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Rational Unified Process &

Designing Software (LL Chapter 9)

RUP pictures in this presentation © IBM/Rational
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Agenda

• Recap Architecture

• RUP

• Design heuristics & guidelines

This afternoon werkcollege

• Design 
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Multiple Purposes of Architecture

Understanding

+ Analyzing + Communicating + Constructing

Picture from Gerrit Muller, How to Create a Managable Platform Architecture
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Overview (According to IEEE 1471)
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Viewpoints & views

view
point

vie
w

6

Capstone Cases – Value Based Software Engineering

MRV Chaudron

Sheet 6

Recommendations for Architecture Description
• describe the system goalsgoalsgoalsgoals & the assumptions on the environmentassumptions on the environmentassumptions on the environmentassumptions on the environment

• describe the design principles, decisions, guidelines principles, decisions, guidelines principles, decisions, guidelines principles, decisions, guidelines 

• and their rationalerationalerationalerationale

• describe several viewsseveral viewsseveral viewsseveral views that can be combined in a consistent model

at least the following views should be given:

• functional/structural (decomposition) viewfunctional/structural (decomposition) viewfunctional/structural (decomposition) viewfunctional/structural (decomposition) view
• include a description of the interfaces between (sub)systems

• process/dynamical/process/dynamical/process/dynamical/process/dynamical/behaviourbehaviourbehaviourbehaviour view view view view 

• deployment viewdeployment viewdeployment viewdeployment view

• prevent mixing of views

• address nonnonnonnon----functionalfunctionalfunctionalfunctional (*ilities) aspects

• use a well-defined notation and include its keykeykeykey/legendlegendlegendlegend
• this aids systematic use of notation/avoids inconsistent use

• improves common understanding

• prevents mixing of different levels of abstraction

• add explanation in natural languagenatural languagenatural languagenatural language
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Rational Unified Process (RUP)
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Rational Unified Process
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Effort Distribution in Model-based Development – Heijstek & Chaudron
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RUP Humps from 3 (largish) projects

Heijstek & Chaudron 2007 Heijstek & Chaudron 2007 Heijstek & Chaudron 2007
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Progress perspective
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Progress perspective (alternative pic)
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Iteration Perspective
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Incremental � Risk reduction
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Essentials of RUP

•Develop a Vision

•Manage to the Plan 

•Identify and Mitigate Risks Early and regularly

•Examine the Business Case 

•Provide User Support 

1. Develop software iteratively; Incrementally build and test

2. Manage requirements

3. Use component-based architectures

4. Visually model software

5. Verify software quality

6. Control changes to software
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Project Management
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Implementation
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RUP Tooling

Describes processes in terms of:

• workflows

• roles

• artifacts

Provides

• templates for deliverables
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RUP workflow
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Tooling
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Tooling
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Design
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9.1 The Process of Design

Definition: 

• Design is a problem-solving process whose objective is to 

find and describe a way:

—To implement the system’s functional requirements...

—While respecting the constraints imposed by the 

quality, platform and process requirements...

- including the budget

—And while adhering to general principles of good 

quality
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Design as a series of decisions

A designer is faced with a series of design issues

• These are sub-problems of the overall design problem. 

• Each issue normally has several alternative solutions: 

—design options. 

• The designer makes a design decision to resolve each 

issue. 

—This process involves choosing the best option from 

among the alternatives. 
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Making decisions

To make each design decision, the software engineer 

uses:

• Knowledge of

—the requirements

—the design as created so far

—the technology available

—software design principles and ‘best practices’

—what has worked well in the past

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 26

Document decisions

- Record the decision

- Record the motivation

- Record rejected alternatives
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Design space

The space of possible designs that could be achieved by choosing

different sets of alternatives is often called the design space

• For example:

28

Capstone Cases – Value Based Software Engineering

MRV Chaudron

Sheet 28

Features
According to

FODA:  A prominent and user-visible aspect, quality or
characteristic of a system.

ODM: A distinguishable characteristic of a system that is
relevant to a stakeholder of the system

In mobile telephones:
- polyphonic ringtones
- SMS, MMS
- dual, tri-band,
- …

In cars:
- airco
- power-steering
- remote key-lock
- …
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Feature models

Types of features

Mandatory:Mandatory:Mandatory:Mandatory: All systems must have it
e.g. A car must have an engine

Alternative:Alternative:Alternative:Alternative:
A system must have one out of multiple options

e.g. Transmission may be manual or automatic

OptionalOptionalOptionalOptional: A system may have a feature
e.g. A car may have air-conditioning
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Feature Diagram

engine

car

wheels aircosteering
wheel

transmission

manual automatic

optional

alternative
mandatory
(default)

A hierarchical decomposition of features.
A concept higher in the tree consists of its children

Additional annotations that may be used in the feature diagram:

- mutually exclusive features

- rationale for chosing between alternatives

- composition rules: airco may be used if horsepower>100 
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Feature Solution Diagrams

From de Bruin & Van Vliet, 2001

FeatureFeatureFeatureFeature
spacespacespacespace

SolutionSolutionSolutionSolution
spacespacespacespace
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Different aspects of design

• Architecture design: 

—The division into subsystems and components,

- How these will be connected.

- How they will interact.

- Interface design

• Class design: 

—The various features of classes.

• User interface design

• Algorithm design: 

—The design of computational mechanisms.

• Protocol design: 

—The design of communications protocol.
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Architecture is making decisions

The life of a software architect is 
a long (and sometimes painful) 
succession of suboptimal decisions 
made partly in the dark.

• You will not have all information available

• You will make mistakes, but you should learn from them

• There is no objective measure for ‘goodness’

Grady Booch
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Design of Software Architecture

Functional
Requirements

Functional
Requirements

Extra-Functional
Requirements

Extra-Functional
Requirements

Domain
Requirements

Domain
Requirements

User
Requirements

User
Requirements

Group Functionality
in subsystems

Group Functionality
in subsystems

Design approach for
realizing extra-functional 

quality properties

Design approach for
realizing extra-functional 

quality properties

SynthesizeSynthesize

Analyze  Analyze  
refineRBD, QN, RMA,

ATAM, prototype

RBD, QN, RMA,
ATAM, prototype

S.M.A.R.T.S.M.A.R.T.

Design MetricsDesign Metrics

Model/DescribeModel/DescribeUML, ViewsUML, Views

Identify 
•Trade-offs 
•Sensitivity points

Identify 
•Trade-offs 
•Sensitivity points

Select 
•Architectural Style
•Reference Architecture
•Architecture Tactics

Select 
•Architectural Style
•Reference Architecture
•Architecture Tactics

Understand the DomainUnderstand the Domain


