
Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 1

Guidelines for Requirements Analysis in Students’ Projects

Information Systems Group

Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente

Introduction

This document provides guidelines about how to do a requirements analysis and how to write a

requirements specification. It gives hints about what you could do and warns you about things that

you should not do. It is not a method that you can follow step by step. Problems are different, and

what works well in one case would not be the best approach in another case. The available time can

take from a few weeks to several months. And your skills and experience also determine what are

good techniques to use. If a particular specification technique is treated in a course you haven’t taken,

then it might not be a good idea to try it out on an important job. So you have to decide for yourself

what is the best to do in your project.

These guidelines are written primarily for master and bachelor students of Business Information

Technology, but could be used by others. The document is self-contained, but refers to other sources

for detailed descriptions of techniques. Many references are given to the book used in the bachelor

course Requirements Engineering (232081), S. Lauesen: Software Requirements [Lau02]. The UT

library has a copy that is permanently available (it may not leave the library).

Outline of the Guidelines

After an introductory chapter

0. What you should know before you start

the remainder or these guidelines is structured as a series of steps that comprise an idealized life

cycle of a requirements specification:

1. Analysing the problem and the problem context

After this step, you have an understanding of the problem context and you have learnt what

should be improved and why.

2. Defining the ideal solution

After this step, you know what, in principle, the best solution to the identified problem(s) would be.

3. Defining a realistic solution

After this step, it has been defined what the system, for which you are going to do a requirements

analysis, should achieve. Moreover, relevant stakeholders agree about its mission.

4. Gathering requirements

After this step, you know what people would like the system to do and which requirements and

constraints there are.

5. Writing a requirements specification

After this step, you have a readable first version of the requirements specification that can be

discussed with involved persons. We distinguish four separate concerns

5.1. The contents of a requirements specification

5.2. Specification techniques

5.3. Readability and linguistic issues

5.4. Quality check

6. Validating the requirements specification

After this step, you have made sure that the requirements reflect what the relevant stakeholders

want from this project. This is the requirements specification that you deliver.

7. Maintaining the requirements specification

The world goes on, and new requirements may come up. This is outside the scope of most

students’ projects, but for the sake of completeness we discuss it briefly.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 2

The ideal requirements process would follow these steps in consecutive order. As you may have

guessed, the ideal requirements process does not occur in practice. But for the purpose of organising

the material, it makes sense to discuss the steps one by one.

Each chapter treats a single step in the requirements specification life cycle. An outline gives

essential questions that you should ask yourself (and others) and what to do about these. The

remainder of the chapters treat specific topics in more detail. Appendices at the end of the document

give yet more detail and references to further literature.

Not every topic is applicable in every context. Read all the outlines and study other topics as

appropriate.

About this document

These Guidelines have been compiled and are maintained by the Information Systems group at the

University of Twente.

Feedback is welcome! It helps us to improve future versions of the Guidelines.

Please contact Klaas Sikkel, room ZI 3102, email: k.sikkel@utwente.nl.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 3

Contents

0 What you should know before you start...4
0.1 The requirements process ...4
0.2 The requirements specification life cycle...4
0.3 From business problem to system specification..5
0.4 Why isn’t there a proper method? ...5

1 Analysing the problem and the problem context ..7
1.1 What is the problem?...7
1.2 Organisational context ...8
1.3 Stakeholders ..8
1.4 Interviewing..9

2 Defining the ideal solution ...10
2.1 One essential problem...10
2.2 The client’s goal vs. the project goal ...10
2.3 Business solution vs. software solution ...10

3 Defining a realistic solution ...11
3.1 Mission statement...11

4 Gathering requirements ...13
4.1 Requirements at different levels ..13
4.2 Modeling the system vs. modeling the system’s environment ..14
4.3 Types of requirements ...14
4.4 Quality factors ..15
4.5 Priorities ...15
4.6 The Requirements Shell ..15
4.7 Fit criteria ...15
4.8 Requirements elicitation vs. requirements creation...16
4.9 Techniques for requirements gathering...16
4.10 Requirements elicitation for custom-tailored or COTS systems..17

5 Writing a requirements specification..18
5.1 Contents of a requirements specification ...18

5.1.1 Free form or template? ..18
5.2 Specification techniques...19
5.3 Readability and linguistic issues ...19

5.3.1 Keep it short...19
5.3.2 Keep it simple ..20
5.3.3 Structuring text...20
5.3.4 Presenting information...21

5.4 Quality check..21
5.4.1 Quality criteria for individual requirements ..21
5.4.2 Consistency acrossrequirements ..22
5.4.3 Have you finalized the document? ..22

6 Validating a requirements spec...23
6.1 Requirements validation ..23
6.2 Requirements prioritization ..24

7 Maintaining the requirements specification...25
7.1 Requirements evolution ...25
7.2 Traceability...25

Glossary ...26
References...27
Appendix A. Context-free questions..28
Appendix B. Requirements elicitation techniques ...29
Appendix C. Volere Requirements Shell ...31
Appendix D. Volere Requirements Specification Template...32

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 4

0. What you should know before you start

The purpose of this chapter is to give you some general words of advice. You should read this before

you start your requirements analysis.

Way of thinking – What are the essential questions?

� What is a requirements specification?

� How do you obtain a requirements specification?

0.1 The requirements process

Requirements analysis is for a large part a social

activity. The requirements analyst’s job is to find

what relevant stakeholders want and lay that down

in a suitable specification (and not to invent the

requirements himself). Gause and Weinberg

[GW89] define a requirements process as

the part of [system] development in which people

attempt to discover what is desired.

In the early days of computing, it was thought that

the requirements analyst’s job is to find out what is

needed. This presupposes that there is some

objective need, and analysis will reveal what that

need is. In many projects, this is not the case.

There are various things that could be desired for

various reasons. Moreover, many relevant persons

do not have a clear picture of their own desires –

the process of requirements discovery helps them

to find out what they really want.

To make things more complicated, any project has

a number of different stakeholders with different

interests, and it is usually not feasible to incorporate

all desires of all stakeholders. Choices have to be

made and somebody has to put some effort into

making the stakeholders accept the resulting

requirements specification.

0.2 The requirements specification life
cycle

In this section we elaborate a requirements

specification life cycle of seven steps. In the next

section we will argue that it doesn’t work that way,

and in practice you won’t be able to strictly separate

these steps.

What, then, is the point of introducing this model?

It’s a reference model, describing the ideal case.

Even though you will never meet the ideal case, it

helps to keep structure and put things in the right

place. For example, if you return from a chaotic

focus group meeting which has done bits of steps 1,

2, 4, and 6 in random order, you can get some

structure in your equally chaotic notes by ordering

them according to these steps.

It’s like the waterfall model in Software Engineering

– the first thing you learn in an SE course, despite

the fact that nobody ever could make it work that

way. It’s the lucid enumeration of steps that makes

it worth knowing it.

In the generic requirements process described here

we distinguish different phases

• Finding out what the problem is, and what kind of

solution is desired (steps 1–3)

• Drawing up a requirements specification for the

desired solution (steps 4–6)

• Maintaining the requirements specification when

requirements change later on in the project (step

7)

In each phase we can distinguish four different

kinds of activities:

• Preparation: getting organized before you start,

finding out what you are going to do and whom

you may want to talk to, etc.

• Elicitation: going out and finding requirements,

by asking people, observing, reading documents,

etc.

• Engineering: putting things together: specifying

what elicited and observed, organizing and

combining things. There is always an element of

design involved.

• Negotiation and decision making. This is politics,

rather than engineering, but is an inevitable part

of getting a requirements specification accepted.

The complete life cycle model is shown in Figure 1.

The phases cycle through the different activities,

yielding our seven steps:

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 5

Figure 1: The requirements life cycle

1. Analysing the problem and the problem

context

2. Defining the ideal solution

3. Defining a realistic solution

4. Gathering requirements

5. Writing a requirements specification

6. Validating the requirements specification

7. Maintaining the requirements specification

The maintenance phase is never finished and can

cycle on forever. (But we can anticipate this).

0.3 From business problem to system
specification

Another way to look at the relation between problem

and solution is shown in Figure 2.

Business

Problem

Business

Solution

System

Solution

Specification

System

Product

Idea

Business

Supporting

System

Problem Solution

1

2,3

2,3

4,5,6

Figure 2: The Z model

We distinguish between problem and solution, and

between business and supporting (software)

system. In a perfectly rational world, a requirements

analysis process would follow the arrows in the

diagram.

In a narrow sense, requirements analysis is only

concerned with the last arrow. Somebody has

suggested that a system for a particular purpose

can be developed (or bought) and your task as a

requirements analyst is to find the requirements for

that system. However, in order to find these

requirements, it is important to know why this

system is needed, what problem it will solve –

otherwise it’s not possible to determine the

requirements.

A problem always arises in the real world. Even

when it’s clear that the system is to blame. E.g. “our

system is too slow.” It would not be a problem if

people would not depend on that system for doing

the particular job they do. In other circumstances

(e.g. the same company 5 years ago) the same

system might not be experienced as being to slow.

The idea to design, replace, or upgrade a system

doesn’t arise because having the system is a goal

in itself, the system is needed for some purpose.

It is called “business problem” because most

requirements engineering is done for systems that

have some business purpose, but it doesn’t have to

be related to commercial business.

The solution to a business problem is always a

business solution. It is possible that this solution

involves a computer system. It is tempting to think

that acquiring a new system may solve a business

problem (this is a mistake that is often made). Using

a new system can be the solution to a problem.

Acquiring the system isn’t suffficient, the system

has to fit into the way the work is done – or perhaps

the work has to be reorganised, so as to exploit the

capabilities of the new system.

In perfectly rational top-down design process, one

would first define a business solution to address the

business problem, then consider what kind of

system is needed to support the business solution

and finally draw up a requirements specification.

After the arrows in Figure 2, this is called the Z

model.

To make sure that we do requirements analysis for

a system that helps addressing the right problem,

we start with step 1 – identifying the problem. Steps

2 and 3 yield an idea of the solution and the system

needed to realize that solution. After that we can do

a more detailed requirements analysis in steps 4–6.

At least, that’s the theory...

0.4 Why isn’t there a proper method?

Life would be a lot easier with a method that you

could follow step by step. Unfortunately, our life

cycle model doesn’t pretend to be that kind of

method. In fact no such method exists for

requirements analysis.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 6

There is no method that addresses all cases

For each project you have to decide which issues

are important and need a lot of care, and which

issues are trivial or do not apply. These guidelines

are no substitute for thinking for yourself, and you

have to judge what is needed in your project.

Requirements analysis projects differ a lot in scope

and nature. Some examples from projects carried

out by M.Sc. students:

1. A commercial bank has a problem with customer

loyalty. Obtaining new customers by means of

marketing actions seems to work, but the bank

isn’t able to retain these customers for a long

time. Can appropriate CRM software help them

to increase the loyalty of their customer base?

The focus in this project is more on organizational

practices than on the technical support system. In

this project something was implemented in the end,

but initially it was not at all clear what the solution

should look like. But it was evident that a system

won’t help if the bank’s employees are unable or

unwilling to use it properly. Steps 1–6 were carried

out, but the emphasis was on steps 1, 4, and 6.

2. A telecom company wants to find out how it

could rent telephone services to corporate

clients, making use of VoIP (Voice over IP)

technology.

This is primarily a technical project. Not much study

has to be done about how people would use a VoIP

telephone, because it should work as a regular

telephone, and possibly clients shouldn’t even be

aware of the difference. Steps 3–6 were carried out

in this case (the result of step 2, the ideal solution,

was given as a starting point for the project) but the

emphasis was on steps 4 and 5.

3. The Police department in a region in the north of

the Netherlands has difficulties in providing

statistical material to the Ministry of Justice.

Sometimes when the Ministry asks for statistics

about a particular type of crime, they have to go

through all the database records to find the

requested numbers by hand.

The stated problem is clear, but it is a symptom of

an underlying problem that was hard to find and

harder to solve. In this project only steps 1–3 were

carried out.

The steps in a requirements analysis process
do not take place in consecutive order

Only in the ideal situation, you do step 1 first, then

step 2, and so on, without retracing your steps. In

practice you will find it hard to separate analysing

the problem (step 1) from eliciting the requirements

(step 4). Also, it makes sense to combine

requirements elicitation (step 4) with writing down

the elicited requirements (step 5).

Many projects, and some excellent requirements

analysis methods, start with step 3. If the project

goals are straightforward and you are asked to draw

up a requirements specification for a system with a

clear purpose, step 3 is a natural starting point. This

implies that somebody else has already performed

steps 1 and 2, found out what the problem and the

ideal solution was, decided to set up a project and

engage you as a requirements engineer. If this is

the case, you can – and should – find the results of

the problem analysis. If these don’t exist, e.g. if the

project is driven by a solution, rather than a

problem, you should consider doing some problem

analysis after all.

However, in many cases, including most cases in

which our students do a requirements analysis,

there is some idea about the problem, but it is not

immediately obvious what the best solution is –

otherwise they wouldn’t have asked the university.

Many systems fail, despite the fact that they fulfil

the requirements, because the problem is poorly

understood and a solution is built that doesn’t

address the real problem. For this reason we insist

that step 1 is part of the requirements analysis.

Problem-solution co-refinement

It’s a very good idea to define the problem first, and

then the solution. If it’s a difficult problem with no

easy solution, there is a complex relationshop

between problem and solution. The nature of a

possible solution determines what problems you

can solve, and if we don’t know the solution yet we

might not know exactly which problem we can

solve. Empirical studies have shown that refining

the solution and refining the problem go hand in

hand [Cro89]. That’s why you always have to do

some rework on previous steps, no matter which

method you follow.

The method does not work

You do the work. The method is just a set of

guidelines. The method is not responsible for your

work products, nor are the authors of the method.

You are responsible yourself.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 7

Step 1. Analysing the problem and the problem context

The purpose of this step is to find out what the problem is and, equally important, to understand the

situation in which the problem occurs. It is not the purpose of this step to think about possible

solutions. That comes later, after we have learnt enough about the problem.

Way of thinking – What are the essential questions?

� What are the problems (goals, desires) and what are the causes for these problems?

� Is the stated problem the real problem or it is a symptom of an underlying problem?

� Who are the stakeholders?

� What will be the impact if the problems are resolved / the goals are accomplished?

Approach – How to find answers to these questions?

It makes sense to learn something about what is going on, what are the causes for the problems and

which parties have an interest in (not) solving the problem. To that end you have to do two things:

• identify (groups of) stakeholders

• interview relevant persons

Your supervisor or the client can help you drawing up an initial list of persons you might want to speak

to (and talking to these you may become aware of other stakeholders to be considered). If there are

relevant documents about the current system, it could be worthwhile to read those first. If you know

what you’re talking about, you’ll get better results.

The list of “context-free questions” in Appendix A could be a good starting point. Some other points

are elaborated below.

Product – What do you write down?

Lay down your problem analysis in a short paper. Target audience for this paper are the stakeholders.

They should be able to find out, as easily as possible, whether you have captured their problem

appropriately. Hence it is important that the analysis is easily readable and to the point. Making it
short and readable is a lot more work than just summing up what you’ve found. But it’s well worth the

effort if you want to get feedback and gain credibility with the client and other stakeholders.

Follow-up – What do you do with this document?

• Make sure that you have a good enough version (if possible, consult your supervisors)

• Circulate it to relevant persons and ask for their feedback

• If needed: adapt it, based on the feedback

• Include the adapted version as a chapter or an appendix to your final report.

1.1 What is the problem?

How much time, effort and skill it takes to identify

the problem varies from case to case.

There are (few) projects in which the problem is

clear. Consider a project to develop a prototype for

some technologically innovative gadget. You may

find it interesting to know what people eventually

will do with it, but the prime challenge in this project

is in getting the technology working.

In some projects, finding the problem is very hard.

For example in a situation where key persons have

hidden agendas, it needs skill and tact to find out

what is going on.

In some projects, the problem appears to be clear.

But the problem that people experience is a

symptom of a deeper, underlying problem, and it

makes a lot more sense to solve the real problem

than to address the symptom.

Problems at which level?

If you ask people which problems they experience,

they often will tell you that properties of the current

system (or their absence) are a problem. This is

experienced as a problem, it directly bothers

people. The real problem, however, is that they

cannot perform some task effectively or efficiently.

Adapting the system functions they complain about

can be, but need not be the best solution. Perhaps

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 8

is it better to reorganize the work, or to replace the

whole system rather than to repair some functions.

Do not just ask what the problems are, always ask

why this is experienced as a problem. Sometimes

you have to ask “why” several times to find the real

reason behind the reason behind the reason behind

the problem.

Problem vs. solution

When you ask for problems, many people (including

most students not trained in requirements

engineering) will come up with solutions.

• A problem is a difference between what is

experienced and what is desired.

• A solution is a way to reduce a problem

These two are related, but different. It is possible

that there are different solutions for the same

problem.

If you inquire about problems you may be told, e.g.

“we need an ERP system.” What is stated here is

the absence of a solution. Again, we need to go up

one level, and ask “why”. There could be various

reasons. Perhaps implementing an ERP system is

indeed the best solution, perhaps there are also

other solutions worth considering.

How important is a problem?

Not all problems are equally important. One way to

get an indication is to ask the following questions

(costs and benefits are not only financial).

• What are the costs when this problem is solved?

• What are the benefits if this problem is solved?

• What are the costs if the problem is not solved?

• What are the benefits if the problem is not

solved?

If you want to get an idea about the urgency of a

problem, you could add

• What are the costs if the problem is solved after

one year?

• What are the benefits if the problem is solved

after one year?

More about problem analysis

A course Problem Analysis and Software

Requirements (232080) is part of the BIT master

programme.

1.2 Organisational context

How is the project positioned in the organisation?

• How does the project fit in the organisation’s

strategy?

• What does management think about this project?

• Who is responsible for the project’s funding (the

client) and who is responsible for managing the

project?

Goals

A problem is a problem because it prevents some

goal from being realized. In perfectly logical world,

you would first write down the goals and then look

for problems obstructing these goals. Eliciting goals

is a lot more difficult than making a list of problems.

Many people are not willing or able to state their

goals. Try to get some idea about the following

issues:

• What are the goals of the organisation?

• Which personal goals (which are usually hidden)

also play a role?

• What are the goals of the organisational unit?

Are these different from the goals of the

organisation as a whole?

The official goals of the organisation (typically:

running the primary process effectively and

efficiently) give some hold, and can be used in your

problem analysis to motivate why a solution is

needed. But keep an open mind for what is going

on around you.

1.3 Stakeholders

A stakeholder to a project is someone who gains or

loses something (could be functionality, revenue,

status, compliance with rules, and so on) as a result

of that project [AR04].

Stakeholders include

• the client (who pays for the system

development),

• customers,

• system developers,

• direct users (who will work with the system),

• indirect users (e.g. who will get information from

the system),

• system operators.

And there could be others, e.g.

• government bodies, having an interest that the

law is not violated.

Alexander [Ale03] gives a simple but powerful

model of stakeholder roles that can help you

discover the stakeholders for your project.

In some cases you may consider an organisation or

company to be a stakeholder. It is always better to

think of concrete persons, rather than abstract

bodies. (“Mr. Smith in the procurement department”,

rather than “company A&B”). A stakeholder group is

homogeneous if all persons in that group want the

same thing. This is not always the case.

If you want to involve stakeholders in the

requirements process, you have to determine who

represents a stakeholder group. There are several

forms of representation:

• exhaustive (everybody in the group)

• representation by sample (choose the sample

carefully of the group is not homogeneous)

• representation by surrogate (somebody who

knows a group of stakeholders quite well).

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 9

Representation by surrogate (“our marketing

department knows what our customers want”) is

always risky. If you don’t have access to real users,

you must read The Inmates are Running the

Asylum [Coo99] before you attempt to write down

other people’s estimate of what the users would

desire.

Stakeholders have different problems. Even in the

unlikely event that there is only a single problem,

stakeholders will experience this problem

differently.

If you want to get clear which stakeholder has which

problem, you could make a schema as follows:

Stakeholder

Problem

A B ...

Problem 1

Problem 2

...

1.4 Interviewing
1

Interviewing is the most often used technique to

learn about problems. It works fine, if you are aware

of its limitations.

When you ask people about their daily tasks, they

have difficulties explaining what they do and why

they do things the way they do. Some people have

hidden agendas and will not give honest answers.

Make sure you have the right interview partner, and

not a surrogate. If you want to know the problems

on the shop floor, you should talk to the people who

do the work there, not to their managers.

Prepare yourself for the interview. If you know what

you’re talking about you will get a better response.

Make a list of questions. The context-free questions

in Appendix A can serve as inspiration. If you can

make these questions more specific for the

situation, that’s better.

Despite this, an interview is not a question-and-

answer session. Start with one issue, and most

likely the interviewees will cover a number of

questions when you let them talk. If they bring up

issues that are relevant, but not on your list, even

better. Use your list to check whether the issues are

covered. If something hasn’t been touched upon,

you may bring it up.

When you discuss day-to-day problems with an

unsatisfactory system, ask about critical tasks.

When does the user work under stress? When is it

important that nothing goes wrong?

As a general rule you should be polite and sensitive

to the interview partner. Some people don’t like to

admit that they have problems. There is whole

1
 largely based on [Lau02], section 8.8.2.

range of euphemism that roughly mean the same

thing: challenges, things you find hard to deal with,

concerns, issues, things that could be improved, ...

Some managers get offended if you ask “why”, as

they are not used to be questioned about their

motives. If asking “why do you do this” doesn’t

work, you may ask “when do you do this” as a

substitute.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 10

Step 2. Defining the ideal solution

Armed with sufficient knowledge of what the problems are, we can start to think about a solution.

Usually it makes sense to do that in two steps. A realistic goal – the subject of step 3 – is constrained
by practical limitations. The purpose of this step is to find out what the client would like to achieve.

Way of thinking – What are the essential questions?

� What is the essential problem?

� What would be an ideal solution to this problem?

Approach – How to find answers to these questions?

If there is a single problem and everybody agrees that this is the problem that needs to be solved,

step 2 is easy. If, however, there are various issues and different stakeholders experience different

problems, this is not trivial. It has to be decided, somehow, what the essential problem is. In that case

you have to discuss it with the client or perhaps organise a focus group with different stakeholders

(see 4.5).

Product – What do you write down?

A brief text (maximum one page, preferably half a page) describing

• the essential problem,

• the proposed solution,

• a brief explanation about the motivation of the essential problem and the choices you made.

If there was a group session, you probably have a list of other problems and possible solutions. The

explanation should make clear why this problem was chosen as the essential problem.

Follow-up – What do you do with this document?

This is not an official document (achieving the ideal solution is not an objective of the project), but it

could be the most important page in the whole project. Check informally whether relevant

stakeholders can agree with it. If they can, there is agreement about the focus of the project.

If, on the other hand, it turns out that some stakeholders have serious troubles with the choice of the

essential problem or solution, you have achieved your first success! You have shown that the matter

is more complicated and delicate than the client thought, and identified a potentially fatal risk for the

project.

2.1 One essential problem

The goal of the project is to solve, in the best

possible way, the essential problem. The solution

may partially solve other problems as well, but the

priorities must be clear. If you have multiple goals,

all equally important, then sooner or later you will

face design decisions that cannot fully satisfy these

goals simultaneously and you’ll have to favour one

goal at the expense of another.

2.2 The client’s goal vs. the project goal

There is a difference between the external goal or

client’s goal (what the client wants to achieve, e.g.

increased sales) and the project goal (what the

project intends to deliver, e.g. a system to support

the sales process). The external goal provides a

motivation for the project goal.

2.3 Business solution vs. software solution

The external goal is always to find a solution to a

business problem (see the Z model in 0.3). The

project goal could be on the software level

(otherwise you weren’t asked for a requirements

analysis).

If the project goal is to come up with a software

solution specfication, you should spend some words

on the business solution to which your software

solution will contribute.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 11

Step 3. Defining a realistic solution

The purpose of this step is to define a realistic solution and to gain acceptance for it.

Way of thinking – What are the essential questions?

� What is a realistic solution?

� What needs to be done to get support for this solution?

� How can the migration to an improved situation be accomplished?

Approach – How to find answers to these questions?

There could be all kinds of reasons why the ideal solution is not achievable. Budget limitations are a

mundane but common example.

It is not always clear whether a solution is acceptable for various parties. If an important stakeholder

strongly objects to the solution, it is not a good solution (even though you may find his reasons

irrelevant). Acceptance can be increased by involving the right persons in the right way.

If difficult choices have to be made, they are for the client, not for you to make. But you can support

the client in making the right choice by providing clear alternatives with their consequences.

Issues to think about:

• Which factors determine the success of the project?

• Which resources are available for the project?

• What is the attitude (motivation, acceptance) of the intended users?

• Which resources (funds, courses, etc.,) are available for migration?

Product – What do you write down?

Write a realistic mission statement. Desired properties that will not be realized are to be listed as

exclusions.

If you think there could be problems with the migration to a new solution, it makes sense to make an

outline of a migration plan.

Follow-up – What do you do with this document?

The mission statement is a formal document, to be incorporated in the requirements specification.

Show it to all stakeholders (which can lead to minor changes) and make sure that it is approved by

the client.

3.1 Mission statement

There are various definitions of a mission

statement. Wieringa [Wie03, Ch. 5] describes the

mission statement according to Yourdon. We use a

slightly different format; the suggested solution

need not be limited to a computer system. The

system can contain people and procedures, and

need not even involve a computer system.

A mission statement describes the following points

• A short motivation

• System boundary (is it a computer system, or a

system that includes people around the

hardware/software)

• The goal of the system (which problem will be

solved)

• Exclusions (which problems will not be solved)

• How the problem will be solved

An explanation can be added as to why certain

issues are (not) treated. This explanation is not part

of the mission statement proper.

If different stakeholders have different interests, you

could formulate alternative mission statements, and

ask the client to make a choice. As stated in 2.1 a

project should pursue one prime goal. Having a

mission statement that is a compromise between

different goals is asking for trouble later in the

project.

The final version of the mission statement should be

known, understood, and accepted by all important

stakeholders. That doesn’t mean that stakeholders

agree about what they desire and what would be

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 12

ideal. It means that they agree that this is the

mission for this project.

Example of a mission statement

The following mission statement is taken from a

recent M.Sc. project. It has five paragraphs which

could be labelled: introduction / type of system /

goal / exclusions / solution. The external goal is

given in the first paragraph as a motivation for the

project goal in the third paragraph. The system

boundary is not stated explicitly, evidently(?) it is a

software system.

The purpose of each paragraph is clear, so there is

no need to include headers.

A problem to be solved in electronic commerce is

the specification of terms of delivery in such a

way that can it can be established beyond doubt

– if necessary, in court – what these terms were

at the time the contract was made. The E-Terms

consortium wishes to address this problem by

establishing an E-Terms repository. When a

business party submits terms to the repository,

the consortium guarantees that the applicable

terms can be retrieved unaltered by any

interested party at any future moment.

In this project [student] will develop a prototype

of an E-Terms repository.

The purpose of the prototype is to serve as a

proof of concept, aimed at showing the possibility

of creating a repository and functioning as a

guide for the development towards a final

version. Furthermore, the prototype will be used

in the external promotion of the concept to

potential users, submitters and developers. It

should serve both to increase the interest in the

E-Terms service and to gather relevant feedback

from interested parties.

Efficiency and reliability requirements envisaged

for the final product need not be met by the

prototype repository.

 [Some words about the different functions to be

supported by the E-terms die door de

repository.]

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 13

Step 4. Gathering requirements

The purpose of this step is to find out what people would desire the system to do, which demands

they have, and which constraints there are.

Way of thinking – What are the essential questions?

� Which kind of requirements are needed?

� How and where can I find these requirements?

� Which questions do I ask?

� Could I have missed any important requirements?

