
The low-autocorrelation problem
Practical Assignments Natural Computing, 2009

Rick van der Zwet
<hvdzwet@liacs.nl>

19 december 2009

1 Introduction

The report is focused on the so-called low-autocorrelation problem of binary
sequences, is subject to actual research and is of big interest for industrial
applications, e.g. communications and electrical engineering. Its description
goes as follows.

Feasible Solutions: Binary Sequences ~y ∈ {−1, +1}n

Objective Function:

f(~y) =
n2

2 · E(~y)
−→ maximization (1)

E(~y) =
n−1∑

k=1

(
n−k∑

i=1

yi · yi+k)
2 (2)

2 Problem description

Due to the huge ’exploding’ possibilities it is not possible to walk trough
the whole list of possibilities, so we need alternative approaches to tackle
this problem. First we will try the Monte Carlo Search algorithm [MCS] and
next try Simulated Annealing [SA].

MCS is all about random sequence generation and trying to find a good
solution, do a small adjustment on the solution and compare the new solution
again.

SA takes a more and less the same approach, but it also accept small
’losses’ from time-to-time. But as time passes it get less likely to accept ’bad
solutions’.

1

Tabel 1: Best known values of low-autocorrelation problem

n Best known f

20 7.6923
50 8.1699
100 8.6505
200 7.4738
222 7.0426

3 Statistics

Of course many people have run numerous computer hours on finding the
best possible fitness as shown in table 1. The algorithms used to find those
numbers are not found.

4 Approach

The MCS is implemented straight-forward from the Wikipedia page1. The
mutation choosing is flipping one bit in the array.

For the SA implemented also comes straight from ’the book’ 2, the process
choosing for the cooling-down sequence is taken from the dutch Wikipedia
page ’Simulated annealing’, which is nice indicator when to choose some-
thing when the solution is worse (logically, better solutions will always be

accepted). 3: p = e
f(i)−f(j)

c

5 Implementation

The code is written in Octave4 which is the open-source ’variant’ of MAT-
LAB c©5. There are small minor differences between them, but all code is
made compatible to to run on both systems. The code is to be found in
Appendix 8.

As work is done remotely, the following commands are used:

1http://en.wikipedia.org/wiki/Monte Carlo method
2http://en.wikipedia.org/wiki/Simulated annealing
3http://nl.wikipedia.org/wiki/Simulated annealing
4http://www.gnu.org/software/octave/
5http://www.mathworks.com/products/matlab/

2

Tabel 2: Best known values of low-autocorrelation problem

n Best fitness
known MCS SA

20 7.6923 4.3478 4.7619
50 8.1699 2.4752 2.6882

100 8.6505 1.8342 1.7470
200 7.4738 1.8678 1.5733
222 7.0426 1.5657 1.4493

matlab-bin -nojvm -nodesktop -nosplash -nodisplay < %%PROGRAM%%

octave -q %%PROGRAM%%

6 Results

All experiments are run 5 times the best solution is chosen and will be re-
sented at table 2. Iteration size is set to 1000. For n = 20 the best fitness
history is shown at figure 1.

0

1

2

3

4

5

0 200 400 600 800 1000

fit
ne

ss

iterations

Simulated Annealing on Low-Corretation set

Length 20

(a) SA

1

1.5

2

2.5

3

3.5

4

4.5

0 200 400 600 800 1000

fit
ne

ss

iterations

Monte-Carlo Search on Low-Corretation set - repetitions 1

Length 20

(b) MCS

Figuur 1: Fitness throughout the iterations

3

7 Conclusions

Looking at the graphs the fitness was still increasing so a larger iteration
size would make the fitness a better result. Secondly the SA is preforming
much worse on large number than the MCS one. It seems to the temperature
function is not working as expected.

Both algorithms are preforming much worse then the best found solutions.

8 Appendix 1

4

1 % An objective function for the low-autocorrelation problem.

2 % Author: Ofer M. Shir, 2004; oshir@liacs.nl.

3 %---

4 function [f] = autocorrelation(pop)

5 % Given a population of binary sequences, this function calculates

6 % the merit function according to the formula specified in the

7 % exercise description. The input pop is the given matrix. The

8 % output f is the merit factor calculated (row vector).

9

10 n = size(pop,1);

11 m = size(pop,2);

12 E = zeros(1,m);

13

14 % Calculated efficiently in a matrix-notation; auxilary matrices

-

15 % Y1,Y2 - are initialized in every iteration. They are shifted

form

16 % of the original y vectors. The diagonal of the dot-squared

Y2*Y1

17 % matrix is exactly the inner sum of merit function.

