
Program correctness

Weakest preconditions

Marcello Bonsangue

Spring 2006

6/9/2008

Slide 2

Axiomatic semantics

 We have a language for asserting properties of
programs (syntax).

 We know when an assertion is true (validity).

 We have a symbolic way for deriving assertions
(proof system).

 What is the relation between validity and
provability?

6/9/2008

Slide 3

Hoare Logic

soundness and completeness

 Soundness (what can be proved is valid):

par { } c { } implies par { } c { }

 Completeness (what is valid can be proved):

par { } c { } implies par { } c { }

6/9/2008

Slide 4

Soundness

 Theorem: The proof system for partial correctness
is sound

equivalently, if par { } c { } then

,I (,I par and <c, > ’) ’,I par

Proof by induction on the length of the derivation of
the Hoare triples, reasoning about each axiom and
rule separately. (why?)

6/9/2008

Slide 5

Soundness of skip

Case: last rule used in the derivation is

{ } skip { }.

We have to prove

,I (,I par and <skip, > ’) ’,I par

Which follows because ’ = .

6/9/2008

Slide 6

Soundness of assignment

Case last rule in the derivation is { [a/x]} x := a { }

Take and I such that ,I [a/x]. Then

< x := a, > [a/x]

We need to prove [a/x],I , which follows from the
substitution lemma

LEMMA: ,I [a/x] implies [a/x],I

Proof: by induction on the structure of

6/9/2008

7

PenC - Spring 2006

Slide 7

Soundness of consequence rule

 Case last rule in the derivation is

 ’ { ’} c { ’} ’
--

{ } c { }

 From soundness of first order logic we have

,I ’.

Hence ,I ’.

 From induction hypothesis we get ’,I ’.

 From soundness of first order logic we finally obtain

’,I ’ .

Therefore ’,I

6/9/2008

8

PenC - Spring 2006

Slide 8

Soundness of while

 Case last rule in the derivation is

{ b} c { }
--
{ } while b do c od { b}

 Assume ,I . We proceed by induction on the derivation of

<while b do c od, > ’

 There are two cases (we treat only one):

<b, > T <c, > ’ <while b do c od, ’> ’’
--

<while b do c od, > ’’

 We need to prove ’’,I b

6/9/2008

9

PenC - Spring 2006

Slide 9

Soundness of while (II)

 By definition of derivation of <b, > T we obtain

,I b

Hence ,I b

 By induction hypothesis on derivation of { b} c { } we have

’,I

 By induction hyp. on derivation of <while b do c od, ’> ’’

we finally obtain

’’,I b

6/9/2008

Slide 10

Hoare Logic

 We have seen that if we can derive an

assertion in the Hoare logic then this

assertion is true (soundness).

 Next we concentrate on the opposite

direction (completeness).

6/9/2008

Slide 11

Completeness of Hoare Logic

 Can we prove that if an assertion is true then it is
derivable?

 More formally, can we prove

par{ } c { } implies par{ } c { }?

 The answer is yes, but only if the underlying logic is
complete (implies) and expressive enough

 This is called relative completeness.

6/9/2008

Slide 12

Idea for proving completeness

 To prove tot{ } c { } implies tot{ } c { }

1. Assume we can compute wp(c,) such that

 wp(c,) is a precondition of , i.e.

tot {wp(c,)} c { }

 wp(c,) is the weakest precondition of , i.e.

tot{ } c { } implies wp(c,)

2. By completeness of the underlying logic and the
consequence rule we obtain

 wp(c,) tot {wp(c,)} c { }

tot { } c { }

6/9/2008

Slide 13

Weakest precondition (Dijkstra)

 Assertions can be ordered

Precondition of c implying that

holds after its execution

false true

wp(c,)

strong weak

 Thus to verify { } c { } we compute

wp(c,) and prove wp(c,)

6/9/2008

Slide 14

Weakest precondition

 The definition of the weakest precondition

follows the rules of the Hoare logic

 SKIP

{ } skip { }

wp(skip,) =

6/9/2008

Slide 15

Weakest precondition

 ASSIGNMENT

{ [a/x]} x := a { }

wp(x:=a,) = [a/x]

 SEQUENTIAL COMPOSITION

{ } c1 { } { } c2 { }

{ } c1; c2 { }

wp(c1; c2,) = wp(c1,wp(c2,))

6/9/2008

Slide 16

Weakest precondition

 CONDITIONAL

{ 1} c1 { } { 2} c2 { }

{b 1 b 2} if b then c1 else c2 fi { }

wp(if b then c1 else c2 fi,) = b wp(c1,) b wp(c2,)

6/9/2008

Slide 17

Weakest precondition

 LOOP

1. We already know that

while b do c od if b then (c;while b do c od) else skip fi

2. Let w = while b do c od and W = wp(w,). We have

W = b wp(c,W) b

3. This is a recursive equation

 We know how to solve it

 We need a complete partial order (cpo) of assertions

6/9/2008

18

PenC - Spring 2006

Slide 18

A CPO of assertions

 Refinement order:

 iff

True is the bottom: it does not says much about a
state.

 It forms a complete partial order: the least upper
bound of every chain 1 2… n is the
infinite conjunction /\ i

where ,I /\ i iff ,I i for all i

6/9/2008

19

PenC - Spring 2006

Slide 19

Weakest precondition (LOOP)

 Let F(X) = b wp(c, X) b .

 Then F is monotone and continuous. Thus it has
a least fixed point (the weakest fixed point) and

wp(while b do c od,) = /\ Fi(true)

 We need an assertion language expressive
enough to be able to write /\ Fi(true).

6/9/2008

Slide 20

Weakest precondition (LOOP)

 Define a family of preconditions wp(while b do c od,)k as
follows:

wp(while b do c od,)0 = b

wp(while b do c od,)n+1 =

b wp(c, wp(while b do c od,)n) b

Then wp(while b do c od,) = /\ wp(while b do c od,)k

 Here wp(while b do c od,)k is the weakest precondition on
which the loop - if terminated in k or less iterations -
terminates in .

6/9/2008

21

PenC - Spring 2006

Slide 21

Weakest precondition: properties

 For each command c in our language we have

 wp(c,true) = true

 if ’ then wp(c,) wp(c, ’)

 wp(c, ’) = wp(c,) wp(c, ’)

 wp(c, ’) = wp(c,) wp(c, ’)

 wp(c,false) characterizes all states in which c does

not terminate

