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Axiomatic semantics

 We have a language for asserting properties of
programs (syntax).

 We know when an assertion is true (validity).

 We have a symbolic way for deriving assertions
(proof system).

 What is the relation between validity and
provability?
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Hoare Logic

soundness and completeness

 Soundness (what can be proved is valid):

par { } c { }      implies    par { } c { } 

 Completeness (what is valid can be proved):

par { } c { }      implies    par { } c { }
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Soundness

 Theorem: The proof system for partial correctness 
is sound

equivalently, if par { } c { } then 

,I ( ,I par and <c, > ’ ) ’,I par

Proof by induction on the length of the derivation of 
the Hoare triples, reasoning about each axiom and 
rule separately. (why?)
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Soundness of skip

Case: last rule used in the derivation is 

{ } skip { }. 

We have to prove

,I ( ,I par and <skip, > ’) ’,I par

Which follows because ’ = .
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Soundness of assignment

Case last rule in the derivation is { [a/x]} x := a { }

Take and I such that ,I  [a/x]. Then

< x := a, > [a/x]

We need to prove [a/x],I  , which follows from the
substitution lemma

LEMMA: ,I  [a/x] implies [a/x],I 

Proof: by induction on the structure of
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Soundness of consequence rule

 Case last rule in the derivation is

 ’    { ’} c { ’}      ’ 
------------------------------------------

{ } c { }

 From soundness of first order logic we have 

,I  ’. 

Hence ,I  ’.

 From induction hypothesis we get ’,I  ’.

 From soundness of first order logic we finally obtain 

’,I  ’ .

Therefore ’,I 
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Soundness of while

 Case last rule in the derivation is

{ b} c { }
----------------------------------------
{ } while b do c od { b}

 Assume ,I  . We proceed by induction on the derivation of 

<while b do c od, > ’

 There are two cases (we treat only one):

<b, > T     <c, > ’   <while b do c od, ’> ’’
------------------------------------------------------------------------------

<while b do c od, > ’’

 We need to prove ’’,I  b
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Soundness of while (II)

 By definition of derivation of <b, > T we obtain 

,I  b

Hence ,I  b

 By induction hypothesis on derivation of { b} c { } we have 

’,I 

 By induction hyp. on derivation of <while b do c od, ’> ’’ 

we finally obtain

’’,I  b
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Hoare Logic

 We have seen that if we can derive an

assertion in the Hoare logic then this

assertion is true (soundness).

 Next we concentrate on the opposite

direction (completeness).



6/9/2008

Slide 11

Completeness of Hoare Logic

 Can we prove that if an assertion is true then it is
derivable?

 More formally, can we prove

par{ } c { }   implies par{ } c { }?

 The answer is yes, but only if the underlying logic is
complete ( implies  ) and expressive enough

 This is called relative completeness.
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Idea for proving completeness

 To prove tot{ } c { } implies tot{ } c { }

1. Assume we can compute wp(c, ) such that

 wp(c, ) is a precondition of , i.e.

tot {wp(c, )} c { }

 wp(c, ) is the weakest precondition of , i.e.

tot{ } c { } implies  wp(c, )

2. By completeness of the underlying logic and the 
consequence rule we obtain

 wp(c, )           tot {wp(c, )} c { }
-------------------------------------------------------

tot { } c { }
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Weakest precondition (Dijkstra)

 Assertions can be ordered

Precondition of c implying that 

holds after its  execution

false true

wp(c, )

strong weak

 Thus to verify { } c { } we compute 

wp(c, ) and prove wp(c, )
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Weakest precondition

 The definition of the weakest precondition

follows the rules of the Hoare logic

 SKIP

------------------
{ } skip { }

wp(skip, ) = 
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Weakest precondition

 ASSIGNMENT

----------------------------
{ [a/x]} x := a { }

wp(x:=a, ) = [a/x]

 SEQUENTIAL COMPOSITION

{ } c1 { }      { } c2 { }
------------------------------

{ } c1; c2 { }

wp(c1; c2, ) = wp(c1,wp(c2, )) 
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Weakest precondition

 CONDITIONAL

{ 1} c1 { }        { 2} c2 { } 
-------------------------------------------------------

{b 1 b 2} if b then c1 else c2 fi { }

wp(if b then c1 else c2 fi, ) = b wp(c1, ) b wp(c2, )
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Weakest precondition

 LOOP

1. We already know that

while b do c od if b then (c;while b do c od) else skip fi

2. Let w = while b do c od and W = wp(w, ). We have

W = b wp(c,W) b 

3. This is a recursive equation

 We know how to solve it

 We need a complete partial order (cpo) of assertions
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A CPO of assertions

 Refinement order:

 iff     

True is the bottom: it does not says much about a 
state.

 It forms a complete partial order: the least upper 
bound of every chain 1 2…  n is the 
infinite conjunction /\ i

where  ,I  /\ i iff   ,I  i for all i
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Weakest precondition (LOOP)

 Let F(X) = b wp(c, X) b .

 Then F is monotone and continuous. Thus it has 
a least fixed point (the weakest fixed point) and 

wp(while b do c od, ) = /\ Fi(true)

 We need an assertion language expressive 
enough to be able to write /\ Fi(true).
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Weakest precondition (LOOP)

 Define a family of preconditions wp(while b do c od, )k as
follows:

wp(while b do c od, )0      = b 

wp(while b do c od, )n+1  = 

b wp(c, wp(while b do c od, )n) b 

Then wp(while b do c od, ) = /\ wp(while b do c od, )k

 Here wp(while b do c od, )k is the weakest precondition on
which the loop - if terminated in k or less iterations -
terminates in .
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Weakest precondition: properties

 For each command c in our language we have 

 wp(c,true) = true

 if ’ then wp(c, ) wp(c, ’) 

 wp(c, ’) = wp(c, ) wp(c, ’)

 wp(c, ’) = wp(c, ) wp(c, ’)

 wp(c,false) characterizes all states in which c does 

not terminate


