Assignment 1: Optimization of Assembly

September 2006

In this assignment you will get acquainted with asssembly language. Using
assembly you have direct access to the instruction set of the processor.

In this assignment, you will optimize a small assembly program by hand.

The following C program is given:
int A[20], B[20], C, i;

main()
{
for(i=1; i<=19; i++)
{ B[il] = 1i; }
C = 42;
for(i=1; i<=19; i++)
{ A[i] = B[i-1] + C; }

printf ("%i %i %i", A[19],B[19],i);
}

The unoptimized assembly version of this program can be found in the file
myprog.s (see www.liacs.nl/ca/myprog.s).

1. Add code comments to the unoptimized version (mypros.s) that ex-
plain how the code works. Explain how the different registers are used
and describe the structure of the assembly program. Relate this struc-
ture to the original C-code structure.

Your comments should explain the workings of the program and not
the (trivial) meaning of the instructions themselves (e.g. We know that
lw $2, i loads the contents of variable i into register 2, so don’t tell us.)

2. The assembly code in myprog.s can be made (much) faster. Opti-
mize this code by hand and explain your optimizations. Any idea that
contributes to a performance increase of the program may be used
(everything including the structure of the program may be changed),
provided that you explain in detail what you did. In other words: Give
thorough comments on what you did!!! The most important factor for
grading is the performance increase (so the less dynamic instructions,
the better).

3. Correctness of your code can be checked using the MIPS simulator
xspim. First simulate the original program and check your own pro-
gram next. The output of both programs should be equal. Not only the
output should be equivalent, the contents of all the variables (arrays
A, B and the variables C and i) must be the same too at the end of
program execution.

4. Calculate by hand, for the original and the optimized code:

(a) The number of static instructions in the code.

b) The number of (]YlIaIlIiC instructions that is executed durin pro-
g
graim execution.

(c) The number of data accesses (memory references) done during
program execution.

(d) Assume that the execution time of a program is proportional with
the dynamic instruction count. Calculate the speedup of your
optimized program.

NOTES:
- Do not count the instructions that take care of executing the
printf statement

Delivery

Submit (electronically and on paper) a report in which the following can be
found:

e Listings of the unoptimized and optimized code (including comments)

e README file with well ordered results(hard to read answers are wrong
by definition) of the calculations done.

Technical matters

e MIPS assembly:
A description of the MIPS instruction set can be found in chapter 5 of
the ” MIPS Instruction Set Manual”. This is a pdf file, which can be
found on any local PC at LIACS at the location:
/home/csca/public_doc/MIPSPro_Ass._Lang_Vol2.pdf
Other information on the MIPS instruction set can be found on the
CA website.

e XSPIM
A manual for xspim can be found at:
http://www.cs.wisc.edu/"larus/SPIM_manual/spim-manual.html
To make xspim work you need to copy a special file in your working
directory. If your working directory is ~/student/ca/opgl, this file
can be copied as follows:
cp “coco/edu/spim/linux/trap.handler ~/student/ca/opgl.
cp “coco/edu/spim/linux/trap.handler ~/student/ca/opgl.
You should also make a symbolic link to xspim. Depending on if your
work on a Solaris or a Linux system, you should execute the following:
1n -s “coco/edu/spim/solaris/xspim ~/placeinpath/xspim
1n -s “coco/edu/spim/linux/xspim ~/placeinpath/xspim
placeinpath can be chosen any way you want. Just remember to put
this path in your PATH environment variable.

e Delivery
Please read http://www.liacs.nl/CA for instructions how to submit
your work.

Definitions

e The number of static instructions is the number of instructions in the
source code.

e The number of dynamic instructions is the number of instructions that
has been executed when the program has finished.

