
1

1

Requirements Engineering

Software Engineering

Leiden University 2007-2008

Michel Chaudron

Based on Selections from

• Chapter 4 from Object-Oriented Software Engineering

by Lethbridge & Laganiere

• Requirements Engineering: A Good Practice Guide

by Ian Sommerville & Pete Sawyer

• Generative Programming by Czarnecki

Requirements Engineering

What, Why, Who, When, Where, How?

2

3

Requirements engineering

• The process of establishing the services
that the customer requires from a
system and the constraints under which
it operates and is developed.

• The requirements themselves are the
descriptions of the system services and
constraints that are generated during
the requirements engineering process.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6

4

"The hardest single part of building a software system is

deciding precisely what to build. No other part of the

conceptual work is as difficult as establishing the

detailed technical requirements, including all the

interfaces to people, to machines, and to other

software systems. No other part of the work so

cripples the resulting system if done wrong.

No other part is more difficult to rectify later".

Fred Brooks, "No Silver Bullet",

IEEE Computer,1987

Author of The Mythical Man-month

3

5

Understanding the problem

What the customer What the customer What the customer What the customer
explainedexplainedexplainedexplained

What the analyst What the analyst What the analyst What the analyst
designeddesigneddesigneddesigned

What the What the What the What the
programmer madeprogrammer madeprogrammer madeprogrammer made

What the What the What the What the
consultant definedconsultant definedconsultant definedconsultant defined

What was What was What was What was
chargedchargedchargedcharged

What the What the What the What the
client neededclient neededclient neededclient needed

What was What was What was What was
installedinstalledinstalledinstalled

What was What was What was What was
documenteddocumenteddocumenteddocumented

How it was How it was How it was How it was
maintainedmaintainedmaintainedmaintained

What the project What the project What the project What the project
leader understoodleader understoodleader understoodleader understood

6

4

7

Learning from each other

Users, customers,
managers, domain
experts, and
developers share
different skills,
backgrounds, and
expectations.

8

Developing a shared vision

Requirements emerge
from a process of
co-operative learning in
which they are explored,
prioritized, negotiated,
evaluated, and
documented.

5

9

The 10 top reasons for notnotnotnot doing
requirements

10. We don’t need requirements, we’re using objects/java/web/….

9. The users don’t know what they want

8. We already know what the users want

7. Who cares what the users want?

6. We don’t have time to do requirements

5. It’s too hard to do requirements

4. My boss frowns when I write requirements

3. The problem is too complex to write requirements

2. It’s easier the change the system later than to do the

requirements up front

1. We have already started writing code, and we don’t want to

spoil it

Volere Requirements Resources http://www.volere.co.uk

10

“I held my entire program up for 4+ weeks due to
unclear, unwritten requirements. Took some heat for
that in the beginning, but the deep dive
requirements effort is highlighting a Silicon spin we
didn't know about, standards that we don't support,
other postlaunch requirements nobody
considered…all of this causing us and mgmt to
question the viability of the product. BTW, this is all
stuff we wouldn't have realized until it smacked us in
the face 6 months from now. Spending a month now
prevented us from spending millions before a
conscious decision.”

From : Reflections on a Successful Corporate Requirements Engineering Training

Curriculum, Erik Simmons, Intel Corporation, 2005

6

11

StakeholderStakeholderStakeholderStakeholder issuesissuesissuesissues
Steve McConnell, in his book Rapid Development, details a number

of ways users can inhibit requirements gathering:

• Users don't understand what they want or users don't have a

clear idea of their requirements

• Users won't commit to a set of written requirements

• Users insist on new requirements after the cost and schedule

have been fixed.

• Communication with users is slow

• Users often do not participate in reviews or are incapable of

doing so.

• Users are technically unsophisticated

• Users don't understand the development process.

• Users don't know about present technology.

12

Why Software Projects Fail
Example of empirical research

Related to

Requirements

Engineering

Related to

Requirements

Engineering

7

13

Contribution of Requirements Defects
Defect Source

36%

28%

5%
5%
5%

6%
7%6%

2% Requirements
translation

Logic design

Documentation

Incomplete
requirements

Human

Environment

Interface

Data

Other

14

Why Requirements Engineering?

