
1

Rational Unified Process &

Designing Software (LL Chapter 9)

RUP pictures in this presentation © IBM/Rational

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 2

Agenda

• Recap Architecture

• RUP

• Design heuristics & guidelines

This afternoon werkcollege

• Design

2

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 3

Multiple Purposes of Architecture

Understanding

+ Analyzing + Communicating + Constructing

Picture from Gerrit Muller, How to Create a Managable Platform Architecture

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 4

Overview (According to IEEE 1471)

stakeholderstakeholderstakeholderstakeholder

concernconcernconcernconcern

viewpointviewpointviewpointviewpoint

viewviewviewview

modelmodelmodelmodel

has

conforms to
establishes
methods for

consists of

is covered by

architectural architectural architectural architectural
descriptiondescriptiondescriptiondescription

systemsystemsystemsystem

architecturearchitecturearchitecturearchitecture

has

has

described by

is organised by

1..****

1..****

1..****

1..****

1

3

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 5

Viewpoints & views

view
point

vie
w

6

Capstone Cases – Value Based Software Engineering

MRV Chaudron

Sheet 6

Recommendations for Architecture Description
• describe the system goalsgoalsgoalsgoals & the assumptions on the environmentassumptions on the environmentassumptions on the environmentassumptions on the environment

• describe the design principles, decisions, guidelines principles, decisions, guidelines principles, decisions, guidelines principles, decisions, guidelines

• and their rationalerationalerationalerationale

• describe several viewsseveral viewsseveral viewsseveral views that can be combined in a consistent model

at least the following views should be given:

• functional/structural (decomposition) viewfunctional/structural (decomposition) viewfunctional/structural (decomposition) viewfunctional/structural (decomposition) view
• include a description of the interfaces between (sub)systems

• process/dynamical/process/dynamical/process/dynamical/process/dynamical/behaviourbehaviourbehaviourbehaviour view view view view

• deployment viewdeployment viewdeployment viewdeployment view

• prevent mixing of views

• address nonnonnonnon----functionalfunctionalfunctionalfunctional (*ilities) aspects

• use a well-defined notation and include its keykeykeykey/legendlegendlegendlegend
• this aids systematic use of notation/avoids inconsistent use

• improves common understanding

• prevents mixing of different levels of abstraction

• add explanation in natural languagenatural languagenatural languagenatural language

4

7

Capstone Cases – Value Based Software Engineering

MRV Chaudron

Sheet 7

Rational Unified Process (RUP)

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 8

Rational Unified Process

5

9

Effort Distribution in Model-based Development – Heijstek & Chaudron

MRV Chaudron

Sheet 9

RUP Humps from 3 (largish) projects

Heijstek & Chaudron 2007 Heijstek & Chaudron 2007 Heijstek & Chaudron 2007

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 10

Progress perspective

6

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 11

Progress perspective (alternative pic)

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 12

Iteration Perspective

7

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 13

Incremental � Risk reduction

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 14

Essentials of RUP

•Develop a Vision

•Manage to the Plan

•Identify and Mitigate Risks Early and regularly

•Examine the Business Case

•Provide User Support

1. Develop software iteratively; Incrementally build and test

2. Manage requirements

3. Use component-based architectures

4. Visually model software

5. Verify software quality

6. Control changes to software

8

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 15

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 16

Project Management

9

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 17

Implementation

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 18

RUP Tooling

Describes processes in terms of:

• workflows

• roles

• artifacts

Provides

• templates for deliverables

10

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 19

RUP workflow

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 20

Tooling

11

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 21

Tooling

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 22

Design

12

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 23

9.1 The Process of Design

Definition:

• Design is a problem-solving process whose objective is to

find and describe a way:

—To implement the system’s functional requirements...

—While respecting the constraints imposed by the

quality, platform and process requirements...

- including the budget

—And while adhering to general principles of good

quality

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 24

Design as a series of decisions

A designer is faced with a series of design issues

• These are sub-problems of the overall design problem.

