuredness analysis
- - S-component analysis
- @) Behavioural analysis

Woped checks if the
Petri net has the
structure of a WF-net

Recap 2 lecture

O

=€) Qualitative Workflow Analysis
- @) Net statistics
@ Structural analysis
EH-@ Behavioural analysis

Recap 2 lecture

request for Used find used Used car found

search used searching used sell used

(O—F—-O—[N

request for Mew
' search new searching new find new new car found

Customer request

successfull termination

order riew

Recap 2 lecture

request for Used find used Used car found
search used searching used
successfull termination

nl!::.}u'zst.fnr Hew search new searching new find new new car found order new

Recap 2 lecture

request for Used searching used find used Used car found

search used

successfull termination

rE::i.u'Est_Fnr Hew search new searching new find new new car found order new

Recap 2 lecture

Exercise 1.2.5.

sell used (t4)

order new (t5) order new (t5)

sell used (k4)
Dead marking

find used (t2)

find new (£3)

search used (k1) search new (E7)

find used {t2)

search new (t7)

 Gsosnonn)

find used (£2)

find mews (£33

find newvy {£3) search used (t1 search used (t1) search new (7

find used (t2)

search new (E7)

gedrch used (k1)

search new (£

search new Arch used (1)

3
Iriit. (t6

Recap 2 lecture

Exercise 1.2.5.

order new (t5) sell used (t4)

Dead marking order new (%) sell used (t4)

Find new (t3)

Fird mesw (£3)

search used (b1}

find used (t2) search new (E7)

IO

st

find used (t2)

search used (&

find new (E3) search used (t1

search new (7}

=arch used (k1)

search new (£

search new (E7) Zearch used (1)

Recap 2 lecture

Exercise 1.2.5.

order new (E5) sell used (k4

order new (t5) sell used (t4)

Dead marking

fibd new (£3) _
: find used (t2) Find new (E3) V=

find news (£3) fird used (£2

search used (k1) search new (t7)

s g

find used (t2)

search used (k1)

find used (2] search new (t7)

 osnonny

find used (t2)

search used (t1

fird newvs (£3) search used (b1

search new (£7) find mevs (£3)

search new (£7)

gedrch used (k1)

search new (£ search used (k1)

search new (7]

I 2
Init: (k& Init (k&

Recap 2 lecture

@ Qualtative Workflow Analysis
(- € Net statistics
= . Structural analysis
- @ Workflow net property
£ Nibar S B e wolaligrgs
----' H_rrha of nrm-,r-used -::paamr mmﬁ: 0 :

Recap second lecture

Finish remainder of WF-net/soundness theory <mms

Performance analysis with Petri nets

Analysis of WF-nets

Analysis of WF-nets

* Theory of soundness

(See App. A3, page 276 van der Aalst)

© A WF-net PN is sound if and only |
if (PN, 1) is life and bounded

O PN is the short-circuited PT-net
of PN, created by adding t*

PT nets with a finite state space (bounded) still

might suffer from state space explosion problem :
Eg. State space of an EN system with n places < (27)
Analysis of general PT-systems intractable

State space analysis of soundness of general WF-
nets has the same problem

Thereftore we will look for structural
characterizations of soundness of WF-nets

Analysis of WF-nets

Analysis of WF-nets

For free choice WF-nets, soundness can be decided
in polynomial time

Free choice nets are suited to model sequence,
choice and concurrency in many cases

There are however useful sound WF-nets that are
not free choice (see eg. exercise 1.2./HO II)

Analysis of WF-nets

Analysis of WF-nets

For Well-structured WF-nets, soundness can also be
decided in polynomial time

Well structured nets are suited to model sequence,
choice and concurrency in many cases

However Free choice nets need not be Well
structured, or vice versa

In fact there are sound WF-nets which are neither

Analysis of WF-nets

A Petri net is a state machine iff each transition
has exactly one input and one outputplace, eq. :