• Scope the problem

• Understand the problem
• for the client as well as the architect

• Basis for design

• Contract between client/user and builders
• agreement on what has to be built

8

15

Understand the DomainUnderstand the Domain

What is important?

Which things are stable and which change?

How does the project add to an organizations' success

16

Initial Steps in RE process

• What are the drivers?

– Stakeholders & concerns

• What are the constraints?

– Economical/technical/organisational

• What is the scope of the system?

9

17

Twin Peaks Process

Progressing understanding of architecture & design
provides a basis for discovering further system
requirements and vice versa

WHAT:
problem
structuring

There is interaction between available solutions and
requirements

Separate but concurrent development of
requirements & architecture

HOW:
solution
structuring

18Slide by Gerrit Muller, ESI, 2007

10

19

What is a Requirement ?

• A statement about the proposed system that all
stakeholders agree must be made true in order
for the customer’s problem to be adequately
solved.

– Short and concise piece of information

– Says something about the system

– All the stakeholders have agreed that it is valid

– It helps solve the customer’s problem

– Contract between customer and builder

20

Example Requirement Template

11

21

Errors

Requirements errors are typically non-clerical.
incorrect facts 49%
omissions 31%
inconsistencies 13%
ambiguities 5%

Requirements errors can be detected.
Review by authors 23%
Review by others 10%

Up to 30-50% of the errors found further downstream
the development process are due to errors in the
requirements.

22

Users of a requirements
document

Use the requirements to
develop validation tests for

the system

Use the requirements
document to plan a bid for
the system and to plan the

system development process

Use the requirements to
understand what system is to

be developed

System test
engineers

Managers

System
engineers

Specify the requirements and
read them to check that they

meet their needs. T hey
specify changes to the

requirements

System
customers

Use the requirements to help
understand the system and

the relationships between its
parts

System
maintenance

engineers

12

23

Types of requirements
• User requirements:

The description of the functions that the system

has to fulfil for its environment in terms of the

users interacting with the system, e.g. in the form

of use cases.

•Software requirements:

The software requirements are a translation and a

more precise description of the user requirements,

in terms for software engineers.

Functional and extra-functional requirements

24

Types of Requirements

• Functional requirements

– Describe what the system should do

• Extra-functional requirements
– *ilities: Availability, Security, Reliability, Timeliness,

– Capacity

• Constraints that must be adhered to during execution

13

25

Types of extra-functional req’rements

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6

Performance

requirements

Space

requirements

Usability

requirements

Efficiency

requirements

Reliability

requirements

Portability

requirements

Interoperability

requirements

Ethical

requirements

Legislative

requirements

Implementation

requirements

Standards

requirements

Delivery

requirements

Safety

requirements

Privacy

requirements

Product

requirements

Organisational

requirements

External

requirements

Non-functional

requirements

26

Functional requirements

– What inputs the system should accept

– What outputs the system should produce

– What data the system should store that other
systems might use

– What computations the system should
perform

14

27

Examples

• The system shall allow users to search for an item by

title, author, or ISBN.

Defines system functionality.

• If an item is not returned within the period of load,

then the person who loans the item will be fined Euro

1 per week.

Defines (causal) relations between system functions.

28

Examples of XFR: Examples of XFR: Examples of XFR: Examples of XFR: ReliabilityReliabilityReliabilityReliability
Typically expressed in terms of

• Mean Time Between Failures (MTBF)Mean Time Between Failures (MTBF)Mean Time Between Failures (MTBF)Mean Time Between Failures (MTBF)

• Number of hours that pass before a component fails

• E.g. 2 failures per million hours:

• MTBF = 106 / 2 = 0,5 * 106 hr

• Mean Time To Failure (MTTF)Mean Time To Failure (MTTF)Mean Time To Failure (MTTF)Mean Time To Failure (MTTF)

• Mean time expected until the first failure of a system

• Is a statistical value over a long period of time

• Mean Time To Repair (MTTR)Mean Time To Repair (MTTR)Mean Time To Repair (MTTR)Mean Time To Repair (MTTR)

for repairable systems

For non-repairable systems

Availability

15

29

Examples XFR: Maintainability

Maintainability

The average person time required to fix a category
3 defect (including testing and documentation
upgrade) shall not exceed two person days.