Approach – How to find answers to these questions?

A common way to find requirements is to interview people. If you did that in step 1, you may already

have collected some requirements. With a clear project goal and mission, it could happen that you

want more specific requirements from persons you talked to earlier.

A number of other techniques are listed below. Obviously, it depends on the context and the kind of

system which technique is most suitable, and which stakeholders to involve.

We make a distinction between business-level requirements and system-level requirements

(elaborated below in Section 4.1) System-level requirements describe what the system should do.

Business-level requirements describe which tasks should be supported by the system. Traditional

software engineering has a focus on system-level requirements. However, if the main challenge is to

find out how the efficiency of a task or an organisation can be improved, it could be worthwhile to

focus on the business-level requirements.

Product – What do you write down?

You have written notes of all the requirements you gathered and other relevant information that

people gave you.

Follow-up – What do you do with this document?

Writing an easily readable requirements specification, based on your notes, is still a lot of work. That

will be the subject of step 5.

4.1 Requirements at different levels

Consider an information system for the reception

desk at a hotel. It could have the following

requirements:

R1. The system shall allow the hotel to increase its

bookings with 15 % without adding reception

staff.

R2. The system will support the receptionist to

prepare for the arrival of a tourist bus.

R3. The system shall be able to record that a room

is occupied for repair in a specified period.

R4. The system shall record the data specified in

the Class diagram in appendix X.

We can make a distinction between business and

system and between problem and solution, as

illustrated in Figure 3. The requirements R1–R4

describe a business goal, business process, system

requirement and system design, respectively.

Figure 3 – requirements levels
2

2
 Astute readers will have noticed a difference between

figures 2 and 3. In the Z model in Figure 2, it was
suggested that the requirements specification, produced in
steps 4, 5, 6, provides a solution (bottom left corner). In
Figure 3, system requirements are stated as a problem
(bottom left corner). This paradox is caused by a

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 14

Most relevant are the business process and system

requirements – assuming that the focus of your

requirements specification is to make clear how a

proposed system can support an envisaged

business process. But we discuss each of them and

give them a name for easy reference.

• Goal-level requirements describe a business

problem, i.e., a goal that the client intends to

achieve. This is an external goal (see 2.2); the

supplier of the system can never guarantee that

goal will be achieved, hence it is not a project

goal. It could be useful to know the business

goals of the client (you want the client to be

happy with the delivered system), but goal-level

requirements are not usually part of a

requirement specification.

• Business-level requirements
3
 describe

business process: they deal with tasks to be

supported by the system – without being specific

about which system functions are needed to do

so. The normal check-in procedure in a hotel has

been designed for guests who come alone or in

small groups. If a bus with several dozens of

guests arrives, the reception will follow a different

procedure in which the administration is done in

advance, perhaps printing a list of guest names

and room numbers. Which particular solution is

to be chosen isn’t important at this stage. The

requirement in this example is that the system

allows the staff to handle the exceptional

situation in an appropriate manner.

• System-level requirements
4
 specify a software

problem, i.e. the desired behaviour of the

system: individual functions of the system

(functional requirements) and overall quality

properties of the system (quality requirements).

• Design-level requirements specify a software

solution, i.e., details about how a particular

function of the system is to be implemented.

These should be used sparingly in a

requirements specification, it is not meant to give

a detailed design of the system. But sometimes

problem and solution are hard to separate. A

class diagram is a good example: by specifying

the object classes and their relations, it becomes

difference in level of abstraction. Figure 2 takes the
perspective of the first iteration in the requirements life
cycle, steps 1, 2, 3. Defining how the system will behave
is, at that stage, a solution to the real-world problem that
needs to be solved. Figure 3 is takes the perspective of
later iterations of the life cycle: the requirements are
regarded as a problem statement, the solution is realizing
a system that meets these requirements. Problem and
solution are not absolute categories: some person’s
solution is another person’s problem. A solution at a
higher level is a problem at a lower level.
3
 Lauesen [Lau02] calls these “domain-level

requirements,” another term often found in the literature is
“user requirements.”
4
 Lauesen [Lau02] calls these “product-level

requirements.”

clearer which information can be stored in and

retrieved from the system.

In Software Engineering, the focus is on

technologically challenging projects, rather than

embedding the technology in an organizational

context. In that tradition, software requirements are

system-level requirements. In Software Engineering

handbooks, finding business-level requirements is

done in a separate, first phase of the software life

cycle, which they call system analysis or information

analysis.

In Information Systems, the biggest challenge in a

project is often to make sure that a system fits the

context in which it is to be deployed, rather than the

technical development of the system itself.

Therefore we have a broader view of requirements

analysis and explicitly include the business level.

System-level requirements tell us what the desired

properties of a system are. Business-level

requirements tell us why a system must have

certain properties.

4.2 Modeling the system vs.
modeling the system’s environment

Typically business-level requirements are about the

system’s environment, and system-level

requirements about the system itself. But the

system environment is not limited to the business

level. Systems usually have to exchange data with

other systems, which may cause requirements at

the system level and even at the design level.

A requirements specification should contain a

model of the environment, including other systems it

has to interface with. A context diagram (see, e.g.,

Lauesen [Lau02, section 3.2], Wieringa [Wie03]) is

a good high-level description of a system’s

environment.

4.3 Types of requirements

Requirements come in different types. In a

requirements specification you may find the

following categories:

• Constraints. These are global requirements that

restrict the way you produce the product. Budget

and delivery deadline are constraints. There can

also be technical constraints, e.g. that the

system should run on particular hardware or

interface with an existing legacy system.

Usually you are not at liberty to negotiate

changes to constraints.

• Data requirements. A requirements

specification could have a data model, specifying

the kind of data that have to be stored in the

system, e.g. in the form of a UML class diagram.

• Functional requirements. These describe the

functions of the system. This can be on the

system level or on the business level. In the latter

case, functional requirements describe the tasks

to be supported by the system.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 15

• Quality requirements, also called non-

functional requirements. These describe

quality properties of the system as a whole, see

4.4 below. Not all properties are relevant for

each system.

Many examples of these types of requirements are

given by Lauesen [Lau02].

4.4 Quality factors

Different sources give different classications for

quality factors, but they usually overlap. ISO 9126

distinguishes

• Functionality (accuracy, security, interoperability,

suitability, compliance)

• Reliability (maturity, fault tolerance,

recoverability)

• Usability

• Efficiency

• Maintainability (testability, changeability,

analyzability, stability)

• Portability (adaptability, installability,

conformance, replaceability)

For large, safety-critical systems there could be

requirments for all the second-level quality factors

mentioned in parentheses. Probably you need to

address only the main categories.

Usually there are trade-offs between quality factors.

Increasing the security may decrease the usability

of the system, and reversed.

In the initial stages of requirements elicitation, it is

very difficult to get measurable quality

requirements. What you really want to know,

initially, is the relative importance of various quality

factors for the project you’re working for. Is security

a really big issue, or is it only marginally relevant? If

the system would be down for half a day, what

would be the consequences for the customer?

For quality factors that really matter, you should try,

later on, to get measurable requirements – see 4.7:

fit criteria – otherwise there is no way of knowing

whether the system, when it is delivered, meets the

requirements.

4.5 Priorities

In the process of requirements gathering, you want

to get an idea how important the various

requirements are. It is possible that not all the

demands and desires can be fulfilled, so it useful to

know what could eventually be dropped. At a later

stage (step 6), when there is a complete list of

requirements, priorities can be ranked and

negotiated, if necessary. At this stage, you want a

first indication.

MoSCoW

For a rough indication you can use the so-called

MoSCoW classification:

• Must: essential requirements, the system must

meet these

• Should: requirements that the system should

meet, if possible

• Could: nice features, that could be included if it

doesn’t take too much time and effort

• Won’t: exclusions, i.e., features that some

stakeholders would consider reasonable

requirements, but, for some reason or other, will

not be included in the system

Customer satisfaction and dissatisfaction

The Volere method [RR99] suggests estimating, on

a scale of 1 to 5, customer satisfaction and

dissatisfaction.

• Customer satisfaction is a measure of how

happy the client will be if you successfully deliver

an implementation of the requirement.

• Customer dissatisfaction is a measure of how

unhappy the client will be if you do not

successfully deliver this requirement.

Customer satisfaction and dissatisfaction need not
be each other’s inverse. For example: a very nice
feature in the “could” category could make the client
really happy (satisfaction = 5), but, since it’s not
necessary for solving the essential problem, he is
not going to be deeply disappointed if it doesn’t
materialize (dissatisfaction = 3). Another example: If
a system is supposed to be online 24/7, availability
is taken for granted (satisfaction = 3), but poor
availability is problematic (dissatisfaction 5).

It is generally a good idea to ask customers for

(dis)satisfaction rates.

4.6 The Requirements Shell

In the Volere method [RR99], Suzanne and James

Robertson give a template to be filled in for each

requirement. They call it the Requirements Shell. It

is suggested that you carry cardboard copies of the

template with you when go around gathering

requirements. See Appendix C.

4.7 Fit criteria

The Volere Requirements Shell template makes a

distinction between the description of a requirement

(what you want) and the fit criterion (how to

determine whether what you want has been

achieved). A requirement with a fit criterion is

measurable: there is a way to determine objectively

whether the requirement is satisfied by a given

product.

For data and functional requirements this is not too

difficult; if the requirement is complete and

unambiguous there is no room for discussion

whether a particular solution does or does not

satisfy the requirement.

Quality requirements are usually harder in this

respect. You may have gathered some

requirements that have a description but as yet no

fit criterion. E.g.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 16

The system must respond [...] fast.

This is a clear desire, but not measurable. A fit

criterion should tell precisely how fast.

The system must respond [...] within 2 seconds

is clear enough. However, is it necessary to

guarantee that all responses are within 2 seconds

and, say, 2.2 seconds during peak load is not

acceptable, even if this would greatly increase the

cost of the system?

A typical form for such a requirement is

The system must respond [...] within 2 seconds

in 90 % of the cases and always within 5

seconds.

This is a usual form for such requirements and the

fit criterion is okay. Yet, you could ask yourself

wether these values are arbitrary (in which case

other values can be negotiated if these would cause

problems) or derived from some specific purpose.

Rationale is another slot in the requirements shell. If

you get to know why response time is an issue, but

the proper values cannot be estimated right now,

you should at least capture the rationale, e.g.

The system must respond [...] not slower than

comparable systems.

This has no proper fit criterion yet, because it isn’t

defined what comparable systems are, but for the

time being it expresses approprately what is

desired.

Another possibility is to give a template for a fit

criterion and leave it to the system

provider/designer to suggest a reasonable value:

The system must respond [...] within __ seconds

in __% of the cases and always within __

seconds.

For a response time requirement we know at least

that time is the dimension in which a fit criterion has

to be specified. For some other quality requirements

there is not even an obvious choice for the

dimension in which quality can be measured.

Usability

Usability is one of the hardest things to quantify.

Lauesen [Lau02, Chapter 6.7] gives 9 different

ways to specify measurable usability requirements.

Some examples:

U1. Novice users shall perform tasks Q and R in 15

minutes. Experienced users complete tasks Q,

R, and S in 2 minutes.

U2. 80 % of the users shall find the system easy to

learn. 60 % shall recomment it to others.

U3. Three prototype versions shall be made and

usability tested during design.

4.8 Requirements elicitation vs.
requirements creation

Finding requirements is traditionally called

“elicitation”, which means “uncovering”. Implicitly it

is assumed that there are some objective needs,

and it is the task of the requirements engineer to

find out what those needs are. Gause and

Weinberg [GW89] made clear that in most cases

requirements are not elicited but created. The

customer usually hasn’t thought about the details,

and the requirements analysis process may help

him to explore possibilities and/or force him to

decide what he wants.

In requirements elicitation, you are like a scientist

studying the behaviour of planets: you observe what

happens but you do not influence it. Requirements

elicitation is simply writing down the requirements

as they are told to you by stakeholders. In

requirements creation, on the other hand, you work

with the customer to identify the requirements. You

join the customer in the search for goals to achieve

and problems to solve. In the first case, the

customer knows what the requirements are and you

help him or her to write these down. In the second

case, the customer does not know what the

requirements are and you work with him or her to

determine what they are. Requirements elicitation in

its pure form does not exist.

4.9 Techniques for requirements gathering

Common techniques include (but are not limited to)

the following. Lauesen [Lau02] gives some more

details. Appendix B gives a longer list with further

references.

• Interviewing. (See step 1)

• Documents. If the purpose of a project is to

replace an existing system, the documentation of

that system can give useful information, e.g. data

models. Also, if you studied documents in step 1,

for finding the goals and background of the

project, these may hint to requirements. It is

always useful to cross-check what you read in

documents with what you hear in interviews.

In an IT-intensive organisation there could be

architecture documents with guidelines and

constraints for individual applications.

• Observation. The way people work is not

necessarily the same as the way people think

they work or the way they describe how they

work. To be a good observer, you need some

skills (not taught in our courses). See Beyer &

Holtzblatt [BH98].

• Brainstorming. You should have experience

with brainstorms if you want to moderate one.

• Focus groups. In a focus group, representatives

of different stakeholder groups come together to

identify problems, needs and possible solutions.

Lauesen [Lau02, section 8.4] describes how to

organize focus groups.

If you get people to attend a focus group, they

are motivated to discuss problems, requirements,

and solutions, and you should allow for that. You

cannot limit a focus group to a single step of our

life cycle, but you can emphasise one step of our

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 17

life cycle. There is always some overlap with

other steps.

• Prototyping. Prototypes can help to imagine

what the system could be like and thus to be

more concrete about what they (don’t) want. A

prototype is typically a mock-up, in which the

functionality is faked or absent. For a very first

impression, a sketch on paper will do as well.

• Study similar companies.

4.10 Requirements elicitation for custom-
tailored or COTS systems

Most requirements analysis methods deal with the

case that a new system has to be developed, for

which requirements need to be drawn up. In many

cases, however, there is no need to develop a new

system – you can buy one. Software that you can

readily buy is called common off-the-shelf (COTS)

software.

When a COTS solution is sought, some steps in the

requirements process differ from our general

outline.

Another possibility is that a commercial system is

bought, but more work (fine-tuning, interfacing with

other systems) needs to be done in the operation

environment. This is typically the case with ERP

systems. If there is a choice of different suppliers,

this would call for a tender process.

After the project goals and mission are clear, some

alternatives to are

• Tender process. You draw up a requirements

specification of what is needed, and ask different

vendors whether they can supply this, and at

what price.

• COTS selection. If different companies sell

software packages with the same kind of service,

you have to select which one is the most

suitable. Chances are that the functionality of

these packages is rather similar (if they wouldn’t

satisfy the market requirements, i.e. the functions

that such a package ought to have, they wouldn’t

be in business). There is usually more difference

in quality issues (e.g. how good is their service?).

Hence the selection should pay due attention to

these.

If your client is a vendor of COTS software, some of

the items in these guidelines have to be

reinterpreted accordingly. It is important as ever that

the product satisfies the customer. The client will be

satisfied if the customer wants to buy it, but he is

not the most authoritative source for the customer’s

desires. See Cooper [Coo99] for learning the user’s

desires in COTS software production.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 18

Step 5. Writing a requirements specification

The purpose of this step is to write a draft version of the requirements specification. Some

requirements may change, as a result of discussing the draft with relevant persons – but in order to

engage in such discussions, you need a good document.

There are a number of different things to consider when you write the first full version of your

requirements specification. This section is split into four subsections, treating separate concerns:

5.1 What should be the contents of a requirements specification,

5.2 Specification techniques,

5.3 Readability and linguistic issues,

5.4 Quality check.

Product – What do you write down?

A complete, well-structured, readable requirements specification.

Follow-up – What do you do with this document?

Send this document to relevant stakeholders. You may ask them for written comments or discuss the

document with them. The latter is more work but yields better results.

5.1. Contents of a requirements specification

Way of thinking – What are the essential questions?

� Which subjects should be covered in the requirements specification?

� How to structure the requirements specification?

Approach – How to find answers to these questions?

In addition to a list of requirements, a requirements specification gives some information about the

reasons for the project, the context of the system, and any other issue for which you find it relevant to

provide written details. Examples of real requirements specifications are given by Lauesen’s [Lau02],

Chapters 11–15. A detailed, generic table of contents for a requirements specification from the Volere

method [RR99] is given in Appendix D. You can use it as a checklist of things you’d like to discuss in

your requirements specification. You don’t want to cover all of these (unless you’re doing

requirements for a multi-million Euro project), so you should think about what is relevant for your

project.

5.1.1 Free form or template?

Some organizations that do a lot of software

projects have their own template for requirements

specifications, with a fixed table of contents. Using

such a standardized format has the advantage that

it is easier to find particular pieces of information (if

both the writer and the reader are familiar with the

standard). The disadvantage is that the prescribed

table of contents is probably not the most suitable

for the particular project you’re working on. Kovitz

[Kov98] advocates the principle “form follows

content.” If you know what you want to say, then

choose the structure that is best suited to express

what you want to say.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 19

5.2. Specification techniques

Way of thinking – What are the essential questions?

� Which parts/aspects of the environment and the desired solution need to be specified in some

detail?

� What is the most appropriate specification technique in this context?

Approach – How to find answers to these questions?

Diagrams are more precise and less ambiguous than words. It is not uncommon to include use case

diagrams in the functional requirements and to use a class diagram for specifying data requirements
for a system. It could make sense to use an entity-relationship diagram to specify the environment of

the system and a context-diagram to specify the interaction of the system with its environment.

What is useful depends on the project – and to a certain extent on the requirements analyst.

Techniques you are familiar with work better (if they are appropriate) than techniques you have never

used before. The courses Information Systems (212010) and Requirements Engineering (232081)

provide enough technical background for bachelor students. Master students Business Information

Technology could also apply techniques from Specification of Information Systems (233030).

5.3. Readability and linguistic issues

Way of thinking – What are the essential questions?

� Who is my target audience? Can they understand it?

� Can the presentation be improved?

� Can the text be shortened?

Approach – How to find answers to these questions?

The purpose of the document you are writing is to communicate its contents to other interested

parties. In order to achieve that purpose, it pays off to make an effort to make the document well-

written and well-structured. Unfortunately, the form that is easiest accessible for the target audience is

not the easiest one to write. Some tips are given below.

5.3.1 Keep it short

5

Many requirements specifications are longer than

necessary. This has several disadvantages. Firstly,

the readers may not read the whole document. If it’s

long, people are inclined to browse through the

document, rather than read it. Secondly, it is more

difficult to find back some piece of text. This makes

it harder to use it as a reference. Thirdly, a longer

text is more difficult to comprehend than a short

one. Unfortunately, writing a short text is more

difficult than writing a long text.

5
 Sections 5.3.1-3 are primarily based on Kovitz [Kov98]

and translated from a version in Dutch compiled by
Emile de Maat.

Repetition

A prime way to make a text longer than needed is to

repeat information. Occasionally it is useful, to

repeat text, e.g. when you give an overview or an

example. Most other repetitions are not needed and

can be discarded.

Metatext

Metatext is text about the text. Again, in some

cases this is useful. It makes sense, for example, to

explain the structure of the document in the

introduction. A typical example of superfluous

metatext: “In this chapter the user interface

requirements are given” as introductory statement

in a chapter “User interface requirements”.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 20

Generalities

Generalities are pieces of text that are not specific

for the requirements that you are writing, but are

more generally applicable. Consider, for example, a

requirement

Each input screen shall fit entirely within the

window and shall use as little scrolling as

possible to display and/or retrieve information.

A good user interface designers knows this and will

try to apply it. A requirements specification is not a

proper place to teach others about good user

interface design.

Useless additions

Sometimes authors add extra text that carries no

additional information. They do so, apparently, for

fear of short texts – perhaps they are afraid that

somebody will judge these texts as insufficient

because they are short. For example:

The system should be user-friendly and have a

simple user interface

The second part is redundant.

Another useless addition is upgrading a short piece

of text to a separate section. E.g.

3.3 Performance

Downtime should be limited to one day per year.

If this is all there is in Section 3.3, it could have

been merged with another section.

The use of a template with a standard table of

contents leads to sections like 3.3 above or, even

worse,

3.4 Hardware constraints

There are no hardware constraints

5.3.2 Keep it simple

Requirements specifications often are hard to

understand. Usually this is not because the

requirements are inherently complicated, they are

just specified in a complicated way. We discuss

some causes for this.

Use short sentences

Many authors write too long sentences. This is often

caused by the desire to provide complete and

precise information. It is good to be aware,

however, that all this information does not have to

be captured in a single sentence. Long sentences

can be made more understandable by dividing them

into smaller sentences. For example

In this document the requirements are given for a

system that Wertor will design for Myriad.

This not a really complicated sentence. But it could

be replaced by

Wertor will design a system for Myriad. This

document gives the requirements for this system.

Use clear and consistent terminology

When you elicit requirements, different persons may

use different terms to describe the same concept.

This can easily be carried over into the

requirements specification, but it is confusing for the

reader. It pays to make the extra effort to ensure

consistent terminology. Make a glossary and make

sure that the text is consistent with your glossary.

Also, the author may use a term that is known to his

professional colleagues (or even worse, invent a

new term) but not understood by the readers of the

document. If you must use an unfamiliar term, make

sure that you define it.

Avoid overspecification

Requirements should be complete and

unambiguous. This is generally true, but it can be

carried too far. Consider the following requirement

for an inventory system

Every object in the store that is meant for sale

has a unique identification code

The store contains objects that are not for sale:

shelves, fork-lift trucks, etc. These do not need a

unique ID in the inventory system, but in the domain

of inventory systems that is quite obvious. Hence

the following, easier requirement will do

Every object in the store has a unique

identification code

5.3.3 Structuring text

The structure of a document can contribute a lot to

its readability. Structure tells the reader what to

expect where, and helps him understanding the

text. In a well-structured document it is easy to find

back pieces of information. This makes it suitable

as a reference document.

Structuring a document is done in three steps

1. Make a list of all subjects to be treated

2. Group these into coherent groups

3. Decide upon an order in which to present them.

Most difficult is step 2. There are different ways to

group subjects, and usually each of them poses

some problem for presenting them in a linear order.

Choose the grouping that seems most suitable and

solve the ordering problems by appropriate cross-

references. Make sure that you always treat one

subject at the time.

Examples of different structuring principles:

• Group requirements by type of requirement

• Group requirements by stakeholder

• Group requirements by subsystem.

• Group requirements by priority, first state the

“must”, then the “should”

• Order the subjects from general to specific

• Order the subjects from important to unimportant

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 21

• Order the subjects from easy to difficult, so that

the reader can increase his understanding along

the way.

• and so on ...

Whatever structure you choose, it is important that

you support it in text and lay-out.

5.3.4 Presenting information

Whatever specification techniques you have used,

there will be a lot of natural language in the

document. If this contains factual information, it is

advisable to present this in the form of lists and

tables. Lists offer more structure, and people can

use them as checklists.

A table is in fact a two-dimensional list. Information

suitable for a table is hard to present in flat text.

Tables are easier to read, but also easier to write.

5.4. Quality check

Way of thinking – What are the essential questions?

� Are all requirements unambiguous and complete?

� Is there a fit criterion for each requirement?

� Do we know for each requirement why it is in the specification?

� Are there conflicting requirements?

� Is the document as a whole properly finished?

Approach – How to find answers to these questions?

Below you find some quality criteria that should be applied to each requirement to determine whether

it is a good requirement.

Finally, before you deliver the document, make sure that there are no loose ends, that cross-

references are correct and that spelling errors, typos, and word processing errors have been

eliminated.

5.4.1 Quality criteria for individual

requirements

Robertson and Robertson [RR99] say that any

requirement that does not satisfy all the quality

criteria is, at best, a potential requirement. In the

final version of the specification there should not be

a single requirement of insufficient quality. But what

we are working on here is still a draft version. For a

draft version, it could make sense to include

potential requirements – with an annotation of the

defects yet to be solved – if these requirements

were raised and should not be forgotten.

Complete?

In step 4.6 we introduced Volere’s Requirements

Shell [RR99], a template to be filled in for each

requirement, see Appendix C. Are any components

for the template not filled in? Perhaps there is

nothing to fill in. For example, if there are no

supporting materials, then the Shell should say

“Supporting materials: None” (rather than leaving it

blank). Other things might not have been clear at

the time the requirement was elicited. For example,

at the moment you don’t know about dependencies

or conflicts. Or perhaps you would need the

customer to assess (dis)satisfaction values but you

didn’t have a chance to talk to him after the

requirement was raised. It is likely that you do not

yet have a fit criterion for each requirement.

If some of the questions cannot be answered right

now, we have to live with that for the time being.

You could indicate in the document specifically to

which questions you still need answers. What you

should never do is guessing the answers in order to

complete the specification.

Precise, unambiguous and meaningful to all
stakeholders?

Check whether the requirements can be

misunderstood and interpreted differently from what

you wanted to say.

Could possible ambiguity be reduced by stating

more precisely what you mean? For example

“Supporting Material: Information plan of

company X”

is unambiguous only if there is a single version of

this information plan. Therefore

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 22

“Supporting Material: Information plan of

company X d.d. 22 December 2005”

is better.

Consistent terminology (see 5.3.2) is a precondition

for precise, unambiguous and meaningful

requirements.

Fit criterion?

Does each requirement has a fit criterion (see 4.7),

i.e. it is possible, when the system will be delivered,

to establish objectively whether the requirement has

been satisfied?

Relevant to the system’s purpose?

Sometimes people get great ideas about what a

system could also do. In the mission statement we

have clearly laid down the purpose of the system. If

a requirement does not contribute to the purpose, it

is in the nice-to-have (“could”) category. If it is

included in the requirements specification, it must

be made clear that it is not an essential

requirement.

Unnecessary requirements are typically those with

high customer satisfaction rating and low customer

dissatisfaction rating.

Viable within constraints?

Does the project have the time and budget to satisfy

the requirement? If not, it’s not a good requirement,

and should be discarded. (Or the time and budget

should be adapted. If neither is acceptable the

project should probably be abandoned!)

5.4.2 Consistency across requirements

In 5.4.1 and 5.4.2 we have scrutinized each

requirement individually. Similar questions can be

asked about the whole set of requirements. There

could be

• redundant requirements;

• incompatible requirements (i.e. it is not possible

to satisfy all at the same time);

• missing requirements.

Obviously there is no fail-safe way to discover

missing requirements. An important way to get

these is to get feedback from relevant stakeholders

on the draft requirements specfication (see 6.1,

validation). However, there are some consistency

checks that you can do before the draft specification

is finalized.

All tasks / use cases covered?

If there are task descriptions or use cases for the

system, check that all actions have been covered.

System administration and support covered?

Most computer systems offer two kinds of functions:

primary functions that serve the purpose of the

system (users can do something useful) and

secondary functions to allow the system to be

operated (e.g. adding new users, maintaining the

system’s data). Are these secondary functions

covered?

CRUD check

If there is a data model, check whether each

attribute is Created and Read, and, if applicable,

can be Updated and Deleted.

5.4.3 Have you finalized the document?

There are various natural roles that people can

have when they work in a team (called Belbin roles,

after the person who discovered them). Experience

shows that the role completer/finisher is poorly

represented among our students. Before submitting

a document, such a person would scrutinize every

detail to make sure that

• everything is numbered correctly,

• cross-references are correct,

• figures and tables appear in the right place,

• citations and references are marked

appropriately in the text

• literature references in the reference section are

complete,

• the lay-out is consistent,

• the names of the author(s) and other contributors

are mentioned appropriately, and

• the document carries the right date and version

number

If you have no such person on your team, or if you

are working alone, you should force yourself to do

this. This gives the document a professional

appearance.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 23

Step 6. Validating a requirements spec

The purpose of this step it to ensure that a solution that satisfies the requirement specification

achieves the goals laid down in the mission statement.

