Spring 2006

Program correctness

Weakest preconditions

Marcello Bonsangue

Leiden Institute of Advanced Computer Science **Research & Education**

Axiomatic semantics

- We have a language for asserting properties of programs (syntax).
- We know when an assertion is true (validity).
- We have a symbolic way for deriving assertions (proof system).
- **No. 19 In the relation between validity and mode that is the relation between validity and** provability?

Hoare Logic soundness and completeness

■ Soundness (what can be proved is valid):

 $\vdash_{\text{par}} \{\phi\} \subset {\{\psi\}}$ implies $\models_{\text{par}} \{\phi\} \subset {\{\psi\}}$

■ Completeness (what is valid can be proved):

 $\vDash_{\text{par}} {\{\phi\} \circ {\{\psi\}}$ implies $\vdash_{\text{par}} {\{\phi\} \circ {\{\psi\}}}$

Soundness

■ Theorem: The proof system for partial correctness is sound

equivalently, if $\vdash_{\text{par}} {\{\phi\}}$ c $\{\psi\}$ then

 $\forall \sigma, I \; (\sigma, I \models_{par} \phi \text{ and } \leq c, \sigma \geq \rightarrow \sigma') \Rightarrow \sigma', I \models_{par} \psi$

Proof by induction on the length of the derivation of the Hoare triples, reasoning about each axiom and rule separately. (why?)

Soundness of skip

Case: last rule used in the derivation is $\{\phi\}$ skip $\{\phi\}$.

We have to prove

 $\forall \sigma, I$ ($\sigma, I \vDash_{par} \phi$ and \leq skip, σ > $\rightarrow \sigma'$) $\Rightarrow \sigma'$, $I \vDash_{par} \phi$

Which follows because $\sigma' \equiv \sigma$.

Slide 5

Soundness of assignment

Case last rule in the derivation is $\{\phi[a/x]\}\times\mathbb{R} = a \{\phi\}$

Take σ and I such that σ , $I \models \phi$ [a/x]. Then

$$
\prec x := a, \, \sigma \geq \rightarrow \sigma[a/x]
$$

We need to prove $\sigma[a/x]$, $\vdash \phi$, which follows from the substitution lemma

<u>LEMMA</u>: σ , $I \models \phi[a/x]$ implies $\sigma[a/x]$, $I \models \phi$

Proof: by induction on the structure of ϕ

Soundness of consequence rule

 Case last rule in the derivation is $\vdash \phi \Rightarrow \phi'$ { ϕ' } c { ψ' } $\vdash \psi' \Rightarrow \psi$ $-\frac{1}{6} \oint C \{ \psi \}$

 \blacksquare From soundness of first order logic we have $\sigma, \mathsf{l} \vDash \phi \Rightarrow \phi'.$

Hence $\sigma, \mathsf{l} \models \phi'.$

- From induction hypothesis we get σ' , $I \vDash \psi'$.
- From soundness of first order logic we finally obtain $\sigma', I \vDash \psi' \Rightarrow \psi$.

$$
\left(\begin{array}{c}\n\bullet \\
\bullet \\
\bullet\n\end{array}\right)
$$

PenC - Spring 2006 Therefore σ' , $I \vDash \psi$

Slide 7

Soundness of while

■ Case last rule in the derivation is

 $\{\phi \land b\} \subset \{\phi\}$

-- $\{\phi\}$ while b do c od $\{\phi \land \neg b\}$

Assume $\sigma, I \vDash \phi$. We proceed by induction on the derivation of \leq while b do c od, σ \rightarrow σ'

 \Box There are two cases (we treat only one):

 $\langle \texttt{b}, \sigma \rangle \rightarrow \textsf{T}$ $\langle \texttt{c}, \sigma \rangle \rightarrow \sigma'$ $\langle \texttt{while} \texttt{b} \texttt{ do } \texttt{c} \texttt{ od}, \sigma' \rangle \rightarrow \sigma''$ -- \le while b do c od, σ \rightarrow σ "

 \Box We need to prove σ'' , $I \vDash \phi \land \neg b$

Soundness of while (II)

- By definition of derivation of $\leq b$, σ $\geq \to T$ we obtain σ , $\mathsf{I} \models \mathsf{b}$
	- Hence $\sigma, \mathsf{l} \vDash \phi \land \mathsf{b}$
- By induction hypothesis on derivation of $\{\phi \wedge b\}$ c $\{\phi\}$ we have $\sigma', \mathsf{l} \vDash \phi$
- By induction hyp. on derivation of <<u>while</u> b <u>do</u> c <u>od,</u> σ' > \rightarrow σ'' we finally obtain

$$
\sigma".\mathsf{I}\vDash\varphi\wedge\neg\mathsf{b}
$$

Slide 9

Hoare Logic

■ We have seen that if we can derive an assertion in the Hoare logic then this assertion is true (soundness).

Next we concentrate on the opposite direction (completeness).

6/9/2008

Completeness of Hoare Logic

- Can we prove that if an assertion is true then it is derivable?
- More formally, can we prove

 $\vDash_{par} {\{\phi\}} c \{\psi\}$ implies $\vdash_{par} {\{\phi\}} c \{\psi\}$?

 \blacksquare The answer is yes, but only if the underlying logic is complete ($\models \phi$ implies $\vdash \phi$) and expressive enough \Box This is called relative completeness.