30

System Quality Attributes

• Performance

• Availability

• Usability

• Security

• Maintainability

• Portability

• Reusability

• Testability

End User’s

view

Developer’s

view

• Time To Market

• Cost and Benefits

• Projected life time

• Targeted Market

• Integration with

Legacy System

• Roll back Schedule

Business

Community
view

16

31

Constraints

Constraints concerning the environment and
technology of the system.

• Platform

• Technology to be used

Constraints concerning the project plan and
development methods

• Development process (methodology) to be used

• Cost and delivery date
– Often put in contract or project plan instead

Constraints are not negotiable

32

Constraints
Constraint restrict how the requirements are to be implemented.

• Interface RequirementsInterface RequirementsInterface RequirementsInterface Requirements.

How external interfaces with other systems must be done.

• Communication InterfacesCommunication InterfacesCommunication InterfacesCommunication Interfaces.

The networks and protocols to be used.

• Hardware InterfacesHardware InterfacesHardware InterfacesHardware Interfaces.

The computer hardware the software is to execute on.

• Software InterfacesSoftware InterfacesSoftware InterfacesSoftware Interfaces.

How the software should be compatible with other software:

applications, compilers, operating systems, programming

languages, database management systems.

• User InterfacesUser InterfacesUser InterfacesUser Interfaces.

Style, format, messages

17

33

Requirements on Requirements (1)

Each individual requirement should be

• ImportantImportantImportantImportant/necessary/necessary/necessary/necessary for the solution of the current problem

• UniqueUniqueUniqueUnique

• UnambiguousUnambiguousUnambiguousUnambiguous

• LLLLogicallyogicallyogicallyogically consistentconsistentconsistentconsistent

• NNNNotototot overoveroverover----constrain the designconstrain the designconstrain the designconstrain the design of the system

• Atomic: Atomic: Atomic: Atomic: not consist of multiple separate requirements

34

Requirements on Requirements (2)

The set of requirements together should be:

• CompleteCompleteCompleteComplete

• Expressed using a clear and consistent notationclear and consistent notationclear and consistent notationclear and consistent notation

– at the same level of detail

• Without duplication

18

35

Requirements on Requirements (3)

SSSS SpecificSpecificSpecificSpecific

To-the-point, precise

MMMM MeasurableMeasurableMeasurableMeasurable

Quantifiable and verifiable

AAAA AcceptableAcceptableAcceptableAcceptable (to the stakeholders)

Accessible, understandable (for the user)

Achievable (technically/planning/economically)

RRRR RealisticRealisticRealisticRealistic

Deducible to the real business drivers

TTTT TestableTestableTestableTestable

36

• “All communication between client and server is

secure”

• “It is easy to extend”

• “The system should respond quickly”

• “The user should not have to wait more than a few

second …”

• “Determine solution within 0.3 sec”

• “The system should be always available”

• “The system can handle multiple concurrent users”

• “The system can handle 100 concurrent users”

• “The system should be state-of-the-art …”

Let’s consider

attainable

vague:to what?

doing
what?

subjective time-dependent;
means something else tomorrow

not
measurable

not
measurable

not
measurable

not precise

19

37

Requirements Prioritization

38

The Cost of Traditional BRUF
Big Requirements Up Front

Never

45%

Rarely

19%

Sometimes

16%

Often

13%

Always

7%

“Successful” Projects Still Have Significant Waste

Pie chart shows percentage of functionality used by stakeholders

Source: Jim Johnson of the Standish Group, Keynote Speech XP 2002

Pareto-rule applies: 20% of functionality delivers 80% of value

20

39

Prioritizing Requirements

• MIL STDMIL STDMIL STDMIL STD:
• Must have, will have, may have

• RUP: RUP: RUP: RUP: MoSCoWMoSCoWMoSCoWMoSCoW
Must have
Should have
Could have
Won’t have

Criteria: indicate importance

Alternative criteria: volitility, cost to realize, risk, ..