Way of thinking – What are the essential questions?

� Does the specification reflect the desires and needs of the stakeholders?

� Do the stakeholders agree on the priorities, when there are conflicting requirements or when not

all requirements can be met?

� Is it technically possible to meet the requirements?

� Which requirements have not passed the quality test?

Approach – How to find answers to these questions?

Validation means that you make sure that you have specified the right solution, i.e. that a product

satisfying these requirements will meet the goal that was laid down in the mission statement. The

persons who can decide that are the stakeholders, not the requirements analyst. (And In order to

decide that, they have to be able to understand the draft specification – that is why we spent so much

effort on step 5).

In situations where a complex and technically challenging system is proposed, it is wise to consult the

software architects who will be involved in the design. The can warn you about requirements that are

hard or impossible to realize.

If there are conflicting requirements, or if not all the requirements can be met, tough decisions have to

be made. There are two things you can do: engage some stakeholders in ranking essential

requirements according to importance, or ask the client to decide (or one after the other).

At the same time, when you are going back to the stakeholders with the draft requirements

specification, this could be an opportunity to elicit missing elements of the requirements shell, e.g. fit

criteria. You can put gentle pressure on them by explaining that, ultimately, an incomplete

requirement cannot be included in the final specification.

Product –What do you write down?

The final version of the requirements specification.

Follow-up – what do you do with this document?

Deliver the specification. The requirements analysis has been completed.

6.1 Requirements validation

There are several way in which you can get

feetback on the draft requirements specification.

You can circulate the specification to the

stakeholders and discuss it with each stakeholder

individually, or you can organise a validation

meeting.

If you want to know what people really think about

the requirements specification, you must make sure

that they understand it. That is why it is worthwhile

to make the draft spec a complete, legible,

accessible document, rather than circulating a

premature version.

If a prototype was made for requirements gathering,

you could show (an updated version of) the

prototype in addition to the specification document.

Validation meeting

At a validation meeting, a selection of relevant

stakeholders is present. The participants at this

meeting must have enough knowledge of the

application domain and the context in which the

system is going to be used (the organisation for

which the system is developed). Also at least one

end user must be present.

The purpose of a validation meeting is to draw up a

list of problems with the requirements specification,

and possibly an agreed list of actions to address

these problems. (It is not the purpose of the

meeting to solve the problems here and now).

See Kotonya and Sommerville [KS89, Chapter 4]

for a more elaborate description of validation

meetings.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 24

6.2 Requirements prioritization

Sometimes it’s impossible to satisfy all the

requirements. A finite budget is the most mundane

and the most frequent reason to scale down your

desires. But it could be the case that requirements

are at odds with each other. Higher security may

imply lower user-friendliness, and reversed. Also, if

you buy an existing system or a COTS product, you

have to choose from what is available, which may

not be exactly what you want.

Section 4.5 discussed the MoSCoW classification

and customer (dis)satisfaction values. These are

absolute values, to give a first indication of what is

important. When it comes to making tough

decisions – what to discard, or to postpone to a

future release – absolute values aren’t good enough

(usually too many things are important).

What is needed, then, is to assign priorities. These

are relative values: is a requirement A more

important or less important than requirement B?

In order to reach an optimal decision, one should

• establish relative values for all requirements

• estimate the cost of implementing the

requirement

A formal method for this, based on the Analytic

Hierarchy Process (AHP), is presented by Karlsson

and Ryan [KR97].

Such a method yields an optimal decision, if the

costs estimates are accurate and if there is no

disagreement among the stakeholders (or if only the

prime stakeholder, the client, matters).

When different stakeholders with different desires

are important to a project, there is a political

element in prioritizing requirements. When some

get all their priorities granted, and others get none,

the project is in for trouble.

Informal ways to assign priorities include

• Ask persons to assign a total of 100 points to

different requirements in any way they want.

(could be done by different stakeholder

representatives as a starting point for a meeting

to decide the priorities)

• Get a meeting of stakeholder representatives to

agree on the 10 most important requirements. (If

politics are really troublesome this could be done

without further ranking among the top 10).

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 25

Step 7. Maintaining the requirements specification

The purpose of this step is to ensure that in all steps of the system’s life cycle there is an accurate

requirements specification for the current version of the system.

Way of thinking – what are the essential questions?

� How do you manage new requirements that arise during system development?

� How do you maintain requirements traceability and keep the requirements specification consistent

when requirements change?

Approach – How to find answers to these questions?

In nearly all cases where students do a requirements analysis, the students are no longer involved in

the later stages of project development. Chances are that you will not be asked to maintain the

requirements specification that you delivered. Nevertheless we briefly mention some issues,

completing the requirements specification life cycle.

7.1 Requirements evolution

In the ideal case, all stakeholders agree that your

final requirements specification accurately descibes

their requirements for the new system – at this

moment. There are many reasons why

requirements may change in the future:

• Testing and operation of the system may reveal

defects. That is, some essential requirements

were missed after all.

• Stakeholders may come up with new desires for

additional features.

• The world changes, which my lead to new

business requirements, or may require the

system to interact with new (versions of) systems

in its environment

While the system is still under development, some

care should be taken in allowing new requirements

to come up. Goldplating is a well-known software

engineering risk: additional requirements continue

to be added, where each requirement in itself may

seem harmless, but the overall result is that it

becomes impossible to build the system on time

and within budget. A related risk is feature creep: at

little extra effort (so it seems) a function can be

added that would be nice to have. This may lead to

a system with more capabilities than required – but

at a later date and with a higher cost.

On the other hand, errors will be found and

unforeseen circumstances may demand new

requirements. In order to balance these concerns,

any large project will have an explicit procedure for

handling change requests.

7.2 Traceability

Traceability supports the maintenance of a system.

The (evolving) requirements specification should on

the one hand reflect the business needs and

stakeholders’ demands, and on the other hand

specify the system’s behaviour. This leads to 4

traceability relations:

• From business/stakeholders to requirements: It

should be verified that the business goals of the

system are covered. Essentially, the

requirements should enable the mission

statement (see 3.1) to be fulfilled.

• From requirements to business/stakeholders: For

each requirement, there should be a business

reason why the requirement is included in the

specification (otherwise the requirement should

be deleted).

• From requirements to system: For each

requirement it should be known which pieces of

code / parts of the system make sure that the

requirement is satisfied

• From system to requirements: For each piece of

code / part of the system it should be clear which

requirements depend on it. (otherwise, it serves

no purpose).

Hence, if a change is proposed, it can be easily

determined which parts of the system are affected

and what the effort will be to implement the change.

For any sizeable project, a specialzed tool, e.g.

DOORS
6
, is needed for implementing traceability.

Currently, traceability is not used a lot in practice,

because it brings additional cost in the development

phase, whereas most of the savings take place in

the maintenance phase. (Note that on average

maintenance accounts for 70 % of the total software

life cycle costs). However, in future it may become a

standard practice in software engineering, due to

new legislation. Quality standards like the higher

CMM levels enforce traceability.

6
 http://www.telelogic.com/corp/products/doors/

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 26

Glossary7

Client. The person who pays for the development of the system. (see also customer)

Constraint. A global requirement that restricts the way the system can be produced. The project

budget is an example of a constraint. Usually constraint are not subject to negotiation.

Customer. The person who buys the system. This could be the same as the client. If the product is to

be sold, the customer and client are different.

Data requirement. A specification of the kind of data and the relation between data elements to be

stored in the system.

Business-level requirement. A description of a task to be supported by the system, without

specifying what exactly the system will do.

External goal or Client’s goal. Something the client hopes to achieve as a result of the project. The

project carries no responsibility for an external goal. Nevertheless, if the external goal will not be
achieved, the client may consider the project a failure. (see also project goal)

Fit criterion. A quantification or measurement of a requirement such that it is possible to determine

whether a system satisfies this requirement.

Functional requirement. Something that the system must do, a description of the behaviour of a

system

Goal. See external goal and project goal.

Migration. The path of change leading from the current situation to a new situation, in which a new

system is deployed and effectively used.

Problem. A difference between what is experienced and what is desired.

Project. Throughout the text it is assumed that there is a project to deliver some system, and you are

doing the requirements analysis for this project.

Project goal. Something that should be realized by the project (and for which the project manager

can be held responsible). (see also external goal)

System-level requirement. A desired property of the system. In previous times, requirements was

considered to be equivalent with system-level requirements.

Quality requirement. An overall property of the system, describing how well the system performs its

functions.

Requirement. See contraint, data requirement, functional requirement, quality requirement.

Requirements process. The part of system development in which people attempt to discover what is

desired.

Solution. A way to reduce a problem.

Stakeholder. Someone who gains or loses something (could be functionality,revenue, status,

compliance with rules, and so on) as a result of that project.

7
 Some definitions are taken directly from other sources ([AR04], [GW89], [Lau02], [RR99]). References are given where a term

is introduced in the text.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 27

References

[BCN92] C. Batini. S. Ceri and S.B. Navathe (1992). Database Design: An Entity-Relationship
Approach. Benjamin/Cummings.

[Ale03] I. Alexander. Stakeholders – Who is Your System For?
http://easyweb.easynet.co.uk/%7Eiany/consultancy/stakeholders/stakeholders.htm

[AR04] I. Alexander, S. Robertson (2004). Understanding Project Sociology by Modeling
Stakeholders. IEEE Software, January/February 2004.

[Cro89] N. Cross. (1989). Engineering Design Methods. Wiley, Chichester, UK.

[Che81] P.B. Checkland (1981). Systems Thinking, Systems Practice. Wiley.

[BH98] H. Beyer and K. Holtzblatt (1998). Contextual design: Defining Customer-Centered
Systems. Morgan Kaufmann.

[Coo99] A. Cooper (1999). The inmates are running the asylum. Macmillan Computer Publishing,
Indianapolis, IN.

[GW89] D.C. Gause, G.M. Weinberg (1989). Exploring Requirements: Quality Before Design. Dorset
House, New York, NY.

[HC88] J.R. Hause, D. Clausing (1988). The house of quality. Harvard Business Review, 66(3), 63–
73.

[KK92] K.E. Kendall and J.E. Kendall (1992). Systems Analysis and Design. Second
edition.Prentice-Hall.

[KR97] J. Karlsson, K. Ryan. A Cost-Value Approach for Prioritizing Requirements. IEEE Software
14(5), 67–74.

[KS98] G .Kotonya and I. Sommerville (1998). Requirements Engineering. Wiley, Chichester, UK.

[Kov98] B.L. Kovitz (1999). Practical Software Requirements: A Manual of Content and Style.
Manning Publications, Greenwich, CT.

[Lau98] S. Lauesen (1988).Software Requirements: Styles and Techniques. Samfundslitteratur,
Frederiksberg, Denemarken.

[Lau02] S. Lauesen (2002). Software Requirements: Styles and Techniques. Addison-Wesley,
Harlow, UK.

[Lun81] M. Lundeberg, G. Goldkuhl and A. Nilsson (1981). Information Systems Development: A
Systematic Approach. Prentice-Hall, Englewood Cliffs, NJ.

[Mac96] L. Macaulay (1996). Requirements Engineering. Springer Verlag, New York, NY.

[RE95] N.F.M. Roozenburg and J. Eekels (1995) Product design: Fundamentals and Methods.
Wiley, Chichester, UK.

[Ret94] M. Rettig (1994). Prototyping for tiny fingers. Communications of the ACM, 37(4), 21–27.

[RR99] S. Robertson, J. Robertson (1999). Mastering the Requirements Process. Addison-Wesley,
Harlow, UK.

[Wie03] R.J. Wieringa (2003). Design Methods for Reactive Systems: Youdon, Statemate, and the
UML. Morgan Kaufmann Publishers, San Francisco, CA.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 28

Appendix A. Context-free questions

When you first enter an organization for which you

are to do requirements work you may be

overwhelmed by the number of potentially relevant

people, departments, systems, goals and problems.

This appendix lists some simple questions that you

can always start with. They are called “context-free”

because they apply to all kinds of problems,

independent of the particular problem context. The

following list is largely from Gause and Weinberg

[GW89]. The problem identification and analysis

questions are from ISAC [Lun81].

The business

• What kind of business is this?

• What is the structure of the business?

• Which departments of the business are involved

in the system?

• What are the mission and goals of the business

and its relevant departments?

• Are there any related projects?

Problems

• What are the problems?

• For each problem:

• What is the real reason for wanting to solve

this problem?

• Can a solution to this problem be obtained

elsewhere?

• Which organizational goal is served by solving

this problem?

• How bad is the problem? (Quantify if possible)

• How urgent is it?

Stakeholders

• Who are the stakeholders?

• For each stakeholder:

• What is his/her relation to the system?

• What are the responsibility relations between

the stakeholders?

• Who is responsible for improving the system?

• Is management committed to improving the

system?

Problem analysis

• Which stakeholders have which problems?

• For each stakeholder/problem combination:

• How much is it worth to this stakeholder to

solve the problem?

• How bad is it for the stakeholder if the

problem is not solved?

• How urgently should this problem be solved?

• How bad is it if this problem is solved one year

later?

• What is the trade-off between time and value?

The current system

• Who is using the current system and in support

of which business activity?

• What problems are solved by the current

system? For whom?

• What problems are introduced by the current

system? For whom?

• Does the system fit into the business strategy?

• Is the system mission-critical?

• How bad is it if the system breaks down?

• Does the system interface with legacy systems?

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 29

Appendix B. Requirements elicitation techniques

During requirements work, you must find the goals,

desires and wishes of the stakeholders. This

appendix lists some techniques that you can use for

this.

It is important to distinguish requirements elicitation

from requirements creation.

Finding out about current environment and

its goals, and about the current system.

The following techniques are useful for fact-finding.

They are closer to elicitation than to creation.

• Interviews. Asking stakeholders what they

currently do and how they would like to change

this. Kendall and Kendall [KK92] give a useful

introduction to interview techniques for

information analysis.

• Observation of current work. Observing what

stakeholders actually do, as opposed to what

they say they do. Beyer and Holtzblatt [BH98]

give an excellent survey of models to make when

observing stakeholders at work (models of flow,

sequence, artifacts, culture and the physical

situation), how to make them and how to create

requirements from them.

• Participation in current work to actually

experience what the current environment does.

There is no literature on this: Just join the

stakeholders in doing their work. Take your time

doing this.

• Questionnaires. Sending out forms with

questions to stakeholders about the current

environment. Kendall and Kendall [KK92] give a

useful introduction to the construction of

questionnaires for information analysis.

• Study current system documentation. There is

no literature on this. Brace yourself to digest a

mountain of information.

• Study current forms (paper forms, screen

forms). Analyzing forms in use by the current

system to discover data structures and work

procedures hidden in them. Batini, Ceri and

Navathe [BCN92] give a useful introduction to

uncovering data structures from forms.

Problem Analysis

The following techniques help you to analyze

problems identified during fact-finding.

• Soft Systems Methodology (SSM). A method

defined by Checkland [Che81] to analyze

exceptionally vague problems (problems where

the problem is that the problem is not known).

Macaulay [Mac96] gives a handy introduction.

• Stakeholder analysis. Set off stakeholders

against problems and analyze each problem on

severity (quantify!) and urgency. Gause and

Weinberg [GW89] give useful hints.

Creating requirements for new system

The following techniques can be used to create new

ideas about possible solutions to problems.

• Brainstorm. Generating wild ideas in a group

without criticizing any idea, followed by a

rationalization of the ideas. Roozenburg and J.

Eekels [RE95] give a very useful introduction to

brainstorming for product design, including its

variations, such as brainwriting (in which

participants anonymously submit their ideas in

writing).

• Focus groups. Let a group of users discuss

requirements with each other. Macaulay [Mac96]

gives a short introduction to the use of focus

groups for requirements engineering.

• JAD workshops. Bring stakeholders from the

customer and developer sides together and let

them jointly do the design. Macaulay [Mac96]

gives a short introduction to the use of JAD

workshops for requirements engineering.

• Visiting similar companies. Visit companies

with similar problems to get an idea about the

desirable properties of solutions to these

problems.

• Quality Function Deployment (QFD). Maintain

traceability tables that match user requirements

with system requirements. Attach weights to

indicate priorities, and indicate conflicts between

requirements that. Discuss with all stakeholders

and agree on choices based on this traceability

information. Hausaer and Clausing [HC88] give

a good introduction and Macaulay [Mac96]

provides a very short summary.

• Goal-means analysis. Make a goal tree.

Indicate for each requirement the goals that it

serves, and indicate for each goal the desired

system properties that would help reaching that

goal. Lauesen [Lau98] gives an example.

Techniques for refining system

requirements and corresponding

environment models

The following techniques all assume that you

alrerady have some idea about system

requirements and allow you to improve them.

• Collecting supplier information. Collect

documentation from suppliers, let them give

demos in order to get an idea of which system

requirements can actually be realized with

current commercially available technology.

• Throw-away prototypes. Constructing a

software system that implements a few of the

system requirements, and letting users

experiment with it to give them the occasion to

form more concrete ideas about what they really

want. After experimenting, the improved

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 30

requirements are written down and the prototype

is thrown away. Any software engineering book

contains a section about throw-away prototyping.

Ince [Inc92] is one of the many overviews. Less

well-known is a description of low-tech

prototyping, involving pencil, paper, glue, and

role playing, described by Rettig [Ret94], that in

many cases is more efficient and at least as

effective as high-tech prototyping.

• Pilot project. Implement the system in a part of

the organization where it is not critical, in order to

get experience with real use of the system. This

should lead to improved requirements.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 31

Appendix C. Volere Requirements Shell

In the Volere method [RR99], Suzanne and James

Robertson give a template to be filled in for each

requirement – see Figure C1. They call it the

Requirements Shell. It is suggested that you carry

copies of the template with you when go around

gathering requirements.

Filling in the template for each requirement reminds

you of what you want to ask the person(s) you’re

talking with. The slots have the following purpose

• Requirement #: unique ID for each requirement

• Requirement type: constraint / data / functional

/ quality

(or refer to section in requirements specification

template in Appendix C)

• Event/use case # : If use cases or an event list

has been specified, refer to its number

• Description: A one-sentence statement of the

intention of this requirement

• Rationale: Why is this requirement considered

important or necessary?

• Source: Who raised this requirement?

• Fit criterion: A quantification of the requirement

used to determine whether the solution meets

the requirement (not always easy to determine

up front. If no sensible criterion can be found

when the requirement is raised, we suggest to

leave it open for the time being.)

• Customer (dis)satisfaction: Measures for the

(un)happiness of the customer if this

requirement is (not) implemented. See section

4.5

• Dependencies: Dependencies between this

requirement and others.

• Conflicts: Requirements that contradict this one

• Supporting Materials: Pointer to supporting

information

• History: Changes to this requirement (and

reasons why)

Figure C1: Volere Requirements Shell

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 32

Appendix D. Volere Requirements Specification Template

The Volere method [RR99] provides a template for

the contents of a requirements specification. Here

we only give the contents with some bits of

explanation. An extensive description of the

template can be downloaded from

www.volere.co.uk. It is very thorough and complete,

and for a small project there is probably no need

write a requirements specification with 27 chapters.

But you may use this as a checklist.

Project Drivers

1. The purpose of the project

2. Client, customer and other stakeholders.

The client is the person paying for the

development, and owner of the delivered

product. The customer is the person buying the

software. Client and customer are the same for

in-house developments but different when the

system to be developed will be sold to others.

3. Users of the product

Project Constraints

4. Mandated constraints. Constraints that the

project must satisfy. Includes development time

and budget.

5. Naming conventions and definitions

6. Relevant facts and assumptions

Functional requirements

7. The scope of the work. Describes the domain.

Could include a context diagram.

8. The scope of the product. Could include use

case diagram.

9. Functional and data requirements

Non-functional requirements

10. Look and feel requirements

11. Usability and humanity requirements

12. Performance requirements

13. Operational requirements. Expected physical

environment, hardware, and software

applications with which the system should

interface.

14. Maintainability and support requirements

15. Security requirements

16. Cultural and political requirements

17. Legal issues

Project issues

18. Open issues. Issues that have been raised

and do not yet have a conclusion.

19. Off-the-shelf solutions. Ready-made software

products or components that can be used

20. New problems. Problems that may result from

introducing the system.

21. Tasks. A stepwise description of system

development, delivery, and implementation

22. Cutover. Issues related to the migration to the

new system.

23. Risks

24. Costs

25. User documentation and training

26. Waiting room. Requirements that will not be

part of the agreed system, but could be

included in future versions.

27. Ideas for solutions

Software Engineering
Spring 2008

Michel Chaudron

Ariadi Nugroho

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 2

Outline

- Introduction

- Course logistics

- Introductory lecture Software Engineering

- What is SE?

- What does a SE do?

- What does a SE process look like?

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 3

Introduction

Michel Chaudron

- Associate Professor in Leiden (1d) & Eindhoven (4d)

- Ph.D. students: Ariadi Nugroho (assistant) & Werner Heijstek

- M.Sc. & Ph.D. from Leiden, some time abroad

- some years with IT company

- research in software engineering:

- software architecture and component-based sw engineering

- quality, measurement in SE – esp. UML

- Collaborations with companies: Philips, Oce, CapGemini,

LogicaCMG, KLM, Nokia, …

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 4

What you will learn?

Engineering = skill + knowledge

This course 80% knowledge and 20% skills

Basic concepts, vocabulary of Software Engineering

Main activities in SE projects

Main methods and techniques (excluding: programming)

Guest Lectures by professionals

SE as an academic research area

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 5

Book: Object-Oriented Software Engineering,

Timothy C. Lethbridge, Robert Laganière (2nd Ed.)

Ch 1: introduction to the subject

Ch 2: OO-basics

Ch 4: Requirements

Ch 5 & Ch 8: Modeling using UML

Ch 6: Design patterns

Ch 9: Architecture & Designing

Ch 10: Testing / Quality Assurance

Ch 11: Management (Estimation, Risk)

Websites: www.mhhe.com/lethbridge en www.llsoeng.com

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 6

Assignment

Car Navigation System

- Requirements

- Architecture & Design

- Analysis

- Implementation (mock-up)

- Test

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 7

Lectures Schedule

Vragen-uurChaudron8 mei1319

Hemelvaart--1 mei18

24 april1217

Rijn Buve?17 april1116

Gastspreker (KLM ? / TomTom?)Rijn Buve?10 april1015

LL Ch. 10Testing & Quality Assurance
(Requirements, Design, Code)

Bart Knaack3 april914

onderzoeksmethoden empirisch
onderzoek in software engineering

Chaudron27 maart813

LL Ch 6Design Patterns / RefactoringBart Kienhuis20 maart712

LL Ch 10 & 11Software MetricsChaudron13 maart611

LL Ch 11Cost Estimation, Planning & ControlPeter Bink6 maart510

LL Ch 5Modeling with UMLChaudron28 feb49

LL Ch. 9Software Architecting Chaudron21 feb38

LL Ch.4.Requirements EngineeringChaudron14 feb27

LL Ch 1, 2Introduction Software EngineeringChaudron7 feb16

Huiswerk/leeswe
rk

onderwerplecturerDatumWk-
nr

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 8

Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 1: Software and Software Engineering

What is Software Engineering?

What is SW quality?

What is a software development process?

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 9

1.1 The Nature of Software...

Software is intangible

• Hard to understand development effort

Software is easy to reproduce

• Cost is in its development

—in other engineering products, manufacturing is the costly

stage

The industry is labor-intensive

• Hard to automate

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 10

The Nature of Software ...

Untrained people can hack something together

• Quality problems are hard to notice

Software is easy to modify

• People make changes without fully understanding it

Software does not ‘wear out’

• It deteriorates by having its design changed:

—erroneously, or

—in ways that were not anticipated, thus making it complex

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 11

The Nature of Software

Conclusions

• Much software has poor design and is getting worse

• Demand for software is high and rising

• We are in a perpetual ‘software crisis’

• We have to learn to ‘engineer’ software

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 12

Types of Software...

Custom

• For a specific customer

Generic

• Sold on open market

• Often called

—COTS (Commercial Off The Shelf)

—Shrink-wrapped

Embedded

• Built into hardware

• Hard to change

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 13

Types of Software

Custom Generic Embedded

Number of copies in use low medium high

Total processing power

devoted to running this type

of software

low high medium

Worldwide annual

development effort

high low high

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 14

Types of Software

Real time software

• E.g. control and monitoring systems

• Must react immediately

• Safety often a concern

Business Information Systems (Data processing)

• Used to run businesses

• Accuracy and security of data
are key

Some software has both aspects

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 15

1.2 What is Software Engineering?...

The process of solving customers’ problems by the systematic
development and evolution of large, high-quality software
systems within cost, time and other constraints

Solving customers’ problems

• This is the goal of software engineering

• Sometimes the solution is to buy, not build

• Adding unnecessary features does not help solve the problem

• Software engineers must communicate effectively to identify
and understand the problem

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 16

What is Software Engineering?…

Systematic development and evolution

• An engineering process involves applying well understood techniques in a
organized and disciplined way

• Many well-accepted practices have been formally standardized

—e.g. by the IEEE or ISO

Large, high quality software systems

• Software engineering techniques are needed because large systems cannot
be completely understood by one person

• Teamwork and co-ordination are required

• Key challenge: Dividing up the work and ensuring that the parts of the
system work properly together

• The end-product that is produced must be of sufficient quality

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 17

What is Software Engineering?...

Other definitions:

• IEEE: (1) the application of a systematic, disciplined, quantifiable approach to the

development, operation, maintenance of software; that is, the application of

engineering to software. (2) The study of approaches as in (1)

• The Canadian Standards Association: The systematic activities involved in the

design, implementation and testing of software to optimize its production and

support.

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 18

What is Software Engineering?

Cost, time and other constraints

• Finite resources

• The benefit must outweigh the cost

• Others are competing to do the job cheaper and faster

• Inaccurate estimates of cost and time have caused many

project failures

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 19

What is the Science of Software Engineering?

The scientific study of

methods, techniques, processes

for creating software

Effect of techniques on quality, productivity

Object Oriented programming languages are better.

Agile development processes lead to faster development.

Often studied empirically

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 20

1.4 Stakeholders in Software Engineering

1. Users

• Those who use the software

2. Customers

• Those who pay for the software

3. Software developers

• Those who make the software

4. Development Managers

All four roles can be fulfilled by the same person

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 21

What does a Software Engineer do?

programming

presenting

reporting

documenting

individually

listening

interacting

with clients

in team

explaining
feedbackplanning

reviewing

Specializing in different roles

- designing, programming, testing …

brainstorming

discussing

planning

selling

Microsoft 1978

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 22

1.5 Software Quality...

Usability

• Users can learn it and fast and get their job done easily

Efficiency

• It doesn’t waste resources such as CPU time and memory

Reliability

• It does what it is required to do without failing

Maintainability

• It can be easily changed

Reusability

• Its parts can be used in other projects, so reprogramming is not

needed

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 23

Software Quality...

QUALITY

SOFTWARE

Developer:

easy to design;

easy to maintain;

easy to reuse its parts

User:

easy to learn;

efficient to use;

helps get work done

Customer:

solves problems at

an acceptable cost in

terms of money paid and

resources used

Development manager:

sells more and

pleases customers

while costing less

to develop and maintain

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 24

Software Quality

The different qualities can conflict

• Increasing efficiency can reduce maintainability or reusability

• Increasing usability can reduce efficiency

Setting objectives for quality is a key engineering activity

• You then design to meet the objectives

• Avoids ‘over-engineering’ which wastes money

Optimizing is also sometimes necessary

• E.g. obtain the highest possible reliability using a fixed budget

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 25

Internal Quality Criteria

These:

• Characterize aspects of the design of the software

• Have an effect on the external quality attributes

• E.g.

—The amount of commenting of the code

—The complexity of the code

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 26

Short Term Vs. Long Term Quality

Short term:

• Does the software meet the customer’s immediate needs?