18 for k=1:n-1

19 Y1=pop(1:n-k,:);

20 Y2=pop(k+1:n,:)’;

21 E=E+((diag(Y2*Y1)).^2)’;

22 end

23

24 % The output:

25 f = (n*n*ones(1,m))./(2*E);

5

1 % Simulated Annealing low-autocorrelation program

2 % BSDLicence

3 % Rick van der Zwet - 0433373 - <hvdzwet@liacs.nl>

4 % $Id: initseq.m 43 2009-12-17 22:18:48Z rick $

5

6 function s = initseq(n)

7 % Generate a random column s={-1,1}^n
8 s = rand(n,1);

9 s = round(s);

10 s = s - (s == 0);

11 end

6

1 % Monte-Carlo Search Algoritm on low-autocorrelation program

2 % BSDLicence

3 % Rick van der Zwet - 0433373 - <hvdzwet@liacs.nl>

4 % $Id: mcs-call.m 46 2009-12-18 01:43:33Z rick $

5

6 % Brute-force result of length 20

7 % best 20 = [-1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,1,1,1,1,1];

8

9 %% Basic variables

10 iterations = 1000;

11 length = 222;

12 repetitions = 1;

13

14 % Plot the stuff

15 [iteration history, fitness history] = mcs(length,iterations);

16

17 plot(iteration history,fitness history);

18 title(sprintf(’Monte-Carlo Search on Low-Corretation set - repetitions

%i’,'

19 repetitions));

20 ylabel(’fitness’);

21 xlabel(’iterations’);

22 grid on;

23 legend(sprintf(’Length %i’,length));

24 print(sprintf(’mcs-fitness-%f.eps’,max(fitness history)),’-depsc2’);

25 max(fitness history)

26

7

1 % Monte-Carlo Search Algoritm on low-autocorrelation program

2 % BSDLicence

3 % Rick van der Zwet - 0433373 - <hvdzwet@liacs.nl>

4 % $Id: mcs.m 46 2009-12-18 01:43:33Z rick $

5

6 % Brute-force result of length 20

7 % best 20 = [-1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,1,1,1,1,1];

8 % autocorrelation(best 20);

9

10 function [iteration history,fitness history] = mcs(length, iterations)

11 iteration history = [];

12 fitness history = [];

13

14 best fitness = 0;

15 for iteration = 1:iterations

16 % Generate a random column s={-1,1}^n
17 n = length;

18 s = rand(n,1);

19 s = round(s);

20 s = s - (s == 0);

21

22 % Find whether we are better than everything else

23 fitness = autocorrelation(s);

24 if (fitness > best fitness)

25 best value = s;

26 best fitness = fitness;

27 end

28 iteration history = [iteration history, iteration];

29 fitness history = [fitness history, best fitness];

30 end

31 end

8

1 % Simulated Annealing low-autocorrelation program

2 % BSDLicence

3 % Rick van der Zwet - 0433373 - <hvdzwet@liacs.nl>

4 % $Id: mutation.m 43 2009-12-17 22:18:48Z rick $

5

6 function new = mutation(old)

7 loc = randint(1,length(old));

8 old(loc) = old(loc) * -1;

9 new = old;

10 end

9

1 % Simulated Annealing low-autocorrelation program

2 % BSDLicence

3 % Rick van der Zwet - 0433373 - <hvdzwet@liacs.nl>

4 % $Id: randint.m 43 2009-12-17 22:18:48Z rick $

5

6 function number = randint(low,high)

7 number = round(rand() * (high - low)) + low;

8 end

10

1 % Simulated Annealing low-autocorrelation program

2 % BSDLicence

3 % Rick van der Zwet - 0433373 - <hvdzwet@liacs.nl>

4 % $Id: sa-call.m 46 2009-12-18 01:43:33Z rick $

5

6 %% Basic variables

7 iterations = 10000;

8 length = 222;

9

10

11 % Always use the same innitial values

12 s = initseq(length);

13

14 % Plot the stuff

15 [iteration history, fitness history] = sa(s,iterations);

16

17 plot(iteration history,fitness history);

18 title(sprintf(’Simulated Annealing on Low-Corretation set’));

19 ylabel(’fitness’);

20 xlabel(’iterations’);

21 grid on;

22 legend(sprintf(’Length %i’,length));

23 print(sprintf(’sa-fitness-%f.eps’,max(fitness history)),’-depsc2’);

24 max(fitness history)

11

1 % Simulated Annealing low-autocorrelation program

2 % BSDLicence

3 % Rick van der Zwet - 0433373 - <hvdzwet@liacs.nl>

4 % $Id: sa.m 44 2009-12-17 22:23:16Z rick $

5

6 function [iteration history,fitness history] = sa(seq, stopLimit)

7 fitness = 0;

8 temperature = stopLimit;

9

10 iteration history = [];

11 fitness history = [];

12

13 for iteration = 1:stopLimit

14 % Generate new mutation

15 newseq = mutation(seq);

16

17 new fitness = autocorrelation(newseq);

18

19 % Better is always accept

20 if (new fitness > fitness)

21 fitness = new fitness;

22 % disp(rot90(newseq,-1));

23 temperature = temperature - 10;

24 else

25 % Make the next ’move’ less atractive

26 temperature = temperature + 1;

27

28 % Accept on an certain probability

29 if (temperature < 1)

30 break;

31 else

32 % XXX: Some more cleaver cooling would be great

33 if(exp(1)^((fitness - new fitness) / temperature) >

rand())

34 seq = newseq;

35 end

36 end

37 end

38 iteration history = [iteration history, iteration];

39 fitness history = [fitness history, fitness];

40 end

12

41 end

13