40

CostCostCostCost----Value Prioritization of RequirementsValue Prioritization of RequirementsValue Prioritization of RequirementsValue Prioritization of Requirements

Motivation for Prioritization:

• Focus development effort

– Allocate resources based on importance

• Make trade-offs between conflicting
goals, such as quality, cost and time-to-
market

21

41

CostCostCostCost----Value Prioritization of RequirementsValue Prioritization of RequirementsValue Prioritization of RequirementsValue Prioritization of Requirements

Process:
1. Review requirementsrequirementsrequirementsrequirements for clarityclarityclarityclarity and completenesscompletenesscompletenesscompleteness (by

Requirements Engineers)

2. Assess relative valuerelative valuerelative valuerelative value of requirements in pair wise
manner (Customers and users)

3. Assess relative costrelative costrelative costrelative cost of realizing requirements in pair
wise manner (by experienced SW Engineers)

4. Calculate (value, cost)-pairs (using AHP*)

5. Plot requirements as (value, cost)-pairs

6. Prioritize

* Analytic Hierarchy Process

42

Requirements Prioritization
Example

• 14 Requirements

V
a
lu

e
(p

e
rc

e
n

ta
g

e
)

C
o

s
t

(p
e

rc
e

n
ta

g
e

) low value

high cost

h
ig

h
 v

al
u
e

lo
w

 c
o
st medium value

medium cost

22

43

AHP details

44

AHP consistency

23

45

Prioritization

• Estimation of relative weights

– ratio-scale

• 100 $ approach

– ratio-scale

• Ranking by comparing

– (bubble)sorting – ordinal scale

46

Managing Changing Requirements
• Requirements change because::::

– Business process changes

– Technology changes

– The problem becomes better understood

• Requirements analysis never stops

– Continue to interact with the clients and users

– The benefits of changes must outweigh the costs.

• Certain small changes (e.g. look and feel of the UI) are
usually quick and easy to make at relatively little cost.

• Larger-scale changes have to be carefully assessed

– Forcing unexpected changes into a partially built system will
probably result in a poor design and late delivery

– Some changes are enhancements in disguise

• Avoid making the system bigger, only make it better

24

47

Requirement Changes

Requirements Changes - Business Systems

Requirements Growth %

Requirements Growth %

-5-0 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55

%
 P

ro
je

c
ts

0

10

20

30

40

50

60

70

57%

14%

11%

4% 4%

7%

4%

Business Systems Avg. Line Style 1 Sigma Line Style

Data from 23

projects of the

Indian IT

industry for

overseas

customers

(Jan 2000)

48

Traceability

• From req to arch choices/features

• From features to req’s

• Check

– Completeness of system

– Analyze impact of changing requirements

25

49

Forward Traceability

User requirementsUser requirements

System designSystem design

Program designProgram design

CodingCoding

How is this requirement realized?

System requirementsSystem requirements

Subsystem requirementsSubsystem requirements

TestsTests

To help in understanding…

50

Backward Traceability
User requirementsUser requirements

System designSystem design

Program designProgram design

CodingCoding

To which requirements does this

part of the system contribute?

Why am I here?
System requirementsSystem requirements

Subsystem requirementsSubsystem requirements

Why is the design like this?

designdesign

requirementsrequirements
use a

graphical UI

use a text-

based UI

UI design

26

51

Why Traceability?

• Accountability: where did this requirement come from?

– The source of a requirements may be needed for clarification,

negotiation, conflict resolution

• Matching solution to problem

– For monitoring completeness of system:

• Acceptance test: are all requirements addressed?

• are there unnecessary requirements/features?

• Analyze impact of changes (in req’mt’s / design decions)

– Change request: What parts of the design need to change, if a

requirement changes?

• Reuse of requirements

52

design document and requirements document

contains hyperlinks to each other

Typical use:

interactive exploring /

browsing req.docs

Using .html documents

& browsers

How Traceability: Hyperlinks

Design document

....due to / supports requirement 1.2

Requirements document

1.1 XXXX

.... because rationale

1.2 YYYY

1.1 Design Decision: use tactic XYZ

1.3 ZZZZZ

27

53

But also
• Trace the source of requirements

Stakeholders Requirements document

1.1 XXXX

.... because rationale

1.2 YYYY

1.1 Customer1

1.2 Developer

1.3 Maintainer supports stakeholder 1.2

�Trace the history/evolution of requirements

Requirements document

1.1 XXXX

1.2 YYYY

Requirements document

Version 0.5

1.1 VVVVV

1.2 YYYY

Version 0.6

modified because ….

cancelled

54

How Traceability: Matrix
A matrix links requirement to design decisions

XXX..