• Is it sufficiently efficient for the volume of data we have

today?

Long term:

• Maintainability

• Customer’s future needs

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 27

1.6 Software Engineering Projects

Most projects are evolutionary or maintenance projects,

involving work on legacy systems

• Corrective projects: fixing defects

• Adaptive projects: changing the system in response to changes

in

—Operating system

—Database

—Rules and regulations

• Enhancement projects: adding new features for users

• Reengineering or perfective projects: changing the system

internally so it is more maintainable

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 28

Software Engineering Projects

‘Green field’ projects

• New development

• The minority of projects

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 29

Software Engineering Projects

Projects that involve building on a framework or a set of
existing components.

• The framework is an application that is missing some
important details.

—E.g. Specific rules of this organization.

• Such projects:

—Involve plugging together components that are:
- Already developed.

- Provide significant functionality.

—Benefit from reusing reliable software.

—Provide much of the same freedom to innovate found in
green field development.

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 30

1.7 Activities Common to Software Projects...

Requirements and specification

• Includes

—Domain analysis

—Defining the problem

—Requirements gathering

- Obtaining input from as many sources as possible

—Requirements analysis

- Organizing the information

—Requirements specification

- Writing detailed instructions about how the software should

behave

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 31

Activities Common to Software Projects...

Design

• Deciding how the requirements should be implemented, using
the available technology

• Includes:

—Systems engineering: Deciding what should be in
hardware and what in software

—Software architecture: Dividing the system into
subsystems and deciding how the subsystems will interact

—Detailed design of the internals of a subsystem

—User interface design

—Design of databases

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 32

Activities Common to Software Projects

Modeling

• Creating representations of the domain or the software

—Use case modeling

—Structural modeling

—Dynamic and behavioural modeling

Programming

Quality assurance

• Reviews and inspections

• Testing

Deployment

Managing the process

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 33

1.8 The Eight Themes of the Book

1. Understanding the customer and the user

2. Basing development on solid principles and reusable

technology

3. Object orientation

4. Visual modeling using UML

5. Evaluation of alternatives

6. Iterative development

7. Communicating effectively using documentation

8. Risk management in all SE activities

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 34

Difficulties and Risks in Software Engineering

• Complexity and large numbers of details

• Uncertainty about technology

• Uncertainty about requirements

• Uncertainty about software engineering skills

• Constant change

• Deterioration of software design

• Political risks

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 35

Software Development Process Models

•Waterfall

•Iterative

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 36

SDP Models (1)
T
im
e

WaterfallWaterfallWaterfallWaterfall ModelModelModelModel (Mid 70ies)

Test

Specification

Design

Implementation

Requ. Eng. &
Architecting

→ No iterations

→ Big bang scenario

→ First-time right

milestone 1

milestone 2

milestone 3

milestone 4

milestone 5

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 37

Feasibility studyFeasibility study

The waterfall model

User RequirementsUser Requirements

System DesignSystem Design

CodingCoding

OperationOperation

TestingTesting

AnalysisAnalysis

Program DesignProgram Design

DecomissionDecomission

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 38

Requirements Requirements Requirements Requirements Vision & first idea

AnalysisAnalysisAnalysisAnalysis Requirements Document (WHAT)

Context model & Requirements Spec.

Architectural Model Architectural Model Architectural Model Architectural Model (HOW)

Feasibility Study (can product be made?)

Risk Assessment (project threats and risks?)

Design & SpecificationDesign & SpecificationDesign & SpecificationDesign & Specification

System Spec. (WHAT):

Design (HOW)

ImplementationImplementationImplementationImplementation Coding & Testing (HOW):

TestTestTestTest Integration and acceptance Test

The Classical Waterfall Model (Example)
e
x
e
c
u
te
 in
 s
tric

t
s
e
q
u
e
n
tia
l o
rd
e
r

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 39

Feasibility studyFeasibility study

The V-process model

User requirementsUser requirements

System designSystem design

Program designProgram design Program testingProgram testing

CodingCoding

System testSystem test

User acceptanceUser acceptance

ReviewReview

C
o

rr
e
c
ti
o

n
s

Another way of looking at the waterfall model

Validation process

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 40

The milestones did not fit in many project situations, leading to:

• GoldGoldGoldGold----platingplatingplatingplating

Extensive written requirements spec's cause overemphasis

on "complete" requirements and invite "just-in-case" additions

• Inflexible point solutionsInflexible point solutionsInflexible point solutionsInflexible point solutions

- Fixed requirements spec's produce inflexible solutions optimized

around the initial problem statement

- Forced early design decisions

• Bad usabilityBad usabilityBad usabilityBad usability

Written req. spec's are not nearly as effective as a prototype

Requirements often emerge only after demonstration and feedback

Problems of the Waterfall Process (1)

→ Iterative development

→ A prototype is worth a 100.000 words

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 41

The waterfall model (cont‘d)

Pros:

Imposes structure on complex

projects

Every stage needs to be checked and

signed off:

• Elimination of midstream changes

Good when quality requirements

dominate cost and schedule

requirements

Pros:

Imposes structure on complex

projects

Every stage needs to be checked and

signed off:

• Elimination of midstream changes

Good when quality requirements

dominate cost and schedule

requirements

Cons:

Limited scope for flexibility /

iterations

Full requirements specification at

the beginning:

• User specifications

No tangible product until the end

Cons:

Limited scope for flexibility /

iterations

Full requirements specification at

the beginning:

• User specifications

No tangible product until the end

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 42

Problems of the Waterfall Process (2)

Business Modeling

Requirements & Architecting

Specification & Design

Implementation

Testing

Consultants

Architect(s)

IT-Specialists

IT-Engineers

IT-Engineers

Communication becomes highly critical

Different phases are handled by different people

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 43

SDP Models (2)

WaterfallWaterfallWaterfallWaterfall
ModelModelModelModel

(Mid 70ies)

Test

Specification

Design

Implementation

Requ. Eng. &
Architecting

Scope

T
im
e

EvolutionaryEvolutionaryEvolutionaryEvolutionary
ModelModelModelModelssss
(80ies)

Increments
(Spiral cycles)

Iteration

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 44

Rational Unified Process (RUP)

PhasesPhases

IterationsIterations

DisciplinesDisciplines

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 45

• Inflexible point solutionsInflexible point solutionsInflexible point solutionsInflexible point solutions

The initial release is optimized for demonstration,

consequently the architecture is difficult to extend

• HighHighHighHigh----risk downstream capabilitiesrisk downstream capabilitiesrisk downstream capabilitiesrisk downstream capabilities

The initial release often defers quality attributes

(dependability, scalability, etc.) in favor of early

functionality

Problems of Evolutionary Models

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 46

Reflect & L
earn

3. Reconcile win conditions
Establish next-increment
objectives, constraints &
alternatives

2. Identify stakeholders
objectives and win
conditions / values

7. Verify & commit

6. Implement product
& process definitions

5. Define next-increment
of product & process,
inclusive partitions

4. Evaluate product and
process alternatives
Resolve risks

1. Identify
next-increment
stakeholders

Emphasizes continuous
stakeholder alignment

Win-Win Spiral Model (Boehm, 1998)

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 47

increment

1

increment

2

increment

3

delivered
system

Incremental delivery

first incremental delivery

designdesign buildbuild installinstall evaluateevaluate

second incremental delivery

designdesign buildbuild installinstall evaluateevaluate

third incremental delivery

designdesign buildbuild installinstall evaluateevaluate

Each component delivered must give some
benefit to the stakeholders

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 48

ExamplesExamplesExamplesExamples:

• Risk-, reuse-, legacy- and demo-driven

• Various variants of evolutionary development

• Hybrids

SW organizations had difficulties
to establish a common reference

Proliferation of Alternative Models

Early 1990’s

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 49

The plan

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 50

Reality

The output of a project needs to be
Understood
Maintained
Reused

Fake a rational design process
� Document in a orderly and

systematic manner

The output of a project needs to be
Understood
Maintained
Reused

Fake a rational design process
� Document in a orderly and

systematic manner

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 51

Questions?

Homework:

- Read

- Chapter 1 Introduction Software Engineering

- Chapter 2 Review Object Orientation

1

1

Requirements Engineering

Software Engineering

Leiden University 2007-2008

Michel Chaudron

Based on Selections from

• Chapter 4 from Object-Oriented Software Engineering

by Lethbridge & Laganiere

• Requirements Engineering: A Good Practice Guide

by Ian Sommerville & Pete Sawyer

• Generative Programming by Czarnecki

Requirements Engineering

What, Why, Who, When, Where, How?

2

3

Requirements engineering

• The process of establishing the services
that the customer requires from a
system and the constraints under which
it operates and is developed.

• The requirements themselves are the
descriptions of the system services and
constraints that are generated during
the requirements engineering process.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6

4

"The hardest single part of building a software system is

deciding precisely what to build. No other part of the

conceptual work is as difficult as establishing the

detailed technical requirements, including all the

interfaces to people, to machines, and to other

software systems. No other part of the work so

cripples the resulting system if done wrong.

No other part is more difficult to rectify later".

Fred Brooks, "No Silver Bullet",

IEEE Computer,1987

Author of The Mythical Man-month

3

5

Understanding the problem

What the customer What the customer What the customer What the customer
explainedexplainedexplainedexplained

What the analyst What the analyst What the analyst What the analyst
designeddesigneddesigneddesigned

What the What the What the What the
programmer madeprogrammer madeprogrammer madeprogrammer made

What the What the What the What the
consultant definedconsultant definedconsultant definedconsultant defined

What was What was What was What was
chargedchargedchargedcharged

What the What the What the What the
client neededclient neededclient neededclient needed

What was What was What was What was
installedinstalledinstalledinstalled

What was What was What was What was
documenteddocumenteddocumenteddocumented

How it was How it was How it was How it was
maintainedmaintainedmaintainedmaintained

What the project What the project What the project What the project
leader understoodleader understoodleader understoodleader understood

6

4

7

Learning from each other

Users, customers,
managers, domain
experts, and
developers share
different skills,
backgrounds, and
expectations.

8

Developing a shared vision

Requirements emerge
from a process of
co-operative learning in
which they are explored,
prioritized, negotiated,
evaluated, and
documented.

5

9

The 10 top reasons for notnotnotnot doing
requirements

10. We don’t need requirements, we’re using objects/java/web/….

9. The users don’t know what they want

8. We already know what the users want

7. Who cares what the users want?

6. We don’t have time to do requirements

5. It’s too hard to do requirements

4. My boss frowns when I write requirements

3. The problem is too complex to write requirements

2. It’s easier the change the system later than to do the

requirements up front

1. We have already started writing code, and we don’t want to

spoil it

Volere Requirements Resources http://www.volere.co.uk

10

“I held my entire program up for 4+ weeks due to
unclear, unwritten requirements. Took some heat for
that in the beginning, but the deep dive
requirements effort is highlighting a Silicon spin we
didn't know about, standards that we don't support,
other postlaunch requirements nobody
considered…all of this causing us and mgmt to
question the viability of the product. BTW, this is all
stuff we wouldn't have realized until it smacked us in
the face 6 months from now. Spending a month now
prevented us from spending millions before a
conscious decision.”

From : Reflections on a Successful Corporate Requirements Engineering Training

Curriculum, Erik Simmons, Intel Corporation, 2005

6

11

StakeholderStakeholderStakeholderStakeholder issuesissuesissuesissues
Steve McConnell, in his book Rapid Development, details a number

of ways users can inhibit requirements gathering:

• Users don't understand what they want or users don't have a

clear idea of their requirements

• Users won't commit to a set of written requirements

• Users insist on new requirements after the cost and schedule

have been fixed.

• Communication with users is slow

• Users often do not participate in reviews or are incapable of

doing so.

• Users are technically unsophisticated

• Users don't understand the development process.

• Users don't know about present technology.

12

Why Software Projects Fail
Example of empirical research

Related to

Requirements

Engineering

Related to

Requirements

Engineering

7

13

Contribution of Requirements Defects
Defect Source

36%

28%

5%
5%
5%

6%
7%6%

2% Requirements
translation

Logic design

Documentation

Incomplete
requirements

Human

Environment

Interface

Data

Other

14

Why Requirements Engineering?

• Scope the problem

• Understand the problem
• for the client as well as the architect

• Basis for design

• Contract between client/user and builders
• agreement on what has to be built

8

15

Understand the DomainUnderstand the Domain

What is important?

Which things are stable and which change?

How does the project add to an organizations' success

16

Initial Steps in RE process

• What are the drivers?

– Stakeholders & concerns

• What are the constraints?

– Economical/technical/organisational

• What is the scope of the system?

9

17

Twin Peaks Process

Progressing understanding of architecture & design
provides a basis for discovering further system
requirements and vice versa

WHAT:
problem
structuring

There is interaction between available solutions and
requirements

Separate but concurrent development of
requirements & architecture

HOW:
solution
structuring

18Slide by Gerrit Muller, ESI, 2007

10

19

What is a Requirement ?

• A statement about the proposed system that all
stakeholders agree must be made true in order
for the customer’s problem to be adequately
solved.

– Short and concise piece of information

– Says something about the system

– All the stakeholders have agreed that it is valid

– It helps solve the customer’s problem

– Contract between customer and builder

20

Example Requirement Template

11

21

Errors

Requirements errors are typically non-clerical.
incorrect facts 49%
omissions 31%
inconsistencies 13%
ambiguities 5%

Requirements errors can be detected.
Review by authors 23%
Review by others 10%

Up to 30-50% of the errors found further downstream
the development process are due to errors in the
requirements.

22

Users of a requirements
document

Use the requirements to
develop validation tests for

the system

Use the requirements
document to plan a bid for
the system and to plan the

system development process

Use the requirements to
understand what system is to

be developed

System test
engineers

Managers

System
engineers

Specify the requirements and
read them to check that they

meet their needs. T hey
specify changes to the

requirements

System
customers

Use the requirements to help
understand the system and

the relationships between its
parts

System
maintenance

engineers

12

23

Types of requirements
• User requirements:

The description of the functions that the system

has to fulfil for its environment in terms of the

users interacting with the system, e.g. in the form

of use cases.

•Software requirements:

The software requirements are a translation and a

more precise description of the user requirements,

in terms for software engineers.

Functional and extra-functional requirements

24

Types of Requirements

• Functional requirements

– Describe what the system should do

• Extra-functional requirements
– *ilities: Availability, Security, Reliability, Timeliness,

– Capacity

• Constraints that must be adhered to during execution

13

25

Types of extra-functional req’rements

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6

Performance

requirements

Space

requirements

Usability

requirements

Efficiency

requirements

Reliability

requirements

Portability

requirements

Interoperability

requirements

Ethical

requirements

Legislative

requirements

Implementation

requirements

Standards

requirements

Delivery

requirements

Safety

requirements

Privacy

requirements

Product

requirements

Organisational

requirements

External

requirements

Non-functional

requirements

26

Functional requirements

– What inputs the system should accept

– What outputs the system should produce

– What data the system should store that other
systems might use

– What computations the system should
perform

14

27

Examples

• The system shall allow users to search for an item by

title, author, or ISBN.

Defines system functionality.

• If an item is not returned within the period of load,

then the person who loans the item will be fined Euro

1 per week.

Defines (causal) relations between system functions.

28

Examples of XFR: Examples of XFR: Examples of XFR: Examples of XFR: ReliabilityReliabilityReliabilityReliability
Typically expressed in terms of

• Mean Time Between Failures (MTBF)Mean Time Between Failures (MTBF)Mean Time Between Failures (MTBF)Mean Time Between Failures (MTBF)

• Number of hours that pass before a component fails

• E.g. 2 failures per million hours:

• MTBF = 106 / 2 = 0,5 * 106 hr

• Mean Time To Failure (MTTF)Mean Time To Failure (MTTF)Mean Time To Failure (MTTF)Mean Time To Failure (MTTF)

• Mean time expected until the first failure of a system

• Is a statistical value over a long period of time

• Mean Time To Repair (MTTR)Mean Time To Repair (MTTR)Mean Time To Repair (MTTR)Mean Time To Repair (MTTR)

for repairable systems

For non-repairable systems

Availability

15

29

Examples XFR: Maintainability

Maintainability

The average person time required to fix a category
3 defect (including testing and documentation
upgrade) shall not exceed two person days.

30

System Quality Attributes

• Performance

• Availability

• Usability

• Security

• Maintainability

• Portability

• Reusability

• Testability

End User’s

view

Developer’s

view

• Time To Market

• Cost and Benefits

• Projected life time

• Targeted Market

• Integration with

Legacy System

• Roll back Schedule

Business

Community
view

16

31

Constraints

Constraints concerning the environment and
technology of the system.

• Platform

• Technology to be used

Constraints concerning the project plan and
development methods

• Development process (methodology) to be used

• Cost and delivery date
– Often put in contract or project plan instead

Constraints are not negotiable

32

Constraints
Constraint restrict how the requirements are to be implemented.

• Interface RequirementsInterface RequirementsInterface RequirementsInterface Requirements.

How external interfaces with other systems must be done.

• Communication InterfacesCommunication InterfacesCommunication InterfacesCommunication Interfaces.

The networks and protocols to be used.

• Hardware InterfacesHardware InterfacesHardware InterfacesHardware Interfaces.

The computer hardware the software is to execute on.

• Software InterfacesSoftware InterfacesSoftware InterfacesSoftware Interfaces.

How the software should be compatible with other software:

applications, compilers, operating systems, programming

languages, database management systems.

• User InterfacesUser InterfacesUser InterfacesUser Interfaces.

Style, format, messages

17

33

Requirements on Requirements (1)

Each individual requirement should be

• ImportantImportantImportantImportant/necessary/necessary/necessary/necessary for the solution of the current problem

• UniqueUniqueUniqueUnique

• UnambiguousUnambiguousUnambiguousUnambiguous

• LLLLogicallyogicallyogicallyogically consistentconsistentconsistentconsistent

• NNNNotototot overoveroverover----constrain the designconstrain the designconstrain the designconstrain the design of the system

• Atomic: Atomic: Atomic: Atomic: not consist of multiple separate requirements

34

Requirements on Requirements (2)

The set of requirements together should be:

• CompleteCompleteCompleteComplete

• Expressed using a clear and consistent notationclear and consistent notationclear and consistent notationclear and consistent notation

– at the same level of detail

• Without duplication

18

35

Requirements on Requirements (3)

SSSS SpecificSpecificSpecificSpecific

To-the-point, precise

MMMM MeasurableMeasurableMeasurableMeasurable

Quantifiable and verifiable

AAAA AcceptableAcceptableAcceptableAcceptable (to the stakeholders)

Accessible, understandable (for the user)

Achievable (technically/planning/economically)

RRRR RealisticRealisticRealisticRealistic

Deducible to the real business drivers

TTTT TestableTestableTestableTestable

36

• “All communication between client and server is

secure”

• “It is easy to extend”

• “The system should respond quickly”

• “The user should not have to wait more than a few

second …”

• “Determine solution within 0.3 sec”

• “The system should be always available”

• “The system can handle multiple concurrent users”

• “The system can handle 100 concurrent users”

• “The system should be state-of-the-art …”

Let’s consider

attainable

vague:to what?

doing
what?

subjective time-dependent;
means something else tomorrow

not
measurable

not
measurable

not
measurable

not precise

19

37

Requirements Prioritization

38

The Cost of Traditional BRUF
Big Requirements Up Front

Never

45%

Rarely

19%

Sometimes

16%

Often

13%

Always

7%

“Successful” Projects Still Have Significant Waste

Pie chart shows percentage of functionality used by stakeholders

Source: Jim Johnson of the Standish Group, Keynote Speech XP 2002

Pareto-rule applies: 20% of functionality delivers 80% of value

20

39

Prioritizing Requirements

• MIL STDMIL STDMIL STDMIL STD:
• Must have, will have, may have

• RUP: RUP: RUP: RUP: MoSCoWMoSCoWMoSCoWMoSCoW
Must have
Should have
Could have
Won’t have

Criteria: indicate importance

Alternative criteria: volitility, cost to realize, risk, ..

40

CostCostCostCost----Value Prioritization of RequirementsValue Prioritization of RequirementsValue Prioritization of RequirementsValue Prioritization of Requirements

Motivation for Prioritization:

• Focus development effort

– Allocate resources based on importance

• Make trade-offs between conflicting
goals, such as quality, cost and time-to-
market

21

41

CostCostCostCost----Value Prioritization of RequirementsValue Prioritization of RequirementsValue Prioritization of RequirementsValue Prioritization of Requirements

Process:
1. Review requirementsrequirementsrequirementsrequirements for clarityclarityclarityclarity and completenesscompletenesscompletenesscompleteness (by

Requirements Engineers)

2. Assess relative valuerelative valuerelative valuerelative value of requirements in pair wise
manner (Customers and users)

3. Assess relative costrelative costrelative costrelative cost of realizing requirements in pair
wise manner (by experienced SW Engineers)

4. Calculate (value, cost)-pairs (using AHP*)

5. Plot requirements as (value, cost)-pairs

6. Prioritize

* Analytic Hierarchy Process

42

Requirements Prioritization
Example

• 14 Requirements

V
a
lu

e
(p

e
rc

e
n

ta
g

e
)

C
o

s
t

(p
e

rc
e

n
ta

g
e

) low value

high cost

h
ig

h
 v

al
u
e

lo
w

 c
o
st medium value

medium cost

22

43

AHP details

44

AHP consistency

23

45

Prioritization

• Estimation of relative weights

– ratio-scale

• 100 $ approach

– ratio-scale

• Ranking by comparing

– (bubble)sorting – ordinal scale

46

Managing Changing Requirements
• Requirements change because::::

– Business process changes

– Technology changes

– The problem becomes better understood

• Requirements analysis never stops

– Continue to interact with the clients and users

– The benefits of changes must outweigh the costs.

• Certain small changes (e.g. look and feel of the UI) are
usually quick and easy to make at relatively little cost.

• Larger-scale changes have to be carefully assessed

– Forcing unexpected changes into a partially built system will
probably result in a poor design and late delivery

– Some changes are enhancements in disguise

• Avoid making the system bigger, only make it better

24

47

Requirement Changes

Requirements Changes - Business Systems

Requirements Growth %

Requirements Growth %

-5-0 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55

%
 P

ro
je

c
ts

0

10

20

30

40

50

60

70

57%

14%

11%

4% 4%

7%

4%

Business Systems Avg. Line Style 1 Sigma Line Style

Data from 23

projects of the

Indian IT

industry for

overseas

customers

(Jan 2000)

48

Traceability

• From req to arch choices/features

• From features to req’s

• Check

– Completeness of system

– Analyze impact of changing requirements

25

49

Forward Traceability

User requirementsUser requirements

System designSystem design

Program designProgram design

CodingCoding

How is this requirement realized?

System requirementsSystem requirements

Subsystem requirementsSubsystem requirements

TestsTests

To help in understanding…

50

Backward Traceability
User requirementsUser requirements

System designSystem design

Program designProgram design

CodingCoding

To which requirements does this

part of the system contribute?

Why am I here?
System requirementsSystem requirements

Subsystem requirementsSubsystem requirements

Why is the design like this?

designdesign

requirementsrequirements
use a

graphical UI

use a text-

based UI

UI design

26

51

Why Traceability?

• Accountability: where did this requirement come from?

– The source of a requirements may be needed for clarification,

negotiation, conflict resolution

• Matching solution to problem

– For monitoring completeness of system:

• Acceptance test: are all requirements addressed?

• are there unnecessary requirements/features?

• Analyze impact of changes (in req’mt’s / design decions)

– Change request: What parts of the design need to change, if a

requirement changes?

• Reuse of requirements

52

design document and requirements document

contains hyperlinks to each other

Typical use:

interactive exploring /

browsing req.docs

Using .html documents

& browsers

How Traceability: Hyperlinks

Design document

....due to / supports requirement 1.2

Requirements document

1.1 XXXX

.... because rationale

1.2 YYYY

1.1 Design Decision: use tactic XYZ

1.3 ZZZZZ

27

53

But also
• Trace the source of requirements

Stakeholders Requirements document

1.1 XXXX

.... because rationale

1.2 YYYY

1.1 Customer1

1.2 Developer

1.3 Maintainer supports stakeholder 1.2

�Trace the history/evolution of requirements

Requirements document

1.1 XXXX

1.2 YYYY

Requirements document

Version 0.5

1.1 VVVVV

1.2 YYYY

Version 0.6

modified because ….

cancelled

54

How Traceability: Matrix
A matrix links requirement to design decisions

XXX..

..

XX7

6

X5

XXX4

X3

X2

1

......654321requirements

design
decisions

Uses: database

or spread-sheet

28

55

Req. Management Guidelines

From: Sommerville & Sawyer

Basic Guidelines:Basic Guidelines:Basic Guidelines:Basic Guidelines:
1. Define policies for requirement management
2. Define traceability policies
3. Maintain a traceability manual

Intermediate Guidelines:Intermediate Guidelines:Intermediate Guidelines:Intermediate Guidelines:
4. Use (automated) requirements management tool
5. Define change management policies

– Maintain a change history
6. Identify global system requirements

Advanced Guidelines:Advanced Guidelines:Advanced Guidelines:Advanced Guidelines:
7. Measure requirements stability

– Identify volatile requirements
8. Record rejected requirements

56

Traceability Research Questions

• How much traceability should one do?

• Can we automate traceability?

– Matching keywords between design and req’s?

29

57

Concluding Remarks

There is a lot more to requirements that meets the eye.

A lot of errors in system development can be traced to
erroneous requirements. It pays to make an effort to
check your requirements

Requirements evolve in concert with architectural
decisions.

Domain Engineering helps developing system families

Lots of guidelines exist for doing requirements right!
Use them!

Questions?

See you this afternoon & next week

30

59

[Gacek et al 1995] present the results of a survey of

people who are somehow involved in software

development processes (developers, customers,

maintainers, aquisitioners, etc.).

There they found that, with respect to architects, the

three major concerns were

“1) requirements traceability;

2) support of tradeoff analyses; and

3) completeness, consistency of architecture.”

Gacek, C., Abd-Allah, A., Clark, B.K., and Boehm, B. (1995)

“On the Definition of Software System Architecture,” in

Proceedings of the First International Workshop on Architectures

for Software Systems - 17th ICSE, Seattle, 24-25 April 1995, pp.

85-95.

60

31

61

Requirements documents

– should be:
• agreed to by all the stakeholders

• sufficiently complete

• well organized

– Easy to read

– Easy to maintain / change

• clear

– Traceability:
• use of hypertext may be usefull

– for exploring/browsing req.docs
Design

document

....due to

requirement 1.2

Requirements

document

1.1 XXXX

.... because

1.2 YYYY

rationale

62

• AnalysisAnalysisAnalysisAnalysis antiantiantianti----patternspatternspatternspatterns

• : The Functional/Technical specification is given
to the Development team on a napkin (i.e.,
informally, and with insufficient detail) which is
fundamentally equivalent to having no
specification at all.

• : All requirements are communicated to the
development teams in a rapid succession of
netmeeting sessions or phone calls with no
Functional/Technical specification or other
supporting documentation.

• : To write the Technical/Functional specification
after the project has already gone live.

32

63

Don Gause lists the five most important

sources of requirements failure as:

• failure to effectively manage conflict,

• lack of clear statement of the design problem
to be solved,

• too much unrecognized disambiguation,

• not knowing who is responsible for what

• lack of awareness of requirements risk.

64

Through Requirements you are meant to find
out and understand what users’ intentions
and need are.

This may be different from what they say it is!

33

65

Ezelsbruggetje

• Het woord is waarschijnlijk afkomstig van
het feit dat de ezel maar een heel klein
randje nodig heeft om snel op de plek
van bestemming te komen; een plank
over een sloot volstaat al. Het woord
ezelsbrug is al heel oud en bestond in
het Latijn al (pons asinorum).