• Each issue normally has several alternative solutions:

—design options.

• The designer makes a design decision to resolve each

issue.

—This process involves choosing the best option from

among the alternatives.

13

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 25

Making decisions

To make each design decision, the software engineer

uses:

• Knowledge of

—the requirements

—the design as created so far

—the technology available

—software design principles and ‘best practices’

—what has worked well in the past

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 26

Document decisions

- Record the decision

- Record the motivation

- Record rejected alternatives

14

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 27

Design space

The space of possible designs that could be achieved by choosing

different sets of alternatives is often called the design space

• For example:

28

Capstone Cases – Value Based Software Engineering

MRV Chaudron

Sheet 28

Features
According to

FODA: A prominent and user-visible aspect, quality or
characteristic of a system.

ODM: A distinguishable characteristic of a system that is
relevant to a stakeholder of the system

In mobile telephones:
- polyphonic ringtones
- SMS, MMS
- dual, tri-band,
- …

In cars:
- airco
- power-steering
- remote key-lock
- …

15

29

Capstone Cases – Value Based Software Engineering

MRV Chaudron

Sheet 29

Feature models

Types of features

Mandatory:Mandatory:Mandatory:Mandatory: All systems must have it
e.g. A car must have an engine

Alternative:Alternative:Alternative:Alternative:
A system must have one out of multiple options

e.g. Transmission may be manual or automatic

OptionalOptionalOptionalOptional: A system may have a feature
e.g. A car may have air-conditioning

30

Capstone Cases – Value Based Software Engineering

MRV Chaudron

Sheet 30

16

31

Capstone Cases – Value Based Software Engineering

MRV Chaudron

Sheet 31

Feature Diagram

engine

car

wheels aircosteering
wheel

transmission

manual automatic

optional

alternative
mandatory
(default)

A hierarchical decomposition of features.
A concept higher in the tree consists of its children

Additional annotations that may be used in the feature diagram:

- mutually exclusive features

- rationale for chosing between alternatives

- composition rules: airco may be used if horsepower>100

32

Capstone Cases – Value Based Software Engineering

MRV Chaudron

Sheet 32

Feature Solution Diagrams

From de Bruin & Van Vliet, 2001

FeatureFeatureFeatureFeature
spacespacespacespace

SolutionSolutionSolutionSolution
spacespacespacespace

17

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 33

Different aspects of design

• Architecture design:

—The division into subsystems and components,

- How these will be connected.

- How they will interact.

- Interface design

• Class design:

—The various features of classes.

• User interface design

• Algorithm design:

—The design of computational mechanisms.

• Protocol design:

—The design of communications protocol.

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 34

Architecture is making decisions

The life of a software architect is
a long (and sometimes painful)
succession of suboptimal decisions
made partly in the dark.

• You will not have all information available

• You will make mistakes, but you should learn from them

• There is no objective measure for ‘goodness’

Grady Booch

18

© Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 35

Design of Software Architecture

Functional
Requirements

Functional
Requirements

Extra-Functional
Requirements

Extra-Functional
Requirements

Domain
Requirements

Domain
Requirements

User
Requirements

User
Requirements

Group Functionality
in subsystems

Group Functionality
in subsystems

Design approach for
realizing extra-functional

quality properties

Design approach for
realizing extra-functional

quality properties

SynthesizeSynthesize

Analyze Analyze
refineRBD, QN, RMA,

ATAM, prototype

RBD, QN, RMA,
ATAM, prototype

S.M.A.R.T.S.M.A.R.T.

Design MetricsDesign Metrics

Model/DescribeModel/DescribeUML, ViewsUML, Views

Identify
•Trade-offs
•Sensitivity points

Identify
•Trade-offs
•Sensitivity points

Select
•Architectural Style
•Reference Architecture
•Architecture Tactics

Select
•Architectural Style
•Reference Architecture
•Architecture Tactics

Understand the DomainUnderstand the Domain