..

XX7

6

X5

XXX4

X3

X2

1

......654321requirements

design
decisions

Uses: database

or spread-sheet

28

55

Req. Management Guidelines

From: Sommerville & Sawyer

Basic Guidelines:Basic Guidelines:Basic Guidelines:Basic Guidelines:
1. Define policies for requirement management
2. Define traceability policies
3. Maintain a traceability manual

Intermediate Guidelines:Intermediate Guidelines:Intermediate Guidelines:Intermediate Guidelines:
4. Use (automated) requirements management tool
5. Define change management policies

– Maintain a change history
6. Identify global system requirements

Advanced Guidelines:Advanced Guidelines:Advanced Guidelines:Advanced Guidelines:
7. Measure requirements stability

– Identify volatile requirements
8. Record rejected requirements

56

Traceability Research Questions

• How much traceability should one do?

• Can we automate traceability?

– Matching keywords between design and req’s?

29

57

Concluding Remarks

There is a lot more to requirements that meets the eye.

A lot of errors in system development can be traced to
erroneous requirements. It pays to make an effort to
check your requirements

Requirements evolve in concert with architectural
decisions.

Domain Engineering helps developing system families

Lots of guidelines exist for doing requirements right!
Use them!

Questions?

See you this afternoon & next week

30

59

[Gacek et al 1995] present the results of a survey of

people who are somehow involved in software

development processes (developers, customers,

maintainers, aquisitioners, etc.).

There they found that, with respect to architects, the

three major concerns were

“1) requirements traceability;

2) support of tradeoff analyses; and

3) completeness, consistency of architecture.”

Gacek, C., Abd-Allah, A., Clark, B.K., and Boehm, B. (1995)

“On the Definition of Software System Architecture,” in

Proceedings of the First International Workshop on Architectures

for Software Systems - 17th ICSE, Seattle, 24-25 April 1995, pp.

85-95.

60

31

61

Requirements documents

– should be:
• agreed to by all the stakeholders

• sufficiently complete

• well organized

– Easy to read

– Easy to maintain / change

• clear

– Traceability:
• use of hypertext may be usefull

– for exploring/browsing req.docs
Design

document

....due to

requirement 1.2

Requirements

document

1.1 XXXX

.... because

1.2 YYYY

rationale

62

• AnalysisAnalysisAnalysisAnalysis antiantiantianti----patternspatternspatternspatterns

• : The Functional/Technical specification is given
to the Development team on a napkin (i.e.,
informally, and with insufficient detail) which is
fundamentally equivalent to having no
specification at all.

• : All requirements are communicated to the
development teams in a rapid succession of
netmeeting sessions or phone calls with no
Functional/Technical specification or other
supporting documentation.

• : To write the Technical/Functional specification
after the project has already gone live.

32

63

Don Gause lists the five most important

sources of requirements failure as:

• failure to effectively manage conflict,

• lack of clear statement of the design problem
to be solved,

• too much unrecognized disambiguation,

• not knowing who is responsible for what

• lack of awareness of requirements risk.

64

Through Requirements you are meant to find
out and understand what users’ intentions
and need are.

This may be different from what they say it is!

33

65

Ezelsbruggetje

• Het woord is waarschijnlijk afkomstig van
het feit dat de ezel maar een heel klein
randje nodig heeft om snel op de plek
van bestemming te komen; een plank
over een sloot volstaat al. Het woord
ezelsbrug is al heel oud en bestond in
het Latijn al (pons asinorum).

• English translation welcome …

66

34

67

STIMULUSSTIMULUSSTIMULUSSTIMULUS----ENVIRONMENTENVIRONMENTENVIRONMENTENVIRONMENT----RESPONSERESPONSERESPONSERESPONSE

• Use case scenario
Remote user requests a database report via the Web

during peak period and receives it within 5 seconds

• Growth scenario
Add a new data server during peak hours within a

downtime of at most 8 hours.

• Exploratory scenario
Half of the servers go down during normal operation

without affecting overall system availability

‘Formula’ for scenario’s

A good scenario makes clear what the stimulus is and
what the measurable response of interest is