Order transport order registered

@ },HQ_)

Register order Make reservation

Resarvation made

Erd

4@_»

10

Inform Customer

An S-component is a strongly connected
state machine, eg.:

t#

End

Transpoyt order order registered Reservation made
o] S - —»@—» ; 4»@—» 5 4)-@

Register order Make reservation Inform Custormmer

Analysis of WF-nets

Two State machines :

Order transport arder registered Reservation made

End

() o ()

O

Register order Make reservation Inform Customer

Apply travel insurance Application registeread Insurance policy made

and

@ EHO_)H@_,

=0

Make insurance policy

Register application Send policy

Analysis of WF-nets

Merging two State machines

Ord g.r""fl'anspnrt order registered Reservation made

Register ur%__ler Make reservation Infurm Custormer

5

Appé_:lv travel insurance .ﬂ-__.f':pplicatiun registered Insurance policy rna::'aade end

Register ap_ﬁ:licatinn ..‘_'f‘.-‘;‘.‘gm:l policy

Make insurance policy

Into one WF-net consisting of 2 state machines:

Transport order registered

FReservation made

3]

Make reservation

Register order

Travel arrangement arder

Make insurance policy

Send docurnantation

end

k.
o

Insurance application registered

Insurance policy made

Or a short-circuited WF-net
covered by 2 S-components :

A

Insurance application registered Insurance policy made

Therefore the WF-net is S-coverable

o] T

WFknets -~ structured
WF nets

...........

......

So, this means: ..
- a sound Free choice WF-net is S-coverable (and safe)
- a sound Well-structured WF-net is S-coverable (and safe)

But, there are S-coverable sound WF-nets :
- that are not Free Choice!
-- that are not well-structured!

Analysis of WF-nets

Deciding soundness for subclasses is easier!

Petri net class Complexity soundness analysis

WF-net Intractable (EXPSPACE: “very very hard™!)
Free Choice WF-net Tractable (P : “easy”)

Well-structured WF-net Tractable (P : “easy”)

S-coverable WF-net Intractable (PSPACE: “very hard”)

So if you can model a Workflow as a Free-choice WF-net or
a Well-handled WF-net than you should !

But be ware, this is not always possible!

Overview Petri net family

®

“Classical Petri nets”

Wenets

Recap second lecture
Finish remainder of WF-net/soundness theory

Performance analysis with Petri nets €

Performance analysis

* Introduction performance analysis “

* Modelling for performance analysis
Extension of PT-nets with time
Some process patterns
Extension of Coloured Petri nets with colour
Including resources in the model

* Simulation with CPN tools

Introduction perrmance analysis

To establish that our design meets all our
requirements and expectations, before we start

construction :
Validity
Correctness

 Perforn ce <

Introduction performance analysis

Indicators external performance:

Completion time
Average completion time
Reliability of completion time
Meeting Deadlines

Other
Quality
Service

Indicators internal performance :

Resource use (per case) :
Labour (Man hours per case)
Capital (Machine hours per case)
Capacity utilization (Number of cases per time unit)
Raw materials (weight/volume per case)

* Conclusion : time plays a critical role in
performance analysis, eg. :

The duration of an activity

The completion time of processing a case

The output or throughput of a process in number of cases
per time unit

Resource utilization (% idle time)

°* We need to include time into our Petri net
modelling language

Performance analysis

* Introduction performance analysis

* Modelling for performance analysis

Extension of Coloured Petri nets with time b

© Some process patterns

O Extension of Coloured Petri nets with colour
© Including resources in the model

* Simulation with Petri nets

Each token gets a timestamp.

The timestamp specifies the earliest time
when it can be consumed.