• English translation welcome …

66

34

67

STIMULUSSTIMULUSSTIMULUSSTIMULUS----ENVIRONMENTENVIRONMENTENVIRONMENTENVIRONMENT----RESPONSERESPONSERESPONSERESPONSE

• Use case scenario
Remote user requests a database report via the Web

during peak period and receives it within 5 seconds

• Growth scenario
Add a new data server during peak hours within a

downtime of at most 8 hours.

• Exploratory scenario
Half of the servers go down during normal operation

without affecting overall system availability

‘Formula’ for scenario’s

A good scenario makes clear what the stimulus is and
what the measurable response of interest is

1

Software Architecture

Michel R. V. Chaudron

LIACS & TU Eindhoven

Software Engineering

MRV Chaudron

Sheet 2

Lecture Outline

� What, Why, When, Where, Who SWARCH

� Describing

� Designing (start of)
How

2

Software Engineering

MRV Chaudron

Sheet 3

Software Architecture Books

� Software Architecture in Practice, Second Edition,

L. Bass, P. Clements, R. Kazman,

SEI Series in Software Engineering,

Addison-Wesley, 2003

� Software Architecture: Perspectives on an

Emerging Discipline, Mary Shaw, David Garlan,

242 pages, 1996, Prentice Hall

� Recommended Practice for Architectural Description,

IEEE STD 1471-2000, 23 pages

Software Engineering

MRV Chaudron

Sheet 4

The Deadline

by Tom DeMarco

• easy & fun reading

• lots of lessons from practical experience

Also very though provoking:

Peopleware

by DeMarco & Lister,

Dorset House Publ., 2nd ed, 1999

Software Project Management

3

Software Engineering

MRV Chaudron

Sheet 5

Increasing amount of software in systems

Nb: logarithmic scale �

The amount of software

increases 10 fold every 10 years.

Abstractions are needed.

Code Size Evolution of High End TV Software

2

4

8

16

32

64

256

512

1024

2048

12000

3000
4096

32000

100000

64000

1

10

100

1000

10000

100000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2009

Year of Market Introduction

K
b

y
te

s

Software Engineering

MRV Chaudron

Sheet 6

What is Software Architecture?
Classic DefinitionsClassic DefinitionsClassic DefinitionsClassic Definitions 1111

An architecture is the set of significant decisions about

• the organization of a software system,

• the selection of the structural elements and their interfaces by which

the system is composed, together with their behaviour as specified in

the collaborations among those elements,

• the composition of these structural and behavioural elements into

progressively larger subsystems,

• the architectural style that guides this organization

The UML The UML The UML The UML ModelingModelingModelingModeling Language User Guide, AddisonLanguage User Guide, AddisonLanguage User Guide, AddisonLanguage User Guide, Addison----Wesley, 1999Wesley, 1999Wesley, 1999Wesley, 1999

BoochBoochBoochBooch, , , , RumbaughRumbaughRumbaughRumbaugh, and Jacobson, and Jacobson, and Jacobson, and Jacobson

4

Software Engineering

MRV Chaudron

Sheet 7

What is Software Architecture?

Classic Definitions 2

The structure of the components of a program/system,

their interrelationships, and principles and guidelines

governing their design and evolution over time.

David Garlan and Dewayne Perry

April 1995 IEEE Transactions on Software Engineering

Software Engineering

MRV Chaudron

Sheet 8

Example:

FEI electron

microscopes

Full Architecture

Description

5

Software Engineering

MRV Chaudron

Sheet 9

Example: FEI electron microscopes
Full Architecture Description

Software Engineering

MRV Chaudron

Sheet 10

6

Software Engineering

MRV Chaudron

Sheet 11

Contents of a good architectural model

� A system’s architecture will often be expressed in
terms of several different views

� The logical breakdown into subsystems
� conceptual abstract view

� functional decomposition

� responsibility distribution

� The interfaces among the subsystems

� The dynamics of the interaction among components

� The data that will be shared among the components

� The components that will exist at run time, and the

machines or devices on which they will be located

Slide by Lethbridge and Laganiere

MC2

Software Engineering

MRV Chaudron

Sheet 12

Viewpoints & views

view
point

vie
w

Slide 11

MC2 hierarchy
- itself a view
- may apply to different views
Michel Chaudron; 27-2-2008

7

Software Engineering

MRV Chaudron

Sheet 13

Architectural view

� An architectural view is a simplified

description (an abstraction) of a system from

a particular perspective/view point, covering
particular concerns, and omitting entities

that are not relevant to this perspective

Software Engineering

MRV Chaudron

Sheet 14

Elements of Architectural Design

� Structure

� decomposition, hierarchy

� interfaces

� Behaviour

� within and between components

� Data

� Design Decisions / Rationale

At different

levels of
abstraction:

- conceptual

- development

- run-time/

physical

At different

levels of
abstraction:

- conceptual

- development

- run-time/

physical

8

Software Engineering

MRV Chaudron

Sheet 15

� To make each design decision, the software

engineer uses:

�Knowledge of

� the application domain

� the requirements

� the design as created so far

� the technology available

� software design principles and ‘best practices’

� what has worked well in the past

Making design decisions

Slide by Lethbridge and Laganiere

Combination of

top-down and
bottom-up

Combination of

top-down and
bottom-up

Software Engineering

MRV Chaudron

Sheet 16

The question:

Require-
ments

Require-
ments

The answer:

ArchitectureArchitecture

Deployment:

ExecutableExecutable

Implementation:

DesignDesign

• Features

• Use cases

• Dependability

Timing

Reliability

Security

• Quality

• Standards

• Etc.

• HL-Design

Components

Interfaces

Interactions

• Styles

• Constraints

• Guidelines

• Reuse

• Etc.

• Decomposition

• Algorithms

• Data structures

• Distribution

• Scheduling

• Recovery

• Language

• Encryption

• Etc.

• Memory

allocation

• Dynamic

Instantiation

• Call stacks

• Garbage

collection

• Machine code

• Etc.

Positioning Architecture

9

Software Engineering

MRV Chaudron

Sheet 17

Architecturally Significant Elements

An architecturally significant element has a significant

impact on the structure, performance, robustness,

scalability, maintainability and evolvability

of the system.

Software Engineering

MRV Chaudron

Sheet 18

Reduce development cost

- improved communication between developers, and

- earlier assessment of design alternatives and

assessment of system risks

Reduce time-to-market

- allowing concurrent development of different subsystems

- enabling reuse

Business Objectives of Software Architecture

10

Software Engineering

MRV Chaudron

Sheet 19

Reduce maintenance cost

- Design should plan for incorporation of foreseeable

changes and extensions

Improve product quality

Increase fitness for use through stakeholder involvement;

reduce errors through enforcement of conceptual integrity

Business Objectives of Software Architecture

Software Engineering

MRV Chaudron

Sheet 20

Management of Complexity

Define a model of a system that is intellectually

manageable – better understanding

Answering of what-if questions
Allows stakeholders to evaluate different

architectural solutions and their consequences

SA Objectives for Development 1/2

11

Software Engineering

MRV Chaudron

Sheet 21

Feasibility study & risk analysis

Analysis of various (non-)functional features of the

future product; identification of possible problems

during development, production & operation

Project estimation, planning &

organization

Allocation of components to concurrent teams

SA Objectives for Development 2/2

Software Engineering

MRV Chaudron

Sheet 22

For Whom ?

•Customers, Users, Domain Experts

•Engineers:

• analysts, architects

• programmers

•maintenance, development,

•new members development team

• Marketing, Sales

• Management ...

An architecture is a (common) means of understanding

of a system

Different types of architectures?

12

Software Engineering

MRV Chaudron

Sheet 23

StakeholderStakeholderStakeholderStakeholder Concern (Examples)Concern (Examples)Concern (Examples)Concern (Examples)

CustomerCustomerCustomerCustomer Business goals

Schedule & budget estimation

Feasibility and risk assessment

Requirements traceability & progress tracking

Product-line compatibility

UserUserUserUser Consistency with requirements & use cases

Future requirements growth accommodation

Support of dependability & other X-abilities

Service managerService managerService managerService manager Reliability, availability and maintainability

Stakeholders & their Concerns 1/2

Software Engineering

MRV Chaudron

Sheet 24

StakeholdersStakeholdersStakeholdersStakeholders Concern (Examples)Concern (Examples)Concern (Examples)Concern (Examples)

System engineerSystem engineerSystem engineerSystem engineer Requirements traceability

Support of tradeoff analyses

Completeness of architecture

Consistency of architecture with requirements

DevelopeDevelopeDevelopeDeveloper Sufficient detail for design and development

Workable framework for system construction,

e.g. selection/assembly of components &

technologies

Resolution of development risks

MaintainerMaintainerMaintainerMaintainer Guidance on software modification

Guidance on architecture evolution

Interoperability with existent systems

Stakeholders & their Concerns 2/2

13

Software Engineering

MRV Chaudron

Sheet 25

Multiple Purposes of Architecture

Understanding

+ Analyzing + Communicating + Constructing

Picture from Gerrit Muller, How to Create a Managable Platform Architecture

Software Engineering

MRV Chaudron

Sheet 26

When Architecting?

• When developing a new system

• When changing a system
• if an architecture description is not available,

or insufficient, as a basis for change
• adapt the architecture documentation to changes

• When integrating existing systems

• For special communication needs
to provide a common ground for understanding

14

Software Engineering

MRV Chaudron

Sheet 27

… giving people the appropriate tools to frame and
structure their discussion and decision making is
an enormous benefit to the disciplined
development of complex systems.

Software Architecture in Practice 2nd ed.

Bass, Clements, Kazman

Software Engineering

MRV Chaudron

Sheet 28

What is Software Architecture?

Definition 3

Architecture of software is a collection of design

decisions that are expensive to change.

Alexander Ran, Nokia Research

September 2001 European Conference on Software Engineering

“The things that are fixed”

15

Describing Describing

ArchitecturesArchitectures

Software Engineering

MRV Chaudron

Sheet 30

Philippe Kruchten’s Definition

Software architecture is not only concerned with
structure and behaviour, but also with
• usage
• functionality
• performance
• resilience
• reuse
• comprehensibility
• economic and technological constraints and tradeoffs
• aesthetics

The Rational Unified Process -- An Introduction,
Addison-Wesley, 1999.

16

Software Engineering

MRV Chaudron

Sheet 31

4+1 Views Representation of
System Architecture

Logical View

Functionality (Decomposition)

Development View

Programmers

Configuration management

Process View
System Architect

Deployment View

System topology

Delivery, installation, maintenance

Performance, Scalability, Throughput

System engineering

Use Case View

Concurrency, Communication,

Synchronization

End-user System Architect

How is the system
structured?

How to build /
configure ?

Where to install ?
What hw\nw is used?

How does the
system behave?

How does the
system perform ?

What can/does
the system do ?

Software Engineering

MRV Chaudron

Sheet 32

Example 4+1 model
Structure model : components,

packages, interfaces
Config. Mngnt model

Behaviour model :

MSC, state-diagrams

A B

C D

A B C D

Deployment model :

physical model + mapping

A

B
C D

Stakeholders &

Use cases view

BC/WC e2e-response times, freq. bandwidth, availability

TCP/IP over Ethernet

versioning policies

file ownership

…

17

Software Engineering

MRV Chaudron

Sheet 33

Use Case Diagram
� Captures system functionality as seen by users

� Built in early stages of development

� Purpose

� Specify the context of a system

� Capture the requirements of a system

� Validate an architecture’s completeness

� Drive implementation and generate test cases

� Developed by analysts and domain experts

Software Engineering

MRV Chaudron

Sheet 34

Case: Web shop

customer shop owner

register

search

add item to cart

remove item from cart

login

pay items in cart

add item to
catalogue

remove item
from catalogue

package & ship

add to stock

18

Software Engineering

MRV Chaudron

Sheet 35

Structure Diagram

� Defines subsystems of functionality

� Purpose

�Define decomposition into subsystems

�Provide support for use-cases

� Use Component diagram

�May use Class, but this suggests OO
implem.

Software Engineering

MRV Chaudron

Sheet 36

Web Shop: Functional Areas
(V0.1)

CustomerCustomerCustomerCustomer
RegistrationRegistrationRegistrationRegistration

Shop Shop Shop Shop OwnerOwnerOwnerOwner
RegistrationRegistrationRegistrationRegistration

Product Product Product Product CatalogueCatalogueCatalogueCatalogue
MaintenanceMaintenanceMaintenanceMaintenance

Shop User InterfaceShop User InterfaceShop User InterfaceShop User Interface

PaymentPaymentPaymentPayment Stock Stock Stock Stock ControlControlControlControl

19

Software Engineering

MRV Chaudron

Sheet 37

Check Use Cases Against Functional

Areas

Customer
Registration

Shop Owner
Registration

Product Catalogue
Maintenance

Shop UI

Payment

register

search

add item to cart remove item from cart

login

pay items in cart

add item to
catalogue

Stock Control

package & ship

add to stock

remove item
from catalogue

login

Software Engineering

MRV Chaudron

Sheet 38

Web Shop: Functional Areas (V0.2)

Customer
Registration

Shop Owner
Registration

Product Catalogue
Maintenance

Shop UI

Payment

register

search

add item to cart

remove item from cart

login

pay items in cart

add item to
catalogue

Stock Control

package & ship

add to stock

remove item
from catalogue

login

Customer Selection
Management

Excluded from example
• Payment adm
• Shop staff salary adm
• ...

20

Software Engineering

MRV Chaudron

Sheet 39

Web Shop: Responsabilities

Customer Registration

Shop Owner Registration

Prod. Cat. Maintenance

Shop UI

Payment

Stock Control

Entry, storage & retrieval of customers

Entry, storage & retrieval of shop staff

Entry, storage & retrieval of product data

Provide customers access to product data

Handle transaction between customer & shop

Register available products in stock

Cust. Selection Mngmt. Register customer product selection

Software Engineering

MRV Chaudron

Sheet 40

Identify support for Use Cases at different

layers in the architecture

register

search

add item to cart

remove item from cart

login

pay items in cart

presentation
logic

application
logic

data
management

login
screen

user
table

…

search
screen

select
item

manage
cart

product
table

check
-out

…

…

21

Software Engineering

MRV Chaudron

Sheet 41

Identification of Data Domains
Customer Registration

Shop Staff Registration

Prod. Cat. Maintenance

Shop UI

Payment

Stock Control

Cust. Selection Mngmt.

Customer data
(name+address, authentication)

Stock data
(product-id, quantity)

Shop staff
(name, authentication)

Product Catalogue
(product-id, price)

Cart
(product-id, quantity)

volatile &
derived

interface
issues only

volatile

Software Engineering

MRV Chaudron

Sheet 42

Identification of Dependencies

Payment
Cust. Sel.
Mngmt.

Customer
Registration

Customer
data

Shop Staff
Registration

Shop
Staff
data

Shop UI

Stock
Control

Stock
data

Prod. Catal.
Maint.

Product
Catalogue

Cart-
data

Staff Shop UI

Subsystemuses
keykey

package

<< subsystem>>

22

Software Engineering

MRV Chaudron

Sheet 43

View: Definition (from IEEE 1471)

3.4 Architectural Description (AD): A collection
of products to document an architecture.

3.9 View: A representation of a whole system from
the perspective of a related set of concerns.

A view may consist of one or more architectural models

Each such architectural model is developed using the
methods established by its associated architectural
viewpoint.

An architectural model may participate in more than
one view.

Software Engineering

MRV Chaudron

Sheet 44

Overview (According to IEEE 1471)

stakeholderstakeholderstakeholderstakeholder

concernconcernconcernconcern

viewpointviewpointviewpointviewpoint

viewviewviewview

modelmodelmodelmodel

has

conforms to
establishes
methods for

consists of

is covered by

architectural architectural architectural architectural
descriptiondescriptiondescriptiondescription

systemsystemsystemsystem

architecturearchitecturearchitecturearchitecture

has

has

described by

is organised by

1..****

1..****

1..****

1..****

1

23

Software Engineering

MRV Chaudron

Sheet 45

Architectural view

� An architectural view is a simplified

description (an abstraction) of a system from

a particular perspective/view point, covering
particular concerns, and omitting entities

that are not relevant to this perspective

Software Engineering

MRV Chaudron

Sheet 46

Viewpoints & views

view
point

vie
w

24

Software Engineering

MRV Chaudron

Sheet 47

Overview - example

stakeholderstakeholderstakeholderstakeholder

concernconcernconcernconcern

viewpointviewpointviewpointviewpoint

viewviewviewview

modelmodelmodelmodel

has

conforms to
establishes
methods for

consists of

is covered by

architectural architectural architectural architectural
descriptiondescriptiondescriptiondescription

systemsystemsystemsystem

architecturearchitecturearchitecturearchitecture

has

has

described by

is organised by

1..****

1..****

1..****

1..****

1

Traffic light Driver

TimelinessTimeliness

Timing-
viewpoint

Traffic Light
Architecture

TLA
Description

Timing-
diagrams

SafetySafety

Software Engineering

MRV Chaudron

Sheet 48

Recommendations for Architecture Description
• describe the system goalsgoalsgoalsgoals & the assumptions on the environmentassumptions on the environmentassumptions on the environmentassumptions on the environment

• describe the design principles, decisions, guidelines principles, decisions, guidelines principles, decisions, guidelines principles, decisions, guidelines

• and their rationalerationalerationalerationale

• describe several viewsseveral viewsseveral viewsseveral views that can be combined in a consistent model

at least the following views should be given:

• functional/structural (decomposition) viewfunctional/structural (decomposition) viewfunctional/structural (decomposition) viewfunctional/structural (decomposition) view
• include a description of the interfaces between (sub)systems

• process/dynamical/process/dynamical/process/dynamical/process/dynamical/behaviourbehaviourbehaviourbehaviour view view view view

• deployment viewdeployment viewdeployment viewdeployment view

• prevent mixing of views

• address nonnonnonnon----functionalfunctionalfunctionalfunctional (*ilities) aspects

• use a well-defined notation and include its keykeykeykey/legendlegendlegendlegend
• this aids systematic use of notation/avoids inconsistent use

• improves common understanding

• prevents mixing of different levels of abstraction

• add explanation in natural languagenatural languagenatural languagenatural language

25

Software Engineering

MRV Chaudron

Sheet 49

• Software Architecture is a critical aspect in the design
and development of software

• We discussed definitions and objectives of Sw.Arch.

• Good architectural design requires human creativity,
hard work, and a critical attitude.

• Understanding of basic principles of architecture
design, analysis, documentation, and process are
necessary, but experience is hard to beat.

Concluding Remarks
Experience is the hardest kind of teacher.

It gives the test first and the lesson afterward.
Susan Ruth, 1993

Software Engineering

MRV Chaudron

Sheet 50

Design of Software Architecture

Functional
Requirements

Functional
Requirements

Extra-Functional
Requirements

Extra-Functional
Requirements

Domain
Requirements

Domain
Requirements

User
Requirements

User
Requirements

Group Functionality
in subsystems

Group Functionality
in subsystems

Design approach for
realizing extra-functional

quality properties

Design approach for
realizing extra-functional

quality properties

SynthesizeSynthesize

Analyze Analyze
refineRBD, QN, RMA,

ATAM, prototype

RBD, QN, RMA,
ATAM, prototype

S.M.A.R.T.S.M.A.R.T.

Design MetricsDesign Metrics

Model/DescribeModel/DescribeUML, ViewsUML, Views

Identify
•Trade-offs
•Sensitivity points

Identify
•Trade-offs
•Sensitivity points

Select
•Architectural Style
•Reference Architecture
•Architecture Tactics

Select
•Architectural Style
•Reference Architecture
•Architecture Tactics

Understand the DomainUnderstand the Domain

26

Software Engineering

MRV Chaudron

Sheet 51

WWW References

Software Architecture
� Software architecture resources (Gert Florijn, Serc)

http://www.serc.nl/people/florijn/interests/arch.html

� Software Architecture at the SEI

http://www.sei.cmu.edu/ata/ata_init.html

inspired by practice; focus on architecture evaluation; lots of papers

� Software Architecting Process / Success Factors & Pitfalls

http://www.bredemeyer.com/howto.htm

� Architectural Blueprints: the 4+1 view model of Software
Architecture http://www.rational.com/media/whitepapers/Pbk4p1.pdf.

The original paper by Kruchten: nice examples, but old (pre-UML)
notation

Software Engineering

MRV Chaudron

Sheet 52

Questions

27

Software Engineering

MRV Chaudron

Sheet 53

Recommendations for Architecture
Description
• describe the system goalsgoalsgoalsgoals & the assumptions on the environmentassumptions on the environmentassumptions on the environmentassumptions on the environment

• describe the design principles, decisions, guidelines principles, decisions, guidelines principles, decisions, guidelines principles, decisions, guidelines

• and their rationalerationalerationalerationale

• describe several viewsseveral viewsseveral viewsseveral views that can be combined in a consistent model

at least the following views should be given:

• functional/structural (decomposition) viewfunctional/structural (decomposition) viewfunctional/structural (decomposition) viewfunctional/structural (decomposition) view
• include a description of the interfaces between (sub)systems

• process/dynamical view process/dynamical view process/dynamical view process/dynamical view

• deployment viewdeployment viewdeployment viewdeployment view

• prevent mixing of views

• address nonnonnonnon----functionalfunctionalfunctionalfunctional (*ilities) aspects

• use a well-defined notation and include its keykeykeykey/legendlegendlegendlegend
• this aids systematic use of notation/avoids inconsistent use

• improves common understanding

• prevents mixing of different levels of abstraction

• add explanation in natural languagenatural languagenatural languagenatural language

Software Engineering

MRV Chaudron

Sheet 54

e.g. DATA

Builder

SCOPE

(CONTEXTUAL)

MODEL
(CONCEPTUAL)

Designer

SYSTEM
MODEL

(LOGICAL)

MODEL

(PHYSICAL)

DETAILED
REPRESEN-
TATIONS

(OUT-OF-
CONTEXT)

Sub-
Contractor

FUNCTIONING
ENTERPRISE

DATA FUNCTION NETWORK

e.g. Data Definition

Ent = Field
Reln = Address

e.g. Physical Data Model

Ent = Segment/Table/etc.

Reln = Pointer/Key/etc.

e.g. Logical Data Model

Ent = Data Entity

Reln = Data Relationship

e.g. Semantic Model

Ent = Business Entity

Reln = Business Relationship

List of Things Important

to the Business

ENTITY = Class of
Business Thing

List of Processes the

Business Performs

Function = Class of

Business Process

e.g. Application Architecture

I/O = User Views

Proc .= Application Function

e.g. System Design

I/O = Data Elements/Sets

Proc.= Computer Function

e.g. Program

I/O = Control Block

Proc.= Language Stmt

e.g. FUNCTION

e.g. Business Process Model

Proc. = Business Process

I/O = Business Resources

List of Locations in which
the Business Operates

Node = Major Business
Location

e.g. Business Logistics
System

Node = Business Location

Link = Business Linkage

e.g. Distributed System

Node = I/S Function
(Processor, Storage, etc)
Link = Line Characteristics

e.g. Technology Architecture

Node = Hardware/System
Software

Link = Line Specifications

e.g. Network Architecture

Node = Addresses
Link = Protocols

e.g. NETWORK

Architecture

Planner

Owner

Builder

ENTERPRISE
MODEL

(CONCEPTUAL)

Designer

SYSTEM
MODEL

(LOGICAL)

TECHNOLOGY
MODEL

(PHYSICAL)

DETAILED
REPRESEN-

TATIONS
(OUT-OF

CONTEXT)

Sub-

Contractor

FUNCTIONING

MOTIVATIONTIMEPEOPLE

e.g. Rule Specification

End = Sub-condition

Means = Step

e.g. Rule Design

End = Condition

Means = Action

e.g., Business Rule Model

End = Structural Assertion
Means =Action Assertion

End = Business Objective

Means = Business Strategy

List of Business Goals/Strat

Ends/Means=Major Bus. Goal/
Critical Success Factor

List of Events Significant

Time = Major Business Event

e.g. Processing Structure

Cycle = Processing Cycle
Time = System Event

e.g. Control Structure

Cycle = Component Cycle

Time = Execute

e.g. Timing Definition

Cycle = Machine Cycle
Time = Interrupt

e.g. SCHEDULE

e.g. Master Schedule

Time = Business Event

Cycle = Business Cycle

List of Organizations

People = Major Organizations

e.g. Work Flow Model

People = Organization Unit

Work = Work Product

e.g. Human Interface

People = Role

Work = Deliverable

e.g. Presentation Architecture

People = User

Work = Screen Format

e.g. Security Architecture

People = Identity
Work = Job

e.g. ORGANIZATION

Planner

Owner

to the BusinessImportant to the Business

What How Where Who When Why

© John A. Zachman, Zachman International

SCOPE
(CONTEXTUAL)

Architecture

e.g. STRATEGY
ENTERPRISE

e.g. Business Plan

TM

Zachman Enterprise Architecture Framework
1987, extended: 1992

TECHNOLOGY

ENTERPRISE

1

Planning, Estimation & Measurement

Peter Bink
March 22th, 2007

Planning, Estimation & Measurement 2007-03-22

Capgemini

•68.000 employees
•More than 30 countries
•Serve all possible markets
•Approach: Collaborate

•Study: Chemistry, Environmental
sciences and Laboratory Informatics

•12 years at Capgemini

•Roles: developer (pascal, C, C++),
tester, process improver, project
manger, recruiter, estimation &
measurement officer

2

Planning, Estimation & Measurement 2007-03-22

Capgemini Holland

Appr. 6.000 employees

Accelerated
Delivery
Center

Planning, Estimation & Measurement 2007-03-22

ADC Objective

3

Planning, Estimation & Measurement 2007-03-22

Why do you want to estimate?

Planning, Estimation & Measurement 2007-03-22

4

Planning, Estimation & Measurement 2007-03-22

Estimation basics: ways to estimate?

Top down
Bottom up

Analogy
Expert

Planning, Estimation & Measurement 2007-03-22

Estimation basics: Expert estimation

?