Idea for proving completeness

To prove $\models_{tot} {\phi} c {\psi}$ implies $\vdash_{tot} {\phi} c {\psi}$

- 1. Assume we can compute $wp(c, \psi)$ such that *wp*(c, ψ) is a precondition of ψ , i.e. $\vdash_{\text{tot}} \{wp(c, \psi)\}$ c $\{\psi\}$
	- *wp*(c, ψ) is the weakest precondition of ψ , i.e. $\models_{tot} {\varphi} c {\psi}$ implies $\models \varphi \Rightarrow wp(c, \psi)$
- 2. By completeness of the underlying logic and the consequence rule we obtain

$$
\vdash \phi \Rightarrow \textit{wp}(c, \psi) \qquad \qquad \vdash_{\text{tot}} \{\textit{wp}(c, \psi)\} \text{ c } \{\psi\} \\
 \qquad \qquad \vdash_{\text{tot}} \{\varphi\} \text{ c } \{\psi\}
$$

Weakest precondition (Dijkstra)

Assertions can be ordered

The definition of the weakest precondition follows the rules of the Hoare logic

SKIP

------------------ $\{\phi\}$ skip $\{\phi\}$

 wp (skip, ϕ) = ϕ

6/9/2008

Leiden Institute of Advanced Computer Science

Slide 14

ASSIGNMENT

---------------------------- $\{\phi[a/x]\}$ x := a $\{\phi\}$

 $wp(x:=a, \phi) = \phi[a/x]$

SEQUENTIAL COMPOSITION

$$
\{\phi\} C_1 \{\psi\} \{\psi\} C_2 \{\phi\}
$$

$$
\{\phi\} C_1; C_2 \{\phi\}
$$

6/9/2008 $wp(c_1; c_2, \varphi) = wp(c_1, wp(c_2, \varphi))$

CONDITIONAL

$\{\phi_1\}$ C₁ $\{\psi\}$ $\{\phi_2\}$ C₂ $\{\psi\}$ --- $\{\mathsf{b}\Rightarrow \mathsf{\phi}_1 \wedge \mathsf{-b} \Rightarrow \mathsf{\phi}_2\}$ <u>if</u> b <u>then</u> c_1 <u>else</u> c_2 <u>fi</u> $\{\mathsf{\psi}\}$

 $wp(if$ b <u>then</u> c_1 <u>else</u> c_2 <u>fi</u>, ψ) = b $\Rightarrow wp(c_1, \psi) \land \neg b \Rightarrow wp(c_2, \psi)$

6/9/2008

LOOP

- 1. We already know that <u>while</u> b <u>do</u> c <u>od</u> \equiv if b then **(**c;while b <u>do</u> c <u>od) else</u> skip <u>fi</u>
- 2. Let $w =$ while b do c od and $W = wp(w, \psi)$. We have

$$
W = b \Rightarrow wp(c,W) \land \neg b \Rightarrow \psi
$$

3. This is a recursive equation

- **Ne know how to solve it**
- We need a complete partial order (cpo) of assertions

6/9/2008

A CPO of assertions

Refinement order:

$$
\varphi \leq \psi \text{ iff } \quad \vDash \psi \Rightarrow \varphi
$$

True is the bottom: it does not says much about a state.

 \blacksquare It forms a complete partial order: the least upper bound of every chain $\phi_1 \leq \phi_2 \leq ... \leq \phi_n \leq$ is the infinite conjunction Λ ϕ_{i}

where $\sigma, I \vDash \wedge \phi_{i}$ iff $\sigma, I \vDash \phi_{i}$ for all i

Weakest precondition (LOOP)

Let $F(X) = b \Rightarrow wp(c, X) \wedge \neg b \Rightarrow \psi$.

 \blacksquare Then F is monotone and continuous. Thus it has a least fixed point (the weakest fixed point) and

 $wp(\text{while } b \underline{do} c \underline{od}, \psi) = \Lambda$ Fⁱ(true)

■ We need an assertion language expressive enough to be able to write \wedge Fⁱ(true).

Slide 19

Weakest precondition (LOOP)

Define a family of preconditions $wp(\text{while } b \text{ do } c \text{ od}, \psi)_{k}$ **as** follows:

wp(while b do c od, ψ)₀ = -b $\Rightarrow \psi$ *wp*(while b do c od, ψ)_{n+1} = $\mathsf{b} \Rightarrow \mathsf{wp}(\mathsf{c},\, \mathsf{wp}(\underline{\mathsf{while}} \mathsf{\ b\; do}\mathsf{\ c\; od},\, \mathsf{\psi})_{\mathsf{n}}) \land \neg \mathsf{b}$

Then *wp*(while b do c od, ψ) = \land *wp*(while b do c od, ψ)_k

Here wp(while b do c od, ψ)_k is the weakest precondition on which the loop - if terminated in k or less iterations terminates in ψ .

Weakest precondition: properties

- For each command c in our language we have \Box *wp*(c,true) = true
	- \Box if $\psi \Rightarrow \psi'$ then $wp(c, \psi) \Rightarrow wp(c, \psi')$
	- \Box *wp*(c, $\psi \land \psi'$) = *wp*(c, ψ) \land *wp*(c, ψ')
	- \Box *wp*(c, $\psi \lor \psi'$) = *wp*(c, ψ) \lor *wp*(c, ψ')

■ *wp*(c,false) characterizes all states in which c does not terminate