@ ©

| Declarations in CPN Tools

(* Standard declarations *)
colset UNIT = unit timed;

‘ ‘ > colset INT = int timed;
colset BOOL = bool timed;

P1 colset STRING = string timed:;

Extension of Petri nets with time

Some
activity

http://images.google.nl/imgres?imgurl=http://www.stbernardus.net/project/klok.h1.gif&imgrefurl=http://www.stbernardus.net/project/klok.htm&usg=__jB3O4H1ztJWsEUfrkjvHHA8Ci-k=&h=506&w=549&sz=7&hl=nl&start=2&tbnid=nnyLvPaGy6kp7M:&tbnh=123&tbnw=133&prev=/images%3Fq%3Dklok%26gbv%3D2%26hl%3Dnl%26sa%3DG

Extension of Petri nets with time

Some
activity

http://images.google.nl/imgres?imgurl=http://www.stbernardus.net/project/klok.h1.gif&imgrefurl=http://www.stbernardus.net/project/klok.htm&usg=__jB3O4H1ztJWsEUfrkjvHHA8Ci-k=&h=506&w=549&sz=7&hl=nl&start=2&tbnid=nnyLvPaGy6kp7M:&tbnh=123&tbnw=133&prev=/images%3Fq%3Dklok%26gbv%3D2%26hl%3Dnl%26sa%3DG

Extension of Petri nets with time

Some
activity

http://images.google.nl/imgres?imgurl=http://www.stbernardus.net/project/klok.h1.gif&imgrefurl=http://www.stbernardus.net/project/klok.htm&usg=__jB3O4H1ztJWsEUfrkjvHHA8Ci-k=&h=506&w=549&sz=7&hl=nl&start=2&tbnid=nnyLvPaGy6kp7M:&tbnh=123&tbnw=133&prev=/images%3Fq%3Dklok%26gbv%3D2%26hl%3Dnl%26sa%3DG

Extension of Petri nets with time

Some
activity

http://images.google.nl/imgres?imgurl=http://www.stbernardus.net/project/klok.h1.gif&imgrefurl=http://www.stbernardus.net/project/klok.htm&usg=__jB3O4H1ztJWsEUfrkjvHHA8Ci-k=&h=506&w=549&sz=7&hl=nl&start=2&tbnid=nnyLvPaGy6kp7M:&tbnh=123&tbnw=133&prev=/images%3Fq%3Dklok%26gbv%3D2%26hl%3Dnl%26sa%3DG

Some
activity

P1

\E\ The situation after firing a second time
3

The transition has produced another
token with a timestamp (5+4)=9

OO

x@+4 R

So the time stamps in P2 are all 4 hours later then in P1

This means that the duration of “some activity” is 4 hours

This is due to the time clause x@+4 on the outgoing arc

http://images.google.nl/imgres?imgurl=http://www.stbernardus.net/project/klok.h1.gif&imgrefurl=http://www.stbernardus.net/project/klok.htm&usg=__jB3O4H1ztJWsEUfrkjvHHA8Ci-k=&h=506&w=549&sz=7&hl=nl&start=2&tbnid=nnyLvPaGy6kp7M:&tbnh=123&tbnw=133&prev=/images%3Fq%3Dklok%26gbv%3D2%26hl%3Dnl%26sa%3DG

* New elements :

Time stamps attached to tokens

A token becomes available for consumption by a transition
from the moment of its timestamp

A global clock models the passing of time

Rules for enabling of transitions
A transition is enabled if enough tokens are available
Time clauses to calculate the time stamps

The time stamps produced are equal to the firing time
plus the delay specifed by the time clause

Extension of Petri nets with time

* Analyzing completion time of a business process
with timed Petri nets :

© The completion time of a process depends on duration of
each activity and the routing of the case through each activity
in the process

© We can use timed Petri nets to analyze and quantify the effect
of both

Example : a process with two tasks
Task 1 : 2 minutes (eg. Have a phone call)
Task 2 : 3 minutes (eg. Have a short walk)

Analyze the difference between sequential and
parallel routing

Example sequential routing

@‘@—X—>=X+2,X},X@+3>©

cl task1 c2 task2 c3
Execution
+ X@+3
O N Ol "Cr-
cl taskil 2 task2 c3

Completion time takes 5 time units (eg.minutes) for each case

Extension of Petri nets with time

®

° Example Parallel routing :

X@+2

c22 task?2

Completion time would take 3 minutes for each case

Extension of Petri nets with time

of 1 time unit

((p,p+1));

Time clauses

Produce : duration

input (p);
output (m); .
p action c@+1 Send : duration

of 5 time units .