Improve expert estimation:
•Wide band delphi
•PERT

5

Planning, Estimation & Measurement 2007-03-22

EstiEsti--

mationmation

MeasurementMeasurement

ProcessProcess

B
u
s
in
e
s
s

B
u
s
in
e
s
s

n
e
e
d
s

n
e
e
d
s P

r
o
c
e
s
s

P
r
o
c
e
s
s
n
e
e
d
s

n
e
e
d
s

The basics of Estimation & Measurement

Planning, Estimation & Measurement 2007-03-22

Estimate

MeasureAnalyze

CREATE BASELINE

CREATE INSIGHT

IMPROVE ESTIMATE

EstimationEstimation

databasedatabase

The E&M lifecycle

6

Planning, Estimation & Measurement 2007-03-22

Project cost
(effort and size)

4x

2x

1.5x

1.25x

1.0x

0.8x

0.67x

0.5x

0.25x

Project

Schedule

1.6x

1.25x

1.15x

1.1x

1.0x

0.85x

0.8x

0.6x

0.9x

TimeInception Elaboration Construction Transition

The cone of uncertainty

Planning, Estimation & Measurement 2007-03-22

Calibrated
estimation

BOTTOM UP TOP DOWN

Estimating

7

Planning, Estimation & Measurement 2007-03-22

Size

Productivity

SLIM

Duration

Effort

Quality

Size Productivityx = Effort

Traditional

Capgemini / ADC

Top Down estimate

[] [] 3
4

3
1

timeeffort

size
PI

×
=

Planning, Estimation & Measurement 2007-03-22

People

ProcessTechnology

Productivity factors

8

Planning, Estimation & Measurement 2007-03-22

Duration vs productivity

0,0

20,0

40,0

60,0

80,0

100,0

120,0

10 15 20 25 30 35

Duration (mnths)

H
R

/F
P

-25% +10%

Effect of duration on productivity

Planning, Estimation & Measurement 2007-03-22

Constraints:

•3200 FP
•PI 20,4

Optimal:
•Duration: 19,9 months
•-25% = 15,75 mnths
•+10%= 22 mnths

3,12,4988724

3,731174623

4,43,71390422

5,24,61660521

6,562073620

6,66,12089019,9

7,77,52452419

9,89,93091118

12,313,33901017

15,517,74900516

20,124,56363015

Efficiency
[PHR/FP]

Teamsize
[FTE]

Effort
[PHR]

Duration
[Mnths]

Effect of duration on productivity

9

Planning, Estimation & Measurement 2007-03-22

E&M

Officer

NIKU / Clarity Repository

RequisitePro

ClearCase

NIKU / Clarity

ClearQuest

Project

Create/

Update

planning

Record

Hours

Earned

Value

Record

defects

Track in

SLIM

Control

Report to

Project

Manager

Continuous
Integration

Static Quality

Build results

Measurement: Tracking actuals

Planning, Estimation & Measurement 2007-03-22

S t op L ight O v erv iew

F TE S t af f

6 1 2 18 24 30 36 4 2 48 54 60 66

05-06

'04

17-07 28-08 09-10 20-11 01-0 1

'0 5

1 2-02 26-03 07-05 18-06 30-0 7 1 0-09

0

2

4

6

8

10

12

14

p
p

l

12111 09876543210
C um C os t L if e C y c le

6 12 18 24 30 36 42 4 8 54 60 66

0 5-06

'04

17-07 28-08 09-10 20-1 1 01 -01

'05

12-02 26-03 07-05 18-06 30-07 10-09

0

5 00

1 .000

1 .500

2 .000

€
 (th

o
u

s
a
n

d
s
)

1 211109876543210

C um R U P SL OC

6 1 2 18 24 30 36 4 2 48 54 60 66

05-06

'04

17-07 28-08 09-10 20-11 01-0 1

'0 5

1 2-02 26-03 07-05 18-06 30-0 7 1 0-09

0

20

40

60

80

100

120

140

R
S

L
O

C
 (th

o
u

s
a

n
d

s
)

12111 09876543210
C um D ef ec ts F o und C at egory Tota l

6 12 18 24 30 36 42 4 8 54 60 66

0 5-06

'04

17-07 28-08 09-10 20-1 1 01 -01

'05

12-02 26-03 07-05 18-06 30-07 10-09

0

2 00

4 00

6 00

8 00

1 .000

1 .200

1 .400

D
e

fe
c

ts

1 211109876543210

Trans it iebas e line v er lengd m et 3 we k en.

C urrent P lan A c tua ls C urre nt F o rec as t Green C on tro l B ound Y ellow C ont ro l B ound P ro je c t : W e llin k

10

Planning, Estimation & Measurement 2007-03-22

Stop Light Ov e rv ie w

Avg Staff Cons t

3 6 9 12 1 5 1 8 21 24 2 7 30 33 3 6 3 9 42 4 5 4 8

04 -06

'0 5

2 5-0 6 1 6-0 7 06 -08 27-08 1 7-0 9 08 -10 29 -10 1 9-1 1 1 0-1 2 31 -12 2 1-01

'06

1 1-0 2 04 -03 25-03 1 5-0 4 06 -05

0

1 0

2 0

3 0

4 0

5 0

p
p
l

7654321

Cum Effor t Cons t

3 6 9 1 2 15 1 8 2 1 24 27 3 0 3 3 36 3 9 4 2 45 48

0 4-0 6

'0 5

25 -06 1 6-07 0 6-0 8 27 -08 17 -09 0 8-1 0 29 -10 19 -11 1 0-1 2 3 1-1 2 21 -01

'0 6

1 1-02 0 4-0 3 25 -03 15 -04 0 6-0 5

0

10

20

30

40

50

60

P
H

R
 (th

o
u
s
a
n
d

s
)

7654321

Cum RUPSLOC

3 6 9 12 1 5 1 8 21 24 2 7 30 33 3 6 3 9 42 4 5 4 8

04 -06

'0 5

2 5-0 6 1 6-0 7 06 -08 27-08 1 7-0 9 08 -10 29 -10 1 9-1 1 1 0-1 2 31 -12 2 1-01

'06

1 1-0 2 04 -03 25-03 1 5-0 4 06 -05

0

5 0

1 00

1 50

2 00

2 50

3 00

3 50

S
L
O

C
 (th

o
u
s
a
n
d
s
)

7654321

Cum De fe cts Found Cate gor y Total

3 6 9 1 2 15 1 8 2 1 24 27 3 0 3 3 36 3 9 4 2 45 48

0 4-0 6

'0 5

25 -06 1 6-07 0 6-0 8 27 -08 17 -09 0 8-1 0 29 -10 19 -11 1 0-1 2 3 1-1 2 21 -01

'0 6

1 1-02 0 4-0 3 25 -03 15 -04 0 6-0 5

0

50 0

1.0 00

1.5 00

2.0 00

2.5 00

D
e
fe

c
ts

7654321

Current P lan Ac tuals Current F orecas t G reen Control Bound Yellow Control Bound Projec t: RE IS

Planning, Estimation & Measurement 2007-03-22

Stop Light Ov e rv ie w

FTE Staff

3 6 9 12 15 18 21 24 27 30 33 36

14-0 5

'0 5

04 -06 25 -06 16 -07 06 -08 27-08 17-0 9 08-1 0 29-1 0 19-1 1 10 -12 31 -12 21 -01

'0 6

0

1

2

3

4

5

6

7

p
p
l

87654321

Cum Effor t L ife Cycle

3 6 9 12 15 18 21 24 27 30 33 36

14-05

'05

04-0 6 25-0 6 16-0 7 06 -08 27 -08 17 -09 08 -10 29-10 19-1 1 10-1 2 31-1 2 21 -01

'0 6

0

1.00 0

2.00 0

3.00 0

4.00 0

5.00 0

6.00 0

7.00 0

P
H

R

87654321

Cum RUPSLOC

3 6 9 12 15 18 21 24 27 30 33 36

14-0 5

'0 5

04 -06 25 -06 16 -07 06 -08 27-08 17-0 9 08-1 0 29-1 0 19-1 1 10 -12 31 -12 21 -01

'0 6

0

20

40

60

80

100

120

140

S
L
O

C
 (th

o
u

s
a
n
d

s
)

87654321

Cum De fects Found Categor y Total

3 6 9 12 15 18 21 24 27 30 33 36

14-05

'05

04-0 6 25-0 6 16-0 7 06 -08 27 -08 17 -09 08 -10 29-10 19-1 1 10-1 2 31-1 2 21 -01

'0 6

0

200

400

600

800

D
e
fe

c
ts

87654321

Current P lan Ac tuals Current F orecas t Green Control Bound Yellow Control Bound Projec t: UPR

11

Planning, Estimation & Measurement 2007-03-22

Your questions

Planning, Estimation & Measurement 2007-03-22

Manpower build-up (from Construction Industry!)

12

Planning, Estimation & Measurement 2007-03-22

� Allen puts forward the following simple empirical relationship as a first approximation to
planned manpower loading (Allen 1979).

� The maximum on-the-job manpower is 160% of the average manpower requirement.

� The maximum on-the-job manpower first occurs after 40% of the total manpower
requirement has been expended.

� The period of maximum on-the-job manpower accounts for 40% of the total manpower
requirement.

� The maximum on-the-job manpower first occurs when 50% of the project time has
elapsed.

� The period of maximum on-the-job manpower occurs for 25% of the project time.

Allen, W. 1979. Developing the Project Plan. Notes prepared for Engineering Institute of
Canada Annual Congress Workshop. Toronto. pp 3-9.

Canadian Journal of Civil Engineering, Vol. 21, 1994 pp 939-953, under the title "A
Pragmatic Approach to Using Resource Loading, Production and Learning Curves on
Construction Projects".

Planning, Estimation & Measurement 2007-03-22

� A first approximation to project progress or output is suggested by the following empirical
relationship.

� 25% of total progress is achieved in the first third of the total time,

� Another 50% in the next third, and

� The remaining 25% in the last third.

� Important parameter:

• man-power build up rate: how fast are people added to the project

1

Rational Unified Process &

Designing Software (LL Chapter 9)

RUP pictures in this presentation © IBM/Rational

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 2

Agenda

• Recap Architecture

• RUP

• Design heuristics & guidelines

This afternoon werkcollege

• Design

2

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 3

Multiple Purposes of Architecture

Understanding

+ Analyzing + Communicating + Constructing

Picture from Gerrit Muller, How to Create a Managable Platform Architecture

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 4

Overview (According to IEEE 1471)

stakeholderstakeholderstakeholderstakeholder

concernconcernconcernconcern

viewpointviewpointviewpointviewpoint

viewviewviewview

modelmodelmodelmodel

has

conforms to
establishes
methods for

consists of

is covered by

architectural architectural architectural architectural
descriptiondescriptiondescriptiondescription

systemsystemsystemsystem

architecturearchitecturearchitecturearchitecture

has

has

described by

is organised by

1..****

1..****

1..****

1..****

1

3

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 5

Viewpoints & views

view
point

vie
w

6

Capstone Cases – Value Based Software Engineering

MRV Chaudron

Sheet 6

Recommendations for Architecture Description
• describe the system goalsgoalsgoalsgoals & the assumptions on the environmentassumptions on the environmentassumptions on the environmentassumptions on the environment

• describe the design principles, decisions, guidelines principles, decisions, guidelines principles, decisions, guidelines principles, decisions, guidelines

• and their rationalerationalerationalerationale

• describe several viewsseveral viewsseveral viewsseveral views that can be combined in a consistent model

at least the following views should be given:

• functional/structural (decomposition) viewfunctional/structural (decomposition) viewfunctional/structural (decomposition) viewfunctional/structural (decomposition) view
• include a description of the interfaces between (sub)systems

• process/dynamical/process/dynamical/process/dynamical/process/dynamical/behaviourbehaviourbehaviourbehaviour view view view view

• deployment viewdeployment viewdeployment viewdeployment view

• prevent mixing of views

• address nonnonnonnon----functionalfunctionalfunctionalfunctional (*ilities) aspects

• use a well-defined notation and include its keykeykeykey/legendlegendlegendlegend
• this aids systematic use of notation/avoids inconsistent use

• improves common understanding

• prevents mixing of different levels of abstraction

• add explanation in natural languagenatural languagenatural languagenatural language

4

7

Capstone Cases – Value Based Software Engineering

MRV Chaudron

Sheet 7

Rational Unified Process (RUP)

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 8

Rational Unified Process

5

9

Effort Distribution in Model-based Development – Heijstek & Chaudron

MRV Chaudron

Sheet 9

RUP Humps from 3 (largish) projects

Heijstek & Chaudron 2007 Heijstek & Chaudron 2007 Heijstek & Chaudron 2007

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 10

Progress perspective

6

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 11

Progress perspective (alternative pic)

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 12

Iteration Perspective

7

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 13

Incremental � Risk reduction

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 14

Essentials of RUP

•Develop a Vision

•Manage to the Plan

•Identify and Mitigate Risks Early and regularly

•Examine the Business Case

•Provide User Support

1. Develop software iteratively; Incrementally build and test

2. Manage requirements

3. Use component-based architectures

4. Visually model software

5. Verify software quality

6. Control changes to software

8

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 15

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 16

Project Management

9

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 17

Implementation

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 18

RUP Tooling

Describes processes in terms of:

• workflows

• roles

• artifacts

Provides

• templates for deliverables

10

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 19

RUP workflow

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 20

Tooling

11

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 21

Tooling

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 22

Design

12

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 23

9.1 The Process of Design

Definition:

• Design is a problem-solving process whose objective is to

find and describe a way:

—To implement the system’s functional requirements...

—While respecting the constraints imposed by the

quality, platform and process requirements...

- including the budget

—And while adhering to general principles of good

quality

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 24

Design as a series of decisions

A designer is faced with a series of design issues

• These are sub-problems of the overall design problem.

• Each issue normally has several alternative solutions:

—design options.

• The designer makes a design decision to resolve each

issue.

—This process involves choosing the best option from

among the alternatives.

13

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 25

Making decisions

To make each design decision, the software engineer

uses:

• Knowledge of

—the requirements

—the design as created so far

—the technology available

—software design principles and ‘best practices’

—what has worked well in the past

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 26

Document decisions

- Record the decision

- Record the motivation

- Record rejected alternatives

14

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 27

Design space

The space of possible designs that could be achieved by choosing

different sets of alternatives is often called the design space

• For example:

28

Capstone Cases – Value Based Software Engineering

MRV Chaudron

Sheet 28

Features
According to

FODA: A prominent and user-visible aspect, quality or
characteristic of a system.

ODM: A distinguishable characteristic of a system that is
relevant to a stakeholder of the system

In mobile telephones:
- polyphonic ringtones
- SMS, MMS
- dual, tri-band,
- …

In cars:
- airco
- power-steering
- remote key-lock
- …

15

29

Capstone Cases – Value Based Software Engineering

MRV Chaudron

Sheet 29

Feature models

Types of features

Mandatory:Mandatory:Mandatory:Mandatory: All systems must have it
e.g. A car must have an engine

Alternative:Alternative:Alternative:Alternative:
A system must have one out of multiple options

e.g. Transmission may be manual or automatic

OptionalOptionalOptionalOptional: A system may have a feature
e.g. A car may have air-conditioning

30

Capstone Cases – Value Based Software Engineering

MRV Chaudron

Sheet 30

16

31

Capstone Cases – Value Based Software Engineering

MRV Chaudron

Sheet 31

Feature Diagram

engine

car

wheels aircosteering
wheel

transmission

manual automatic

optional

alternative
mandatory
(default)

A hierarchical decomposition of features.
A concept higher in the tree consists of its children

Additional annotations that may be used in the feature diagram:

- mutually exclusive features

- rationale for chosing between alternatives

- composition rules: airco may be used if horsepower>100

32

Capstone Cases – Value Based Software Engineering

MRV Chaudron

Sheet 32

Feature Solution Diagrams

From de Bruin & Van Vliet, 2001

FeatureFeatureFeatureFeature
spacespacespacespace

SolutionSolutionSolutionSolution
spacespacespacespace

17

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 33

Different aspects of design

• Architecture design:

—The division into subsystems and components,

- How these will be connected.

- How they will interact.

- Interface design

• Class design:

—The various features of classes.

• User interface design

• Algorithm design:

—The design of computational mechanisms.

• Protocol design:

—The design of communications protocol.

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 34

Architecture is making decisions

The life of a software architect is
a long (and sometimes painful)
succession of suboptimal decisions
made partly in the dark.

• You will not have all information available

• You will make mistakes, but you should learn from them

• There is no objective measure for ‘goodness’

Grady Booch

18

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 35

Design of Software Architecture

Functional
Requirements

Functional
Requirements

Extra-Functional
Requirements

Extra-Functional
Requirements

Domain
Requirements

Domain
Requirements

User
Requirements

User
Requirements

Group Functionality
in subsystems

Group Functionality
in subsystems

Design approach for
realizing extra-functional

quality properties

Design approach for
realizing extra-functional

quality properties

SynthesizeSynthesize

Analyze Analyze
refineRBD, QN, RMA,

ATAM, prototype

RBD, QN, RMA,
ATAM, prototype

S.M.A.R.T.S.M.A.R.T.

Design MetricsDesign Metrics

Model/DescribeModel/DescribeUML, ViewsUML, Views

Identify
•Trade-offs
•Sensitivity points

Identify
•Trade-offs
•Sensitivity points

Select
•Architectural Style
•Reference Architecture
•Architecture Tactics

Select
•Architectural Style
•Reference Architecture
•Architecture Tactics

Understand the DomainUnderstand the Domain

1

Design Heuristics and StylesDesign Heuristics and StylesDesign Heuristics and StylesDesign Heuristics and Styles
(LL (LL (LL (LL Chapter 9)Chapter 9)Chapter 9)Chapter 9)

Michel Chaudron

Many slides based on Lethbridge and Laganiere
2

Software Engineering 2008

MRV Chaudron

Sheet 2

Agenda

� Recap RUP

� Design heuristics & guidelines

� Architectural Styles

� This afternoon: geen werkcollege

� hand in assignments electronically

chaudron@liacs.nlchaudron@liacs.nlchaudron@liacs.nlchaudron@liacs.nl

3

Software Engineering 2008

MRV Chaudron

Sheet 3

Summary Rational Unified Process

Structure model :, Development model

Behaviour model
:

A B

C D

A B C D

Deployment
model :

A
B

C D

Use cases view

4

Software Engineering 2008

MRV Chaudron

Sheet 4

Software Design Heuristics

5

Software Engineering 2008

MRV Chaudron

Sheet 5

Different aspects of design

� Architecture design:
� The division into subsystems and components,

� How these will be connected:

� How they will interact:

� Interface design & architectural style

� Class design:
� The various features of classes.

� User interface design

� Algorithm design:
� The design of computational mechanisms.

� Protocol design:
� The design of communications protocol.

6

Software Engineering 2008

MRV Chaudron

Sheet 6

Architecture is making decisions

The life of a software architect is
a long (and sometimes painful)
succession of suboptimal
decisions made partly in the dark.

• You will not have all information available

• You will make mistakes, but you should learn from them

• There is no objective measure for ‘goodness’

Grady Booch

2

7

Software Engineering 2008

MRV Chaudron

Sheet 7

Design of Software Architecture

Functional
Requirements

Functional
Requirements

Extra-Functional
Requirements

Extra-Functional
Requirements

Domain
Requirements

Domain
Requirements

User
Requirements

User
Requirements

Group Functionality
in subsystems

Group Functionality
in subsystems

Design approach for
realizing extra-functional

quality properties

Design approach for
realizing extra-functional

quality properties

SynthesizeSynthesize

Analyze Analyze
refineRBD, QN, RMA,

ATAM, prototype

RBD, QN, RMA,
ATAM, prototype

S.M.A.R.T.S.M.A.R.T.

Design MetricsDesign Metrics

Model/DescribeModel/DescribeUML, ViewsUML, Views

Identify
•Trade-offs
•Sensitivity points

Identify
•Trade-offs
•Sensitivity points

Select
•Architectural Style
•Reference Architecture
•Architecture Tactics

Select
•Architectural Style
•Reference Architecture
•Architecture Tactics

Understand the DomainUnderstand the Domain

8

Software Engineering 2008

MRV Chaudron

Sheet 8

Design Principle 1: Divide and conquer

� Trying to deal with something big all at once

is normally much harder than dealing with a

set of smaller things

� Each individual component is smaller, and

therefore easier to understand

� Parts can be replaced or changed without having to

replace or extensively change other parts.

� Separate people can work on separate parts

� An individual software engineer can specialize

9

Software Engineering 2008

MRV Chaudron

Sheet 9

Ways of dividing a software system

A system is divided up into

�Layers & subsystems

�A subsystem can be divided

up into one or more packages

�A package is divided up into classes

�A class is divided up into methods

10

Software Engineering 2008

MRV Chaudron

Sheet 10

Layering

2

1

0

3Partitioning in non-overlapping units that

- provide a cohesive set of services at an

abstraction level

(while abstracting from their implementation)

- layer n is allowed to use services of layer n-1

(and not vice versa)

alternative:

bridging layers: layer n may use layers <n

enhances efficiency but hampers portability

GoalsGoalsGoalsGoals: Separation of Concerns, Abstraction, Modularity, Portability

11

Software Engineering 2008

MRV Chaudron

Sheet 11 12

Software Engineering 2008

MRV Chaudron

Sheet 12

Layering into levels of abstraction

Sentences

Phonemes

Syllables

Words

Phrases

Acoustic
waveform

Hearsay: speech understanding

3

13

Software Engineering 2008

MRV Chaudron

Sheet 13

Layering in Client / Server

• Presentation layerPresentation layerPresentation layerPresentation layer

Dialogue with users

• AAAApplicationpplicationpplicationpplication logiclogiclogiclogic

Application for individual user

• Business logicBusiness logicBusiness logicBusiness logic

Logic for processing

across users, divisions

• Data managementData managementData managementData management

Storage of data

presentation
logic

business
logic

data
management

application
logic

client

server

Unit of change

Unit of responsibility

Unit of deployment

Unit of change

Unit of responsibility

Unit of deployment

14

Software Engineering 2008

MRV Chaudron

Sheet 14

E
x
a
m
p
le
 3
-
ti
e
r

S
y
s
te
m

Diagram from
Wikipedia, 2007

15

Software Engineering 2008

MRV Chaudron

Sheet 15

Layering in Computer Networks:
OSI & Internet

Physical

Data Link

Network

Transport

Session

Presentation

Application

Picture from Jeremy Bradbury,
Queens Univ. Canada

16

Software Engineering 2008

MRV Chaudron

Sheet 16

Layer 3: End-to-End

Layer 2: Datalink

Layer 1: Physical

Request Confirm

Distributed (e.g. TCP)

Distributed (e.g. IP)

Local (e.g. OS)

Response Indication

Bitpipe

Protocol

Layering (2)
Example: Communication Stack

17

Software Engineering 2008

MRV Chaudron

Sheet 17

A Component-based Reference
Architecture for Computer Games

(E. Folmer, 2007)

g
e
n
e
ric

g
e
n
e
ric

g
e
n
e
ric

g
e
n
e
ric

s
p
e
c
ific

s
p
e
c
ific

s
p
e
c
ific

s
p
e
c
ific

18

Software Engineering 2008

MRV Chaudron

Sheet 18

«layer»

Business Layer

«layer»

Common Elements
«layer»

Presentation and Dialogue Layer

«layer»

Persistence Layer

«subsystem»
P

«subsystem»
M

«subsystem»
F

«subsystem»
D

«subsystem»
C

«subsystem»
M

«subsystem»
P«subsystem»

M

«subsystem»
F

«subsystem»
D«subsystem»

C

«subsystem»
M

«subsystem»
P

«subsystem»
D

«subsystem»
M

«subsystem»
F

«subsystem»
C

«subsystem»
M

«subsystem»
Client / Browser

«subsystem»
E

«subsystem»
Apache

«subsystem»
RC

«subsystem»
JR

«subsystem»
PL

«subsystem»
S

«subsystem»
Client Authentication

«subsystem»
Data Security

4

19

Software Engineering 2008

MRV Chaudron

Sheet 19

Peer to Peer Reference ArchitecturePeer to Peer Reference ArchitecturePeer to Peer Reference ArchitecturePeer to Peer Reference Architecture

Communication
layer

Group mngmnt
layer

Quality of service
layer

Application
layer

Domain specific
layer

communication

discovery locating & routing

security resource aggregation reliability

scheduling meta-data managementmessaging

tools applications services

20

Software Engineering 2008

MRV Chaudron

Sheet 20

What is Modularity?

We can “see it” via a
Design Structure Matrix (DSM)

21

Software Engineering 2008

MRV Chaudron

Sheet 21

What is a dependency?

� Component A requires B for it to work
�Functional coupling

� A change in module B requires change
in module A

� Implementation coupling

�Typically requires: re-testing A & B

Run-timeRun-time

Development-timeDevelopment-time

22

Software Engineering 2008

MRV Chaudron

Sheet 22

Dependencies in the code

� There is coupling between
two classes AAAA and BBBB if:
�AAAA has an attribute that refers to (is of type) BBBB.

�AAAA calls on services of an object BBBB.

�AAAA has a method which references BBBB

(via return type or parameter).

�AAAA is a subclass of (or implements) class BBBB.

This is not an exhaustive definition

23

Software Engineering 2008

MRV Chaudron

Sheet 23

Dependency: Coupling
Coupling is the degree of interdependence
between modules

high coupling low coupling

Design Principle: Reduce coupling where possible

24

Software Engineering 2008

MRV Chaudron

Sheet 24

Benefits of Low Coupling/Dependencies

Fewer interconnections between modules reduces

• time needed for understandingunderstandingunderstandingunderstanding the modules and

interactions

• the chance that changeschangeschangeschanges in one module cause

problemsproblemsproblemsproblems in other modules, which enhances

reusability

• the chance that a fault in one module will cause a

failurefailurefailurefailure in other modules, which enhances

robustness

Page-Jones, M. 1980. The Practical Guide to Structured Systems Design. New York, Yourdon Press, 1980.

5

25

Software Engineering 2008

MRV Chaudron

Sheet 25

Guideline: Minimize Dependency

Avoid dependencies where possible:

Design components so that

� they know about as few other components as possible

�use as few parameters as possible

� for as short a time as possible

�minimize number of calls between components

Ref: Component are from Mars – Chaudron & De Jong

26

Software Engineering 2008

MRV Chaudron

Sheet 26

Design Principle:
Reduce coupling where possible

� Coupling occurs when there are interdependencies
between one module and another

� When interdependencies exist, changes in one place will
require changes somewhere else.

� A network of interdependencies makes it hard to see at a
glance how some component works.

� Type of coupling:

� Content, Common, Control, Stamp, Data, Routine Call, Type use,
Inclusion/Import, External

27

Software Engineering 2008

MRV Chaudron

Sheet 27

Separation of Concerns

� Zaken die niet bij elkaar horen moeten
in verschillende eenheden (componenten
/ procedures / ..) worden geaddresseerd

28

Software Engineering 2008

MRV Chaudron

Sheet 28

Example Design Principles
Telecom Domain:

Separate the encoding/decoding of a
message from the handling of a
message, so

� decode1 ; decode2 ; decode3 ;

action1 ; action2

And not

� decode1 ; action1 ; decode2 ;

action2 ; decode3

handle

encode/
decode

handle &
encode/
decode

29

Software Engineering 2008

MRV Chaudron

Sheet 29

Aspect Orientation

Design & maintain concerns in isolation

Automatically construct implementation

by ‘weaving’ concerns

30

Software Engineering 2008

MRV Chaudron

Sheet 30

. x x x x x

x . x x x x x x x x x

Drive x x . x x x

System x x x . x x x x x x x x

x x . x

x x x x . x x x

x x x . x x

x x x . x x x x

x x x . x x x x x

Main x x x . x x x

Board x x x x x x x x . x x x x x

x x x x x . x x

x x x x x x . x x x

x x x . x

x x x . x x x

x x x x . x x x x

LCD x x x . x x

Screen x x x x . x x x

x x x x x x x . x x x

x x x . x

x x x x . x x x x

x x x . x x x x

x x x x x . x x x

Packaging x x x x . x x

x x x x x . x x

x x x x . x x

x x x x x .

x x x x x .

Graphics controller on Main Board or not?

If yes, screen specifications change;

If no, CPU must process more; adopt different interrupt protocols

Design Structure Matrix Map of a Laptop Computer

6

31

Software Engineering 2008

MRV Chaudron

Sheet 31

Design Structure Matrix Map of a Modular System

. x x x x

x . x x

Design x . x x Design Rules Task Group

Rules x x . x

x x x .

x . x x x

x x . x x x

Drive x x x x . x

System x x x x x . x x Hidden Modules

x x x . x many Task groups
x x x x .

x . x x

x x x x x . x x

x x . x x x x

Main x x x x x . x x

Board x x x x x x x . x x

x x x x x . x

x x x x x x . x
x x x x x .

x x . x x x

x x x . x x x

LCD x x x . x

Screen x x x x x . x x

x x x x x . x
x x x x x x .

x x . x x x x

x x x . x x x x

x x x . x x x

Pack- x x x x x x . x x

aging x x x . x x

x x x x x . x x

x x x x x .
x x x x x x .

x x x x x x . x x x x
System x x x x x x x x . x x System

Testing x x x x x x x x x . x x x Integration

& Integ- x x x x x x x x x x x x and Testing

ration x x x x x x x x . x Task Group
x x x x x x x x x x x .