(]

In CPN Tools

Performance analysis

* Introduction performance analysis

* Modelling for performance analysis
Extension of Coloured Petri nets with time

Some process patterns H

Extension of Coloured Petri nets with colour

Including resources in the model

* Simulation with Petri nets

Process patterns

* As you have seen, tokens in a Petri net can be used
to model the “cases” handled by a business process

* The route in a business process might depend on
the case attributes, eg.

Triage in handling insurance claims : big claims
are handled differently from small claims

* However, the tokens in the EN system and PT
system are indistinguishable, so we have a
problem....

Outline of this lecture

* Introduction performance analysis

* Modelling for performance analysis
© Extension of Petri nets with time
© Some process patterns

Extension of Petri nets with colouré “

O Including resources in the model

* Simulation with Petri nets

Extension of Petri nets with colour

Give each token a value, for instance the size of
the insurance claim

Claim_

— T~

Client=John Smith, Claim_id=12345,Claim_size=500 EURO}

Recorde
Claims {Client=Jim Barnes, Claim_id=67890,Claim_size=500.000 EURO}

And a guard to make routing dependent on
claim size :

accept
/' small claims
[claim < 501]
Recorded Accepted
Claims accept Claims
big claims
/ [claim > 500]
Expertise

reports {Expert=Jill Banks, Claim_id=67890,Compensation_percentage=75 %}

We would also need a guard to match “Expertise
reports” to “Claims”

accept
/' small claims
[claim < 501]
Recorded Accepted
Claims accept Claims

big claims

/ [claim > 500

— 2

RC.Claim_id=
Expertise ...ER.Claim_id]
reports

{Expert=Jill Banks, Claim id=67890,Compensation percentage=75 %}

arc expression or function to calculate
output tokens from input tokens

Recorded accept .
claims big claims calculate_claim
(recorded claims,
[claim > 500] expertise reports) éf:aci(ranpsted
Expertise

reports {Client=Jim Barnes, Claim_id=67890,

Extension of Pet&nets with colour

©

Bindings for “accept big claims”

Arcs have Variables to transport different values

Recorded
Claims accept calculate claim

big claims [“recorded claims, ~

/ expertise reports)
[y.claim_size > 500] Accepted

Claims

Expertise
reports

Before a transition is enabled, all variables on
input and output arcs are bound to a value:

A binding will only occur if it matches the
guard

3 producers (id=1,2 and 3)

Each can produce messages containing some data (a
number)

3 consumers (id=1,2 and 3)

Each consumer can only consume messages of
producer with the same id

Colourset PROD = Integer
Colourset DATA = Integer
Colourset MESSAGE = PROD * DATA
Colourset CONS = Integer

So for example :

Producer 1 (element of PROD) can produce a message (1,32)
(element of MESSAGE) that can be consumed by consumer 1
(element of CONS)

Initial marking

input (p);
output (m);
action
((p,p+1));

consume

{

PROD, CONS, DATA are
coloursets of type Integer

MESSAGE is colourset of
type PROD*DATA

SEND produces tokens of
type MESSAGE with
output function : (p,p+1)

RECEIVE consumes a
token of type MESSAGE
provided it matches the
guard (token in place
c1=first element in token in
the buffer)

Performance analysis

O

* Introduction performance analysis

* Modelling for performance analysis
© Extension of Petri nets with time
© Some process patterns

O Extension of Petri nets with colour

Including resources in the model H

* Simulation with Petri nets

* Not only routing but also resource availability
will influence completion time:

If a task can not be executed due to resources that are
unavailable, the case must wait en thus completion time
will increase

* So we should also model resources in our

Petri net, so how do we do that?