32

Software Engineering 2008

MRV Chaudron

Sheet 32

DSM of Mozilla before and after redesignDSM of Mozilla before and after redesignDSM of Mozilla before and after redesignDSM of Mozilla before and after redesign

Formerly Mozilla was the commercial Netscape Navigator,

then released into open source.

From: Exploring the Structure of Complex Software Designs: An Empirical Study of Open
Source and Proprietary Code, Alan MacCormack, John Rusnak, Carliss Baldwin,
Harvard Business School, draft October 1st 2005

number

of files

1.3 dependencies per KSLOC2.4 dependencies per KSLOC

33

Software Engineering 2008

MRV Chaudron

Sheet 33

Types of CouplingTypes of CouplingTypes of CouplingTypes of Coupling

c
o
n
s
id
e
re
d

w
o
rs
e

• Data coupling
• data from one module is used in another

• Data type coupling

• two modules use the same data type

• Control coupling

•actions one module are controlled
by another module (switch)

• Content coupling
• a module refers to the internals
of another module Bind to interface

of components
34

Software Engineering 2008

MRV Chaudron

Sheet 34

9.9 Difficulties and Risks in
Design

� Like modelling, design is a skill that
requires considerable experience

� Individual software engineers should not
attempt the design of large systems

� Aspiring software architects should actively
study designs of other systems

� Poor designs can lead to expensive
maintenance

� Ensure you follow the principles discussed
in this chapter

35

Software Engineering 2008

MRV Chaudron

Sheet 35

Difficulties and Risks in Design

� It requires constant effort to ensure a
software system’s design remains good
throughout its life

� Make the original design as flexible as possible
so as to anticipate changes and extensions.

� Ensure that the design documentation is usable
and at the correct level of detail

� Ensure that change is carefully managed

36

Software Engineering 2008

MRV Chaudron

Sheet 36

Inheritance vs. Composition

� The two most common techniques for reusing
functionality in object-oriented systems are class
inheritance and object composition

� Class inheritance defines the implementation of one
class in terms of another’s implementation. With
inheritance the internals of parent classes are often
visible to sub-classes (white box).

� In object composition new functionality is obtained
by assembling or composing objects to get more
complex functionality. Internal details of objects are
not visible, objects appear as black boxes.

7

37

Software Engineering 2008

MRV Chaudron

Sheet 37

Pros and Cons of Inheritance

� Pros: Class inheritance is defined statically at
compile-time and is straightforward to use, since
it´s supported directly by the programming
language. Class inheritance makes it easier to modify
the implementation being reused.

� Cons: You can not change the implementations
being inherited at run-time. Inheritance exposes as
subclass to details of its parent’s implementation.
Any change in the parent’s implementation will force
the subclass to change. One cure is to only inherit
from abstract classes since they provide little or no
implementation.

38

Software Engineering 2008

MRV Chaudron

Sheet 38

Pros and Cons of
Composition

� Composition is defined at run-time through
objects acquiring references to other objects.

� Composition requires objects to respect each
other’s interface. Because objects are accessed
solely through their interfaces we don’t break
encapsulation. Any object can be replaced at
run-time by another as long as it has the same
type.

� Because an object´s implementation is written
in terms ob object interfaces, there are
substantially fewer implementation
dependencies.

39

Software Engineering 2008

MRV Chaudron

Sheet 39

Inheritance vs. Object Comp.

� Favoring object composition over class
inheritance helps you keep each class
encapsulated and focused on one task.

� Classes and class hierarchies remain small
and managable.

� A design based on object composition has
more objects (if fewer classes) and the system
behavior depends on their interrelationships
instead of being defined in one class.

© Lethbridge/Laganière 2005

Chapter 9: Architecting and designing software

ESE 4.40

Assigning Responsibilities

> Evenly distribute system intelligence
— avoid procedural centralization of responsibilities
— keep responsibilities close to objects rather than their clients

> State responsibilities as generally as possible
— “draw yourself” vs. “draw a line/rectangle etc.”
— leads to sharing

> Keep behaviour together with any related information
— principle of encapsulation

© Lethbridge/Laganière 2005

Chapter 9: Architecting and designing software

ESE 4.41

Assigning Responsibilities ...

> Keep information about one thing in one place
— if multiple objects need access to the same information

1. a new object may be introduced to manage the information, or

2. one object may be an obvious candidate, or

3. the multiple objects may need to be collapsed into a single one

> Share responsibilities among related objects
— break down complex responsibilities

© Lethbridge/Laganière 2005

Chapter 9: Architecting and designing software

ESE 4.42

Characterizing Classes
according to Rebecca J. Wirfs-Brock, IEEE Software, March/April 2006

■ Information holder: an object designed to know certain information and provide that
information to other objects.

■ Structurer: an object that maintains relationships between objects and information about
those relationships.

Complex structurers might pool, collect, and maintain groups of many objects; simpler
structurers maintain relationships between a few objects. An example of a generic
structurer is a Java HashMap, which relates keys to values.

■ Service provider: an object that performs specific work and offers services to others on
demand.

■ Controller: an object designed to make decisions and control a complex task.

■ Coordinator: an object that doesn’t make many decisions but, in a rote or mechanical
way, delegates work to other objects. The Mediator pattern is one example.

■ Interfacer: an object that transforms information or requests between distinct parts of a
system. The edges of an application contain user-interfacer objects that interact with
the user and external interfacer objects, which communicate with external systems.
Interfacers also exist between subsystems. The Facade pattern is an example of a
class designed to simplify interactions and limit clients’ visibility of objects within a
subsystem.

8

43Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Guidelines for Naming Inventions

“…the relation of thought to word is not a thing but a process, a continual

movement back and forth from thought to word and from word to thought. …
Thought is not merely expressed in words; It comes into existence through

them.”

—Lev Vygotsky, thought and language

Fit a name into some naming scheme

Java example: Calendar� GregorianCalendar�JulianCalendar?

ChineseCalendar?

Give service providers “worker” names

Service providers are “workers”, “doers”, “movers” and “shakers “

Java example: StringTokenizer, ClassLoader, and Authenticator

Choose a name that suits a role

Objects named “Manager” organize and pool collections of similar

objects

AccountManager organizes Account objects
44Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Guidelines for Naming Inventions

Choose names that don’t limit behavior options

Account or AccountRecord?

Record—information or facts set down in writing—an informational
object

Account—sounds livelier—an object that makes informed decisions on

the information it represents

Choose a name that suits a lifetime

A ninety-year old named “Junior”?

ApplicationInitializer or ApplicationCoordinator?

Include facts most relevant to the users of a class

MillisecondTimerAccurateWithinPlusOrMinusTwoMilleseconds or

Timer?

Eliminate naming conflicts by adding description

Rename a Properties candidate to TransactionHistoryProperties

1

Design Heuristics and Design Heuristics and Design Heuristics and Design Heuristics and
Architectural StylesArchitectural StylesArchitectural StylesArchitectural Styles

(LL (LL (LL (LL Chapter 9)Chapter 9)Chapter 9)Chapter 9)

Michel Chaudron

Many slides based on Lethbridge and Laganiere
2

Software Engineering 2008

MRV Chaudron

Sheet 2

Agenda

� Recap Design heuristics & guidelines

� Architectural Styles

� This afternoon: werkcollege use UML
tools; location: PC zaal

� hand in assignments electronically

chaudron@liacs.nlchaudron@liacs.nlchaudron@liacs.nlchaudron@liacs.nl

3

Software Engineering 2008

MRV Chaudron

Sheet 3

� Separation of Concerns

� Information hiding

� Layering

� Modularity & Coupling

Design Heuristics

4

Software Engineering 2008

MRV Chaudron

Sheet 4

Types of CouplingTypes of CouplingTypes of CouplingTypes of Coupling

c
o
n
s
id

e
re

d
w

o
rs

e

• Data coupling
• data from one module is used in another

• Data type coupling

• two modules use the same data type

• Control coupling

•actions one module are controlled
by another module (switch)

• Content coupling
• a module refers to the internals

of another module

5

Software Engineering 2008

MRV Chaudron

Sheet 5

Content coupling:

� Occurs when one component modifies data
that is internal to another component

� Reduce content coupling by encapsulating data

� Information hiding

� declare them private

� and provide get and set methods

6

Software Engineering 2008

MRV Chaudron

Sheet 6

Example of content coupling
public class Line
{
private Point start, end;

...
public Point getStart() { return start; }
public Point getEnd() { return end; }

}

public class Arch
{
private Line baseline;

...
void slant(int newY)
{

Point theEnd = baseline.getEnd();
theEnd.setLocation(theEnd.getX(),newY);

}

}

2

7

Software Engineering 2008

MRV Chaudron

Sheet 7

Information Hiding

� Usage of a module depends only on the

information at the interface

� An interface should reveal as little as possible

about the inner workings of the component

� An interface hides design decisions

D. L. Parnas, On the criteria to be used in decomposing systems into modules,

Communications of the ACM, vol. 15, pp. 1053-1058, December 1972.

8

Software Engineering 2008

MRV Chaudron

Sheet 8

Common coupling

� Occurs whenever you use a global variable
� All the components using the global variable

become coupled to each other

� A weaker form of common coupling is when a
variable can be accessed by a subset of the
system’s classes

� e.g. a Java package

global variable

module

module

module

module

module

module

9

Software Engineering 2008

MRV Chaudron

Sheet 9

Control coupling

� Occurs when one procedure calls another
using a ‘flag’ or ‘command’ that explicitly
controls what the second procedure does

� To make a change you have to change both the
calling and called method

� One way to reduce the control coupling could be to
have a look-up table

� commands are then mapped to a method that should be
called when that command is issued

10

Software Engineering 2008

MRV Chaudron

Sheet 10

Example of control coupling

public routineX(String command)
{

if (command.equals("drawCircle")
{

drawCircle();

}
else

{

drawRectangle();
}

}

Caller needs to know:

Not drawCircle => draw Rectangle

11

Software Engineering 2008

MRV Chaudron

Sheet 11

Control Coupling Example

The behaviour of
component B is controlled
by component A through

the parameter flag

Example from David Stotts

Dept. of Computer Science

University of North Carolina
12

Software Engineering 2008

MRV Chaudron

Sheet 12

Stamp coupling:

� Occurs whenever one of your application
classes is declared as the type of a method
argument

� Since one class now uses the other, changing the
system becomes harder

� Reusing one class requires reusing the other

� Two ways to reduce stamp coupling,

� using an interface as the argument type

� passing simple variables

3

13

Software Engineering 2008

MRV Chaudron

Sheet 13

Example of stamp coupling

public class Emailer
{

public void sendEmail(Employee e, String message)
{

send(e.address, e.name, message)

}
...

}

name: string

address: string
date-of-birth: date
salary: number

class Employee

14

Software Engineering 2008

MRV Chaudron

Sheet 14

Example of stamp coupling

public interface Addressee
{

public abstract String getName();
public abstract String getEmail();

}

public class Employee implements Addressee {…}

public class Emailer

{
public void sendEmail(Addressee e, String text)

{...}

...

}

Using an interface to avoid stamp coupling

15

Software Engineering 2008

MRV Chaudron

Sheet 15

Stamp coupling Example

Example from David Stotts

Dept. of Computer Science

University of North Carolina

16

Software Engineering 2008

MRV Chaudron

Sheet 16

Data coupling
� Occurs whenever the types of method

arguments are either primitive
� The more arguments a method has, the higher

the coupling
� All methods that use the method must pass all the

arguments

� You should reduce coupling by not giving
methods unnecessary arguments

� There is a trade-off between data coupling and
stamp coupling

� Increasing one often decreases the other

17

Software Engineering 2008

MRV Chaudron

Sheet 17

Routine call coupling

� Occurs when one routine calls another

�The routines are coupled because they
depend on each other’s behaviour

�Routine call coupling is always present in
any system.

18

Software Engineering 2008

MRV Chaudron

Sheet 18

Reduce Routine call coupling

� If you repetitively use the same sequence of
methods to compute something

� then you can reduce routine call coupling by
writing a single routine that encapsulates the
sequence....

method foo
{

b();
c();

d();
…
b();

c();
d();

}

method foo’()
{

bcd();

…
bcd();

}

method bcd()
{

b();
c();

d();
}

4

19

Software Engineering 2008

MRV Chaudron

Sheet 19

Type use coupling

� Occurs when a module uses a data type
defined in another module

� It occurs any time a class declares an instance
variable or a local variable as having another class
for its type.

� The consequence of type use coupling is that if the
type definition changes, then the users of the type
may have to change

� Always declare the type of a variable to be the
most general possible class or interface that
contains the required operations

20

Software Engineering 2008

MRV Chaudron

Sheet 20

Inclusion or import coupling
� Occurs when one component imports a package

� (as in Java)

� or when one component includes another
� (as in C++).

� The including or importing component is now exposed to
everything in the included or imported component.

� If the included/imported component changes something or
adds something.

� This may raises a conflict with something in the includer, forcing
the includer to change.

� An item in an imported component might have the same
name as something you have already defined.

21

Software Engineering 2008

MRV Chaudron

Sheet 21

External coupling

� When a module has a dependency on
such things as the operating system,
shared libraries or the hardware

� It is best to reduce the number of places in
the code where such dependencies exist.

�The Façade design pattern can reduce
external coupling

22

Software Engineering 2008

MRV Chaudron

Sheet 22

Temporal Coupling
Program A

…

{

…

openfile(data)

do_long_processing(data);

closefile(data)

…

}

Program B

…

{

…

openfile(data)

closefile(data)

do_long_processing(data);

…

}

open close open close

processingprocessingprocessingprocessingprocessingprocessingprocessingprocessing

23

Software Engineering 2008

MRV Chaudron

Sheet 23

Temporal Coupling
A component XXXX expects an input from component YYYY

every secondevery secondevery secondevery second.

A component should handle all cases where attempts are

made to use it inappropriately (be in intentionally or not).

A RT-component should have a fall-back scenario:

If I don’t receive an input, then I do ‘plan B’.
So that other components that depend on XXXX will not also
have to deal with this problem.

This is a way of ‘fault containment’ – prevent domino-effect.

24Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Design of Control Styles

aDhfjkl

aDhfjkl aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

Centralized

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

aDhfjklaDhfjkl

aDhfjklaDhfjkl

Delegated

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

Overly Distributed

5

25Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Characteristics of Centralized Control

Centralized controllers can have extremely

complex control logic

Controllers surrounded by simple

information holders and service providers

These simple objects tend to have low-level,

non-abstract interfaces

Drawback:

Changes can ripple among controlling

and controlled objects

aDhfjkl

aDhfjkl aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

26Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Characteristics of Overly Distributed Control

Long message chains to dig information

out of information holders

Little or no value-added by those

receiving a message and merely

“delegating” request to next in chain

Drawback:

Hardwired dependencies between objects in call chain

May break encapsulation

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

27Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Characteristics of Delegated Control

Coordinators know about fewer

objects than dominating controllers

Higher level communications

between objects

Benefits:

Changes typically localized and simpler

Easier to divide detailed design work

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

aDhfjklaDhfjkl

aDhfjklaDhfjkl

28

Software Engineering 2008

MRV Chaudron

Sheet 28

Interface Design

� An interface should reveal as little as possible
about the inner workings of the component

� Users (callers) should depend only on the
interface, not on the implementation

Recommended References:
•Effective Java: Programming Language Guide by Josh Bloch,

Prentice Hall, 2001

Check out video: http://www.infoq.com/presentations/effective-api-design

•Effective C++ by Scott Meyers, Addison-Wesley, 2005 (3rd ed).

29

Software Engineering 2008

MRV Chaudron

Sheet 29

Guidelines for Interface Design (1)Guidelines for Interface Design (1)Guidelines for Interface Design (1)Guidelines for Interface Design (1)
� Completeness:

� include all functions

� Essential/Minimal:

� omit needless features.

� General:

� do not limit the applicability of an interface to its initial purpose as
modules may be used in unexpected ways.

� Consistency

� applies to many aspects of interface design such as naming
conventions, parameter passing and exception handling.

� Orthogonality:

� Keep independent features separately

� Avoid offering the same service in multiple ways.

� Open-ended:

� leave room for future expansion.

� Opaqueness/Information-hiding:

� an interface should hide the details of the implementation.
Based on Hoffman [Hof90] based on o.a. Parnas.

30

Software Engineering 2008

MRV Chaudron

Sheet 30

Guidelines for Interface Design (2)

1. Keep interfaces cohesive and small (in that order)

2. Use different interfaces for users of the interface

that play different roles with respect to the

functionality

3. Don’t combine generic and specific functionality in

the same interface

4. Group optional functionality in separate interfaces

5. Avoid the introduction of convenience functions

6. Use strongly typed interfaces

7. Use systematic naming conventions

From Henk Jonkers c.s., Philips Research 2002

6

31

Software Engineering 2008

MRV Chaudron

Sheet 31

Guidelines for Naming Inventions
“…the relation of thought to word is not a thing but a process, a
continual movement back and forth from thought to word and from word
to thought. … Thought is not merely expressed in words; It comes into
existence through them.”

—Lev Vygotsky, thought and language

� Fit a name into some naming schemeFit a name into some naming schemeFit a name into some naming schemeFit a name into some naming scheme

� Java example: Calendar� GregorianCalendar�JulianCalendar?
ChineseCalendar?

� Give service providers Give service providers Give service providers Give service providers ““““workerworkerworkerworker”””” namesnamesnamesnames

� Service providers are “workers”, “doers”, “movers” and “shakers “

� Java example: StringTokenizer, ClassLoader, and Authenticator

� Choose a name that suits a roleChoose a name that suits a roleChoose a name that suits a roleChoose a name that suits a role

� Objects named “Manager” organize and pool collections of similar
objects

� AccountManager organizes Account objects

32

Software Engineering 2008

MRV Chaudron

Sheet 32

Guidelines for Naming Inventions
� Choose names that donChoose names that donChoose names that donChoose names that don’’’’t limit behavior optionst limit behavior optionst limit behavior optionst limit behavior options

� Account or AccountRecord?

� Record—information or facts set down in writing—an

informational object

� Account—sounds livelier—an object that makes informed

decisions on the information it represents

� Choose a name that suits a lifetimeChoose a name that suits a lifetimeChoose a name that suits a lifetimeChoose a name that suits a lifetime

� A ninety-year old named “Junior”?

� ApplicationInitializer or ApplicationCoordinator?

� Include facts most relevant to the users of a classInclude facts most relevant to the users of a classInclude facts most relevant to the users of a classInclude facts most relevant to the users of a class

� MillisecondTimerAccurateWithinPlusOrMinusTwoMilleseconds

or Timer?

� Eliminate naming conflicts by adding descriptionEliminate naming conflicts by adding descriptionEliminate naming conflicts by adding descriptionEliminate naming conflicts by adding description

� Rename a Properties candidate to TransactionHistoryProperties

33

Software Engineering 2008

MRV Chaudron

Sheet 33

Abstraction and classes

� Classes are data abstractions that contain procedural

abstractions

� Abstraction is increased by defining all variables as private.

� The fewer public methods in a class, the better the

abstraction

� Superclasses and interfaces increase the level of abstraction

� Attributes and associations are also data abstractions.

� Methods are procedural abstractions

� Better abstractions are achieved by giving methods fewer

parameters

34

Software Engineering 2008

MRV Chaudron

Sheet 34

Design Principle 5:
Increase reusability where possible

� Design the various aspects of your system so
that they can be used again in other contexts

� Generalize your design as much as possible

� Follow the preceding three design principles

� Design your system to contain hooks

� Simplify your design as much as possible

35

Software Engineering 2008

MRV Chaudron

Sheet 35

Design Principle 6: Reuse existing
designs and code where possible

� Design with reuse is complementary to design
for reusability

� Actively reusing designs or code allows you to take
advantage of the investment you or others have
made in reusable components

� Cloning should not be seen as a form of reuse

36

Software Engineering 2008

MRV Chaudron

Sheet 36

Design Principle 7: Design for flexibility

� Actively anticipate changes that a design may
have to undergo in the future, and prepare for
them

� Reduce coupling and increase cohesion

� Create abstractions

� Do not hard-code anything

� Leave all options open

� Do not restrict the options of people who have to modify
the system later

� Use reusable code and make code reusable

7

37

Software Engineering 2008

MRV Chaudron

Sheet 37

Design Principle 8: Anticipate obsolescence

� Plan for changes in the technology or environment so
the software will continue to run or can be easily
changed

� Avoid using early releases of technology

� Avoid using software libraries that are specific to particular

environments

� Avoid using undocumented features or little-used features of

software libraries

� Avoid using software or special hardware from companies

that are less likely to provide long-term support

� Use standard languages and technologies that are supported

by multiple vendors

38

Software Engineering 2008

MRV Chaudron

Sheet 38

Design Principle 9: Design for Portability

� Have the software run on as many platforms as
possible

� Avoid the use of facilities that are specific to one particular
environment

� E.g. a library only available in Microsoft Windows

39

Software Engineering 2008

MRV Chaudron

Sheet 39

Design Principle 10: Design for Testability

� Take steps to make testing easier

� Design a program to automatically test the software

� Discussed more in Chapter 10

� Ensure that all the functionality of the code can by driven by an

external program, bypassing a graphical user interface

� In Java, you can create a main() method in each class in order

to exercise the other methods

40

Software Engineering 2008

MRV Chaudron

Sheet 40

Design Principle 11: Design defensively

� Never trust how others will try to use a component

you are designing

� Handle all cases where other code might attempt to use your

component inappropriately

� Check that all of the inputs to your component are valid: the

preconditions

� Unfortunately, over-zealous defensive design can result in

unnecessarily repetitive checking

41

Software Engineering 2008

MRV Chaudron

Sheet 41

Design Heuristics

Design defensivelyDesign defensivelyDesign defensivelyDesign defensively:

Do not trust that others will use your component as

specified – each component should ensure its own

integrity

(from Lethbridge & Laganiere, p. 318)

A component should handle all cases where attempts

are made to use it inappropriately:

- check whether all inputs are valid

- check preconditions

42

Software Engineering 2008

MRV Chaudron

Sheet 42

Using cost-benefit analysis to choose
among alternatives

� To estimate the costs, add up:

� The incremental cost of doing the software engineering work,

including ongoing maintenance

� The incremental costs of any development technology

required

� The incremental costs that end-users and product support

personnel will experience

� To estimate the benefits, add up:

� The incremental software engineering time saved

� The incremental benefits measured in terms of either

increased sales or else financial benefit to users

8

Architectural StylesArchitectural StylesArchitectural StylesArchitectural StylesArchitectural StylesArchitectural StylesArchitectural StylesArchitectural Styles

44

Software Engineering 2008

MRV Chaudron

Sheet 44

Theme/Objective of this lecture

• Build vocabulary of architectural styles

• a set of ‘archetypes’ that are often used

• know their relative strengths and weaknesses

• Know when to apply or not to apply a particular style

The task of the architect is to come up
with a good metaphor for the system

Alexander Ran (Nokia)

45

Software Engineering 2008

MRV Chaudron

Sheet 45

Architectural styles

• Client/Server

• Pipe and Filter style

• Blackboard style

• Publish Subscribe

• Peer-to-Peer

CONTENTSCONTENTSCONTENTSCONTENTS

46

Software Engineering 2008

MRV Chaudron

Sheet 46

Nomenclature inspired by building architecture;

Architectural style

bridges: suspension, arc, … (check your Euro-notes)

Cathedral Amiens

http://en.wikipedia.org/wiki/Architectural_style

Hagia Sofia, Istanbul

Buildings: Gothic, Byzantian, ….

47

Software Engineering 2008

MRV Chaudron

Sheet 47

An architectural style is defined by:

• A set of rules and constraints that prescribe

� Which types of components, interfaces & connectors

must/may be used in a system (vocabulary/metaphor)

Possibly introducing domain-specific types

� How components and connectors may be combined

(structure)

� How the system behaves (behaviour)
The pattern of dependencies (control-flow and data-flow)

• A set of guidelines that support the application

of the style (how to achieve certain system properties)

Architectural style 1/2

48

Software Engineering 2008

MRV Chaudron

Sheet 48

• Architectural styles are design paradigms for
a set of design dimensions

Some architectural styles emphasize different aspects
such as: Subdivision of functionality, Topology or
Interaction style

• Styles are open-ended; new styles will emerge

• Architectural styles are not disjoint

• An architecture can use several architectural styles

Architectural style

9

49

Software Engineering 2008

MRV Chaudron

Sheet 49

ClientClientClientClient----Server ArchitecturesServer ArchitecturesServer ArchitecturesServer Architectures

Nice source:
IT Architectures and Middleware:
Strategies for building Large Integrated Systems,
Chris Britton and Peter Bye, Addison Wesley, 2004

50

Software Engineering 2008

MRV Chaudron

Sheet 50

C/S Example: Thin Client

presentation
logic

application
logic

data
management

WWW Browser

database

application

Thin Client C/S:
largest part of processing at the server-side

Network load: low
Config. Mngmnt: simple (only server)
Security: concentrated at server
Robustness: stateless clients => easy fault recovery

51

Software Engineering 2008

MRV Chaudron

Sheet 51

C/S Example: ThickThickThickThick Client
Thick Client:
significant processing
at the client-side

WWW Browser

database

application
(specific)

presentation
logic

application
logic

data
management

application
logic

application
(generic)

Network load: high
Config. Mngmnt: complex (both client & server)
Security: complex (both client & server)
Robustness: clients have state => complex fault recovery

52

Software Engineering 2008

MRV Chaudron

Sheet 52

C/S Benefits

Scalable
Interoperable

53

Software Engineering 2008

MRV Chaudron

Sheet 53

ConceptConceptConceptConcept: Series of filters / transformation
where each component is consumer and producer

Pipe and Filter Style (1)Pipe and Filter Style (1)Pipe and Filter Style (1)Pipe and Filter Style (1)

ComponentsComponentsComponentsComponents: filters / transformations
possibly also: sources and sinks

ConnectorsConnectorsConnectorsConnectors: pipes;
interaction style: streaming of data

Topology:Topology:Topology:Topology: linear; possible variations:
feedback-loops, splitting pipes

Filter 1 Filter 2 Filter 3 Filter 4

computational
component

data flow

54

Software Engineering 2008

MRV Chaudron

Sheet 54

Special types of filters

� Pump (Producer)Pump (Producer)Pump (Producer)Pump (Producer)
Produces data and puts it to an output
port that is connected to the input end
of a pipe.

� SinkSinkSinkSink ((((ConsumerConsumerConsumerConsumer))))
Gets data from the input port that is
connected to the output end of a pipe
and consumes the data.

10

55

Software Engineering 2008

MRV Chaudron

Sheet 55

ConstraintsConstraintsConstraintsConstraints about the way filters and pipes can be joined:

• Unidirectional flow

• Control flow derived from data flow

BehaviourBehaviourBehaviourBehaviour TypesTypesTypesTypes:

a. Batch sequentialBatch sequentialBatch sequentialBatch sequential
Run to completion per transformation

b. ContinuousContinuousContinuousContinuous
Incremental transformation

variants: push, pull, asynchronous

Pipe and Filter Style (2)Pipe and Filter Style (2)Pipe and Filter Style (2)Pipe and Filter Style (2)

Filter 1 Filter 2 Filter 3 Filter 4

56

Software Engineering 2008

MRV Chaudron

Sheet 56

Semantic ConstraintsSemantic ConstraintsSemantic ConstraintsSemantic Constraints

Filters are independent entities

- they do not share state

- they do not know their predecessor/successor

Pipe and Filter Style (3)Pipe and Filter Style (3)Pipe and Filter Style (3)Pipe and Filter Style (3)

Filter 1 Filter 2 Filter 3 Filter 4

What are the dependencies between filters?
Compare this with Client Server?