A simpel sequential process with two dedicated resouces

resource_taskl resource_task?2

cl taski1 c2 task?Z c3

Resource task 1 has 3 cases to process and
Resource task 2 has nothing to do

A simpel sequential process with resouces flexible
enough to perform all tasks by merging the resource places

resolurces

0 }.46 J . >©

cl taskil c2 task?2 c3

Now, as long as there are cases, the resources are always utilized

Outline of this lecture

O

* Introduction performance analysis

* Modelling for performance analysis
© Extension of Petri nets with time
© Some process patterns
O Extension of Petri nets with colour
O Including resources in the model

_* Simulation with Petri nets <

Different approaches :
Markovian analysis
Queuing theory

Generally applicable to analysis of workflows
No mathematical sophistication required
~ Also usetul tool for validation

Timed coloured petri nets are well suited
for running simulations

Simulation with Petri nets

* Model is composed of :
Model of processes in scope

Model of the environment

°* Model of the environment
Approximation only by using:

Probablity distributions

* Executing the model is then a random walk
through the reachability graph

Simulation with Petri nets

Simulation with Petri nets

A i1s a mechanism that is used to observe,
inspect, control or modify a simulation of a CP-
net.

Important characteristics of monitors:

0 They can inspect the and of a simulation, and
take appropriate actions based on the observations.

0 There is an explicit separation between monitoring the
behavior of a net, and modeling the behavior of the system.

Simulation with Petri nets

“ Data collection monitors for calculating
performance measures, such as:
0 Expected average delay in queue
0 Expected average queue length
0 Expected utilization of the server

Simulation with Petri nets

Simulation with Petri nets

Simulation wi etr1 nets
tion with Pet t
Note that these statistics have been calculated tor data that lcessarlly lﬂdepeﬂdeﬂt or ldentlca“y distnbuted.
Timed statistics

Name Count|| Avrg ||Min|Max|/Time Interval
List_length_dc_System'Queue_1[285 |[5.339428/0 [12 |[13673
Marking size ServerBusy 1 277 [[0.920427]/0 |1 |13673
Queue_Length 285 [5.330428]l0 [12 13673
Queue_Length_ Advanced 281 |[5.330428]0 |12 13673
Queue_Length_Nolnit 284 |[s.s62362ff0 [12 13125
|Queue_Length NomitNostop [275 [[5.562362]0 |12 [13125 |
|Queue_Length NoStop [276 [|5.330428]0 [12 13673 |
Server_Utilization 268 0.920427(|0 1 13673
Server_Utilization Advanced 147 0.920427(|0 1 13673

Untimed statistic;

Nam e Count Sum Avrg StD Min Max
[Count_trans_occur AmivalsArive 1 [[141 [141 || 1.000000 ||0.000000 |1 |1 |
[Long_Delay_Times 134 [122 [0.910448 [0.286611 || |1 |
Processed_A_Jobs 85....] 83 1,000000__][0.000000 |1 |1
Queue Delay 134 [70580 526.716418/243.416584 /0 [1082
Queue Delay IntInf 134 [70580 526.716418/243.416584 /0 [1082
Queue_Delay Real 134 | 70580.000000]526.716418||243.416584 || 0.000000] 1082.000000
Server_Utilization_Estimate_by_ProcTime 7.517767 0.835307 0.112929 (|0.579436|/0.949755
|Sener Utilization_by_ProcTime _"7420?39 ”0 824527 0.110175 0579436"0 920427 I
[Total_Processing_Time (134 |[12986.000000][96.910448 |[106.917751][1.000000] 602.000000 |

Improving reliability by calculating statistics based
on data gathered from multiple executions

If the subruns are assumed to be mutually
independent, one can calculate a confidence
interval = see exercise “Queue system
configuration”

Performance analysis with Petri nets