57

Software Engineering 2008

MRV Chaudron

Sheet 57 58

Software Engineering 2008

MRV Chaudron

Sheet 58

Example P&F Architecture

59

Software Engineering 2008

MRV Chaudron

Sheet 59

AdvantagesAdvantagesAdvantagesAdvantages:

• Simplicity:

• no complex component interactions

• easy to analyze (deadlock, throughput, …)

• Easy to maintain and to reuse

• Filters are easy to compose (also hierarchically?)

• Can be easily made parallel or distributed

Pipe and Filter Style (4a)Pipe and Filter Style (4a)Pipe and Filter Style (4a)Pipe and Filter Style (4a)

60

Software Engineering 2008

MRV Chaudron

Sheet 60

DisadvantagesDisadvantagesDisadvantagesDisadvantages:

• Interactive applications are difficult to create

• Filter ordering can be difficult

• Performance:

- Enforcement of lowest common data representation,

ASCII stream, may lead to (un)parse overhead

- If output can only be produced after all input is

received,an infinite input buffer is required

(e.g. sort filter)

• If bounded buffers are used, deadlocks may occur

Pipe and Filter Style (4b)Pipe and Filter Style (4b)Pipe and Filter Style (4b)Pipe and Filter Style (4b)

11

61

Software Engineering 2008

MRV Chaudron

Sheet 61

Extendibility: extends easily with new filters

Flexibility: - functionality of filters can be easily

redefined,

- control can be re-routed

(both at design-time, run-time is difficult)

Robustness: ‘weakest link’ is limitation

Security: -

Performance: allows straightforward parallelisation

Pipe and Filter Style Pipe and Filter Style Pipe and Filter Style Pipe and Filter Style (5) Quality (5) Quality (5) Quality (5) Quality
FactorsFactorsFactorsFactors

62

Software Engineering 2008

MRV Chaudron

Sheet 62

Rules of thumb for choosing pipe-and-filter (o.a. from Shaw/Buschman):

- if a system can be described by a regular interaction patternregular interaction patternregular interaction patternregular interaction pattern of a

collection of processing units at the same level of abstraction;

e.g. a series of incremental stages

(horizontal composition of functionality);

- if the computation involves the transformation of streams of datatransformation of streams of datatransformation of streams of datatransformation of streams of data

(processes with limited fan-in/fan-out)

Pipe and Filter Style (6)Pipe and Filter Style (6)Pipe and Filter Style (6)Pipe and Filter Style (6)
Application Context Application Context Application Context Application Context

Hint: use a looped-pipe-and-filter if the system does continuous

controlling of a physical system

Typical application domain: signal processing

Quality Improvement Methods and
Empirical Research in SE

Michel Chaudron

2

Software Engineering 2008

MRV Chaudron

Sheet 2

Agenda
 Quality Improvement

! Software Process Improvement (CMMI)
! Review and Inspection
! Formal Methods

 Risk Management
 Empirical Research in Software Engineering
 Summary

3

Software Engineering 2008

MRV Chaudron

Sheet 3

CMM - Capability Maturity Model*

* a.k.a. Consultant Money Making Initiative

4

Software Engineering 2008

MRV Chaudron

Sheet 4

Premise of Software Process Improvement
(SPI)

“The quality of a product is largely
determined by the quality of the process that

is used to develop and maintain it.”

PEOPLE

 PROCESS
TECHNOLOGY

5

Software Engineering 2008

MRV Chaudron

Sheet 5

CMMI Maturity Levels

"#0(&21),

2&0+ 1 -'

/3#*)25 #,%

.0-%3$2)4)25

6+‚&%7

!%&,2)'5

-..-023,)2)&1 '-0

)+ .0-4&+&,2

6

Software Engineering 2008

MRV Chaudron

Sheet 6

The CMM Structure

7

Software Engineering 2008

MRV Chaudron

Sheet 7

Process Areas by Maturity Level
Organizational Innovation and Deployment
Causal Analysis and Resolution5 Optimizing

4 Quantitatively
Managed

3 Defined

2 Managed

Continuous
process
improvement

Quantitative
management

Process
standardization

Basic
project
management

Organizational Process Performance
Quantitative Project Management

Requirements Development
Technical Solution
Product Integration
Verification
Validation
Organizational Process Focus
Organizational Process Definition
Organizational Training
Integrated Project Management
Integrated Supplier Management
Risk Management
Decision Analysis and Resolution
Organizational Environment for Integration
Integrated Teaming
Requirements Management
Project Planning
Project Monitoring and Control
Supplier Agreement Management
Measurement and Analysis
Process and Product Quality Assurance
Configuration Management

1 Initial

Process AreasLevel Focus

(IPPD)
(IPPD)

(SS)

8

Software Engineering 2008

MRV Chaudron

Sheet 8

Is the premise true?

Process improvement should be done to help
the business— not for its own sake.

Software Review and
Inspection

10

Software Engineering 2008

MRV Chaudron

Sheet 10

Review
 A Review is a reading technique in

which a software artifact is checked

for defects by one or more persons

other than the creator(s) of the document.

 Review can be applied to any type of document: code,

design documents, test plans and requirements

 There are a number of types of review ranging in formality

and effect.

11

Software Engineering 2008

MRV Chaudron

Sheet 11

Types of Review

 Buddy Checking
! having a person other than the

author informally review a piece
of work.

! generally does not involve the use of checklists to guide
inspection and is therefore not repeatable .

! generally does not require collection of data

! difficult to put under managerial control

12

Software Engineering 2008

MRV Chaudron

Sheet 12

Types of Review
 Walkthrough

! the author of an artifact presents his document or
program to an audience of peers

! The audience asks questions and makes comments on
the artifact being presented in an attempt to identify
defects

! often break down into arguments about an issue
! usually involve no prior preparation on behalf of the

audience
! usually involve minimal documentation of the process and

of the issues found
! process improvement and defect tracking are therefore

not easy

13

Software Engineering 2008

MRV Chaudron

Sheet 13

Types of Review
 Review by Circulation

! similar in concept to a walkthrough
! artifact to be reviewed is circulated to a group of the

author(s) peers for comment
! avoids potential arguments over issues, however it also

avoids the benefits of discussion
! reviewer may be able to spend longer reviewing the

artifact
! there is documentation of the issues found, enabling

defect tracking
! usually minimal data collection

14

Software Engineering 2008

MRV Chaudron

Sheet 14

Types of Review
 Inspection (Fagan 76)

! formally structured and managed peer review processes
! involve a review team with clearly defined roles
! specific data is collected during inspections
! inspections have quantitative goals set
! reviewers check an artifact against an unambiguous set

of inspection criteria for that type of artifact
! The required data collection promotes process

improvement, and subsequent improvements in quality.

15

Software Engineering 2008

MRV Chaudron

Sheet 15

Software Inspection
 The inspection process comprises three

broad stages:
!preparation
!collection
! repair

 Gilb and Graham [GilbGraham93] expand this three stage process into
the inspection steps; Entry, Planning, Kickoff Meeting, Individual Checking,
Logging Meeting, Root Cause Analysis Edit, Follow Up, Exit.

16

Software Engineering 2008

MRV Chaudron

Sheet 16

Principles of inspecting
 Choose an effective and efficient inspection team

! between two and five people

! Including experienced software engineers

 Require that participants prepare for inspections

! They should study the documents prior to the meeting and come

prepared with a list of defects

 Only inspect documents that are ready

! Attempting to inspect a very poor document will result in defects

being missed

17

Software Engineering 2008

MRV Chaudron

Sheet 17

Benefits of Inspection

 30% to 100% net productivity increases;

 Overall project time saving of 10% to 30%;

 5 to 10 times reduction in test execution costs and time;

 Reduction in maintenance costs of up to one order of magnitude;

 Improvement in consequent product quality;

 Minimal defect correction backlash at systems integration time.

 In addition to these tangible benefits, less tangible benefits such as a
training effect for inspectors are also evident.

believers edition

Silver bullet?

18

Software Engineering 2008

MRV Chaudron

Sheet 18

Benefits of Inspection

 Helps creating common understanding

and shared vision of the system

 Small investment in effort can have large benefits
! Becomes better when staff is trained and checklists and reading

guidelines are available

 Subjective

 Does not solve all problems
! # should be used in combination

 with other QA techniques

Chaudron edition

19

Software Engineering 2008

MRV Chaudron

Sheet 19

A peer-review
 Managers are normally not involved

! This allows the participants to express their criticisms
more openly, not fearing repercussions

! The members of an inspection team should feel they are
all working together to create a better document

! Nobody should be blamed

20

Software Engineering 2008

MRV Chaudron

Sheet 20

Egoless-ness
 You are not your document/code
 Being open to improvement
 Seeing feedback as a learning opportunity

 Nobody is perfect

21

Software Engineering 2008

MRV Chaudron

Sheet 21

Quality Improvement Methods
 Structured processes
 Reviews and Inspections
 Metrics
 Testing
 Prototyping
 Mathematical proof of correctness / formal

specification

22

Software Engineering 2008

MRV Chaudron

Sheet 22

Risk Management

24

Software Engineering 2008

MRV Chaudron

Sheet 24

Risk Management
 Risk

!Risk refers to uncertainty about
the structure, outcomes or
consequences of a decision or plan.

 Risk Management?
!A Method for Dealing with Project Risks

 Identification and Handling of Risks

!On-Going Activity

25

Software Engineering 2008

MRV Chaudron

Sheet 25

Risk?

26

Software Engineering 2008

MRV Chaudron

Sheet 26

Risk Management: Basic Approach
 Analysis of Project

! Identification of Risks

 For Each Risk:
! Impact and Probability Analysis

 What is the Nature of the Risk?

! Avoidance/Mitigation Plans
 How Can We Minimize the Risk?

! Contingency Plans
 What Do We Do if it Occurs?

27

Software Engineering 2008

MRV Chaudron

Sheet 27

Risk Management

Risk Management

Risk Assessment

Risk Control

Risk Identification

Risk Analysis

Risk Exposure

Risk Reduction

Contingency Planning

Risk Monitoring

Continuous Reassessment

Risk Prioritization

28

Software Engineering 2008

MRV Chaudron

Sheet 28

Risk Management:
How to Identify Risks
 Start with a typical list of software risks
 Review development plan

! Critical Paths
! Critical Staff Members
! Critical Vendor Deliveries
! Critical Milestones
! Training Requirements

 Review Requirements
 Review Technical Design
 Review Past Projects

29

Software Engineering 2008

MRV Chaudron

Sheet 29

Risk Management:
How to Identify Risks (Continued)
 Conduct Risk Brainstorming Sessions with Staff,

Users, Vendors, Customers, and Management
! Try to assess the direction of thinking by third parties as

they may give an indication of future requirements,
expectations, or vendor changes.

! If you are dependent on vendors, try to understand their
business situation.

 Get as much input as possible!

30

Software Engineering 2008

MRV Chaudron

Sheet 30

Common Risks in IT Development

31

Software Engineering 2008

MRV Chaudron

Sheet 31

Common Risks in IT Development

32

Software Engineering 2008

MRV Chaudron

Sheet 32

Software Risk Management
Techniques

33

Software Engineering 2008

MRV Chaudron

Sheet 33

Risk analysis

 estimating size of loss
! how long it takes to “fix” the risk

 estimating probability of loss
! most experienced estimates risks
! delphi method vs. group consensus
! betting on topic
! adjective calibration

 risk exposure
! probability of unexpected loss multiplied by the size

of loss

34

Software Engineering 2008

MRV Chaudron

Sheet 34

Analysis, Exposure, & Prioritization

 For Each Risk:
! Determine Probability of Occurrence

 What is the likelyhood of occurrence?

! Determine Impact
 What is the impact if it occurres?

! Determine Exposure
 What will we lose if the risk occurs?

 For All Risks:
! Prioritize

 Where should we put our limited resources?

35

Software Engineering 2008

MRV Chaudron

Sheet 35

Analysis, Exposure, Prioritization: How?

 Various Techniques Available But Key is
Experience
! Individual
!Organizational

 Don’t Rely on Just Yourself - Get lots of
Inputs

36

Software Engineering 2008

MRV Chaudron

Sheet 36

Risk Assessment: A Simple
Classification & Tracking Method
 Probability of

Occurrence vs Impact
! 1 to 5 Scale

 Priorities
! Red - High

! Yellow - Med

! Green - Low

 Review/Present Chart
Periodically

Risk #1

Risk #4

Risk #2Risk #3

Risk #5

Probability of Occurrence

Im
pa

ct

Higher ProbabilityLower Probability
H

ig
he

r
Im

pa
ct

Lo
w

er
 Im

pa
ct

37

Software Engineering 2008

MRV Chaudron

Sheet 37

Risk Assessment: Probability Methods
 Can we quantitize the risk?

 For Each Risk:
! For Each Possible Action:

 Estimate Probability of an Given Outcome P(O)

 Estimate $ Loss of an Given Outcome L(O)

 Multiply the P(O) by L(O) to give $ exposure for the unwanted outcome

! Sum all $ exposures for each Possible Action

! Compare the $ exposures

! Calculate Risk Leverage
 (Risk Exposure Before Reduction - Risk Exposure After Reduction) /

(Cost of Risk Reduction)

38

Software Engineering 2008

MRV Chaudron

Sheet 38

Example Risk Assessment Using
Probability Method

Do
Regression

Testing?

No
Don't Find Critical Fault

P(O) = 0.55

Find Critical Fault
P(O) = 0.25

No Critical Fault
P(O) = 0.20

L(O) = $0.5M

L(O) = $30M

L(O) = $0.5M

$0.125M

$16.50M

$0.10M

$16.75M

Don't Find Critical Fault
P(O) = 0.05

Find Critical Fault
P(O) = 0.75

No Critical Fault
P(O) = 0.20

L(O) = $0.5M

L(O) = $30M

L(O) = $0.5M

$0.375M

$1.5M

$0.10M

$1.975MYes

RISK
EXPOSURE COMBINED

RISK
EXPOSURE

RISK LEVERAGE -> $14.775M

39

Software Engineering 2008

MRV Chaudron

Sheet 39

Risk Reduction
 Avoiding Risk

! Modifying project requirements

 Transferring the Risk

! By allocation to other systems

! Buying Insurance to cover financial loses

 Mitigating the Risk

! Pre-Event Actions to:
 Reduce Likelihood of Occurrence and/or

 Minimize Impact, Fail-over, Repair, …

 Some risks cannot be reduced
! Contingency Plan - how will you deal with the risk

40

Software Engineering 2008

MRV Chaudron

Sheet 40

Monitoring Risk
 Periodic Review of Risk Status

! Changes in Probabilities or Impacts

! Changes in Avoidance/Mitigation/Contingency Plans

 Periodic Review of Project to Identify New Risks

 Implementation of Risk Avoidance or Mitigation Plans

 Keep Management and Customers Informed!!!

! Frequent Risk Reviews

41

Software Engineering 2008

MRV Chaudron

Sheet 41

Risk Management Process

From: http://www.ruleworks.co.uk/riskguide/manage-risk-nl.htm

Empirical Research in Software
Engineering

43

Software Engineering 2008

MRV Chaudron

Sheet 43

Empirical Research
Empirical research
is research that bases its findings on
direct or indirect observation as its test
of reality.

Physics
Newton’s apple

ChemistryAstronomy

44

Software Engineering 2008

MRV Chaudron

Sheet 44

How to best allocate budget?
people

process

technology

• Experienced .. Novice

• In-house or offshore
• …

• Java vs .Net
• Code generation
• Automated testing, …

product • Which features
• What level of quality?

We must understand the effect of our choices on
productivity, quality, …

45

Software Engineering 2008

MRV Chaudron

Sheet 45

Examples

 The use of Object Oriented modeling and
programming improves quality and
productivity

! True ?
! Not True?
! Don’t know

46

Software Engineering 2008

MRV Chaudron

Sheet 46

The Bottom Line

 “In God we trust,
 all others bring data.”

 - W. Edwards Deming

What is ‘evidence’?

47

Software Engineering 2008

MRV Chaudron

Sheet 47

Use of RUP
Use of RUP leads to improvement of
productivity and quality

Approaches:
! Measure
" Expert opinions (interviews)
Simulation

Combination of the above (triangulation)

48

Software Engineering 2008

MRV Chaudron

Sheet 48

Empirical Cycle
Real World Theory

Observation Induction
Idea / Conclusion

Hypothesis
ModelData / Results

E = a.Nb

Test
Experiment /

Intervention

Deduction
Prediction

49

Software Engineering 2008

MRV Chaudron

Sheet 49

50

Software Engineering 2008

MRV Chaudron

Sheet 50

Important characteristics of scientific
research:
 rigor
 testability / falsifiability
 reproducibility
 precision
 objectivity
 parsimony
 generalisability (if possible)

51

Software Engineering 2008

MRV Chaudron

Sheet 51

52

Software Engineering 2008

MRV Chaudron

Sheet 52

Study - Examples
 Survey

! After a new development process has been introduced:
developers answer a questionnaire about their
confidence in the new process.

 Experiment
! Source code inspections: one group of participants

uses inspection technique A, the other group uses
inspection technique B. Compare the number of
detected defects.

 Case study
! Run a pilot project using a new tool (e.g. UML case

tool) and compare productivity to company baseline

53

Software Engineering 2008

MRV Chaudron

Sheet 53

Experiment
 When appropriate : control on who is using which technology,

when, where and under which conditions. Investigation of self-
standing tasks where results can be obtained immediately

 Level of control : high

 Data collection : process and product measurement,
questionnaires

 Data analysis : parametric and non-parametric statisticsparametric and non-parametric statistics, compare
central tendencies of treatments, groups

 Pro’s : help establishing causal relationships, confirm theories

 Con’s : representative? Challenging to plan in a real-world
environment. Application in industrial context requires
compromises

54

Software Engineering 2008

MRV Chaudron

Sheet 54

Case study
 When appropriate : change (new technology) is wide-ranging

throughout the development process, want to assess a change in

a typical situation

 Level of control : medium

 Data collection : product and process measurement,

questionnaires, interviews

 Data analysis : compare case study results to a baseline (sister

project, company baseline)

 Pro’s : applicable to real world projects, help answering why and

how questions, provide qualitative insight

 Con’s : difficult to implement a case study design, confounding

factors, analysis of results is subjective

55

Software Engineering 2008

MRV Chaudron

Sheet 55

Survey
 When appropriate : for early exploratory analysis. Technology

change implemented across a large number of projects, description
of results, influence factors, differences and commonalities

 Level of control : low

 Data collection : questionnaires, interviews

 Data analysis : comparing different populations among
respondents, association and trend analysis, consistency of scores

 Pro’s : generalization of results is usually easier (than case study),
applicable in practice

 Con’s : little control of variables, questionnaire design is difficult
(validity, reliability), execution is often time consuming (interviews)

56

Software Engineering 2008

MRV Chaudron

Sheet 56

Empirical Life-cycle

Initial Idea

Survey

Method Development

Industrial Case StudiesExperiment

Exploratory Interviews

57

Software Engineering 2008

MRV Chaudron

Sheet 57

A process for conducting
 empirical studies

 Determine study goal and research hypothesis. Select type

of empirical study to be employed.

 Operationalize study goal and hypothesis.

Make study plan: what needs to be done by whom and

when.

 Prepare material required to conduct the study.

 Run study according to plan and collect required data (data

collection).

 Analyze collected data to answer operationalized study goal

and hypotheses

 Report your study so that external parties are able to

understand results and context of the study.

Definition

Design

Implemen-
tation

Execution

Analysis

Reporting

58

Software Engineering 2008

MRV Chaudron

Sheet 58

Validity
 Are the results valid for the sample population?

 Are the results valid for the population to which we would like
to generalize?

 Threats to Validity
! Conclusion validity

 Relation between treatment and outcome

! Internal validity

 Treatment # outcome = causal relationship?

! Construct validity

 Relation between theory and observation

! External validity

 Generalizability of the result

59

Software Engineering 2008

MRV Chaudron

Sheet 59

RUP Humps from 3 (largish) projects

Heijstek & Chaudron 2007 Heijstek & Chaudron 2007 Heijstek & Chaudron 2007

60

Software Engineering 2008

MRV Chaudron

Sheet 60

MetricView
The values of metrics are
visualized on class diagrams
using colors (green = low value;
red = high value).

Example: Coupling-Between-
Objects (CBO)

61

Software Engineering 2008

MRV Chaudron

Sheet 61

Conclusions
 Empirical Research is essential for validation of

methods/techniques/processes in practice;
! Feedback for improvement
! Collaboration between industry and academia is

essential

 Different study-types (‘strategies’) are possible.
! Depending on the goal and context
! Good preparation is important
! Good literature is available

62

Software Engineering 2008

MRV Chaudron

Sheet 62

References
[1] A. Endres, D. Rombach, A Handbook of Software and Systems Engineering – Empirical Observations, Laws and

Theories, Pearson Addison Wesley, 2003.

[2] C. Wohlin, P. Runeson, M. Höst, Magnus C. Ohlsson, Björn Regnell, and Anders Wesslen, Experimentation in

Software Engineering - An Introduction. The Kluwer International Series in Software Engineering, Kluwer Academic

Publishers, 2000.

[3] R. van Solingen and E. Berghout, The Goal/Question/Metric Method. McGraw-Hill, 1999.

[4] N. Fenton and Shari L. Pfleeger, Software Metrics: A Rigorous Practical Approach. London: International Thompson

Computer Press, 1996.

[5] B. Freimut, T. Punter, S. Biffl, M. Ciolkowski, State-of-the-art in Empirical studies, IESE-Report No. 017.02/E & ViSEK

report No. 007/02, Kaiserslautern, Fraunhofer IESE, March 2002.

[6] T. Punter, M. Ciolkowski, B. Freimut, I. John, Conducting on-line surveys in software engineering, ACM IEEE Int.

Symposium on Empirical Software Engineering (ISESE’03), Los Alamitos, IEEE, pp. 80-88.

[7] B. Kitchenham, Evaluating Software Engineering Methods and Tools - Part 9: Quantitative Case Study Methodology,

ACM SIGSOFT Software Engineering Notes, vol. 23, pp. 24-26, Jan. 1998.

[8] M.V. Zelkowitz, D.R. Wallace, Experimental models for validating Technology, IEEE Computer, vol. 31 no. 5, pp. 23-

31, May 1998.

63

Software Engineering 2008

MRV Chaudron

Sheet 63

M.Sc. Eindprojecten met …

And many more (including companies/universities) abroad …

Guest lecture 24 april 11-13

Highlights SE

65

Software Engineering 2008

MRV Chaudron

Sheet 65

Book: Object-Oriented Software Engineering, Timothy C.
Lethbridge, Robert Laganière (2nd Ed.)

 Ch 1: introduction to the subject
 Ch 2: OO-basics
 Ch 4: Requirements
 Ch 5 & Ch 8: Modeling using UML
 Ch 6: Design patterns
 Ch 9: Architecture & Designing
 Ch 10: Testing / Quality Assurance
 Ch 11: Management (Estimation, Risk)
 Websites: www.mhhe.com/lethbridge en www.llsoeng.com

66

Software Engineering 2008

MRV Chaudron

Sheet 66

Project Management
 People are key

!Get good people, Make them happy, Set them
loose

 Manage Risk Early and Frequently

 Anticipate changes

67

Software Engineering 2008

MRV Chaudron

Sheet 67

Requirements Engineering
 Understand the domain

 SMART

 Manage Change

68

Software Engineering 2008

MRV Chaudron

Sheet 68

Software Architecture

 Principle decisions about design of a system

 Describe using multiple views

 Validate architecture
review, measure, prototype

69

Software Engineering 2008

MRV Chaudron

Sheet 69

 Mathematics is not a careful march down a well-cleared
highway, but a journey into a strange wilderness, where the
explorers often get lost.
Rigour should be a signal to the historian that the maps
have been made and the real explorers have gone
elsewhere.

[Anglin, W.S.]

1

Gastcollege 10-04-2008

Testing in practice
Bart Knaack

Logica

Bart.Knaack@logica.com

2

Agenda

• Introduction

• Why testing?

• Testing Theory versus Practice

• Risk and Requirements Based Testing

• Testmanagement

• Pauze

• Future Testing

• Stories from the real world

3

Introduction

• Who am I?

• What have I done so far?

Who am I?

• Bart Knaack, Senior Test Advisor, Logica, The Netherlands

• 15 years experience in IT, of which 12 in testing.

• Developer, Development Lead, Tester, Testautomator,

Testcoordinator, Testmanager, Testadvisor.

• Trainer in Testmanagement

• ISEB practionner

• SEI accredited CMMi Appraiser

• Father of 2 kids (age 6 and 8)

4
28

Febr

uary
Title of

Presentation

5

Testpyramide

Testgrip

Test Frame

RRBT

Why testing?

• Prevent defects during operation of the system.

• Verify intended functionality

• Boehms Curve

• Validation vs Verification

• Generic testing process.

6
28

Febr

uary
Title of

Presentation

€€€€€€ €€€€€€
€€€€€€

€€€€€€

Definition Design Development Production

7

Test levels in the V-model

Acceptance Test

Component
Integration Test

Component Test

System Integration
Test

System Test

User needs,
Requirements,

Business processes

System
Specification

Technical Design
& Code

S
 t a

 t i c
 T

 e
 s

 t i n
 g

D
 y

 n
 a

 m
 i
 c

 T

 e
 s

 t
 i
 n

 g

T
e
st sp

e
cifica

tio
n T

e
st

 e
xe

cu
tio

n

Black

box

White
box

terms according to:

8

Testing Theory versus Practice

• The State of testing per type of business

• Test Techniques

9

The State of testing per type of business

Branche Test Maturity Usage of test
techniques

Testing as
Carreer

Finance +/- - +

Telecom/

Electronics

++ + ++

Government - - +

Industry + + +

10

Test Techniques

• Boundary Value Analysis, Equivalence partitioning, etc.

• Lack of exposure

• Lack of tool support

• Lack of adaptability

• Starting situation, Action, Expected result, Actual result.

11

Risk and Requirements Based Testing

• Risk and Requirements based testing approach

• The role and responsibilities of the testmanager

• The eight-facetet testmanagement model

12

RRBT: risico’s versus requirements

Product

Risico’s
Requirements

Matching risico’s met requirements

Matching requirements met risico’s

Wel risico, geen

requirement:

•Aanvullen requirement
(eerder fouten vinden)

•Afvoeren risico (niet

onnodig testen)

Wel requirement, geen
risico:

•Risico lijst aanpassen
(betere dekkingsgraad
test)

•Requirement afvoeren

(niet onnodig
ontwikkelen, geen
“franje”)

13

Combineren productrisico’s en
requirements

Analyseren

requirements
Analyseren

risico’s

Must test

Should test

Could test

Won’t test

Must have

Should have

Could have

Won’t have

14

Risk and requirements based testing

• Identify the stakeholders

• Determine productrisks

• Link product risks to requirements and quality attributes

• Determine testsorts.

• Determine acceptance criteria

15

Stakeholders & verschillende eisen

ERROR: undefined
OFFENDING COMMAND: ›-

STACK:

(
�¿â��¯�»z{í÷ª�ì�ßÖVw|ÌØP9TxØÛ5d”K�B�—¯LMq=Ô�Ł·ÕØ+·(��æzR)fÑ ß+�¤�!S»i�5…`ï�P�¸‹˙YæäqCµÆ�[u[›��Ì�˛7ßÝ���…�˜�	!–v��ˇÞDX+dn¤4#*�D˘óMo¤��4º„�oÙ�ju1�nò^E�aÒ2�ç��E˚)HOı�<$ædRt—¾C …R�” �+�1�§n�N���vfl˛þ9�Ü���
)
/abreve
-dictionary-
/CharStrings
-dictionary-
-dictionary-
/Private
-dictionary-
-dictionary-
false
-filestream-
-mark-
false
(./n019023l.pfb)
/NimbusSanL-ReguItal
/Helvetica-Oblique
-mark-
/Helvetica-Oblique
1860085
/Helvetica-Oblique
/Font
/Helvetica-Oblique

