
1

Design Heuristics and StylesDesign Heuristics and StylesDesign Heuristics and StylesDesign Heuristics and Styles
(LL (LL (LL (LL Chapter 9)Chapter 9)Chapter 9)Chapter 9)

Michel Chaudron

Many slides based on Lethbridge and Laganiere
2

Software Engineering 2008

MRV Chaudron

Sheet 2

Agenda

� Recap RUP

� Design heuristics & guidelines

� Architectural Styles

� This afternoon: geen werkcollege

� hand in assignments electronically

chaudron@liacs.nlchaudron@liacs.nlchaudron@liacs.nlchaudron@liacs.nl

3

Software Engineering 2008

MRV Chaudron

Sheet 3

Summary Rational Unified Process

Structure model :, Development model

Behaviour model
:

A B

C D

A B C D

Deployment
model :

A
B

C D

Use cases view

4

Software Engineering 2008

MRV Chaudron

Sheet 4

Software Design Heuristics

5

Software Engineering 2008

MRV Chaudron

Sheet 5

Different aspects of design

� Architecture design:
� The division into subsystems and components,

� How these will be connected:

� How they will interact:

� Interface design & architectural style

� Class design:
� The various features of classes.

� User interface design

� Algorithm design:
� The design of computational mechanisms.

� Protocol design:
� The design of communications protocol.

6

Software Engineering 2008

MRV Chaudron

Sheet 6

Architecture is making decisions

The life of a software architect is
a long (and sometimes painful)
succession of suboptimal
decisions made partly in the dark.

• You will not have all information available

• You will make mistakes, but you should learn from them

• There is no objective measure for ‘goodness’

Grady Booch

2

7

Software Engineering 2008

MRV Chaudron

Sheet 7

Design of Software Architecture

Functional
Requirements

Functional
Requirements

Extra-Functional
Requirements

Extra-Functional
Requirements

Domain
Requirements

Domain
Requirements

User
Requirements

User
Requirements

Group Functionality
in subsystems

Group Functionality
in subsystems

Design approach for
realizing extra-functional

quality properties

Design approach for
realizing extra-functional

quality properties

SynthesizeSynthesize

Analyze Analyze
refineRBD, QN, RMA,

ATAM, prototype

RBD, QN, RMA,
ATAM, prototype

S.M.A.R.T.S.M.A.R.T.

Design MetricsDesign Metrics

Model/DescribeModel/DescribeUML, ViewsUML, Views

Identify
•Trade-offs
•Sensitivity points

Identify
•Trade-offs
•Sensitivity points

Select
•Architectural Style
•Reference Architecture
•Architecture Tactics

Select
•Architectural Style
•Reference Architecture
•Architecture Tactics

Understand the DomainUnderstand the Domain

8

Software Engineering 2008

MRV Chaudron

Sheet 8

Design Principle 1: Divide and conquer

� Trying to deal with something big all at once

is normally much harder than dealing with a

set of smaller things

� Each individual component is smaller, and

therefore easier to understand

� Parts can be replaced or changed without having to

replace or extensively change other parts.

� Separate people can work on separate parts

� An individual software engineer can specialize

9

Software Engineering 2008

MRV Chaudron

Sheet 9

Ways of dividing a software system

A system is divided up into

�Layers & subsystems

�A subsystem can be divided

up into one or more packages

�A package is divided up into classes

�A class is divided up into methods

10

Software Engineering 2008

MRV Chaudron

Sheet 10

Layering

2

1

0

3Partitioning in non-overlapping units that

- provide a cohesive set of services at an

abstraction level

(while abstracting from their implementation)

- layer n is allowed to use services of layer n-1

(and not vice versa)

alternative:

bridging layers: layer n may use layers <n

enhances efficiency but hampers portability

GoalsGoalsGoalsGoals: Separation of Concerns, Abstraction, Modularity, Portability

11

Software Engineering 2008

MRV Chaudron

Sheet 11 12

Software Engineering 2008

MRV Chaudron

Sheet 12

Layering into levels of abstraction

Sentences

Phonemes

Syllables

Words

Phrases

Acoustic
waveform

Hearsay: speech understanding

3

13

Software Engineering 2008

MRV Chaudron

Sheet 13

Layering in Client / Server

• Presentation layerPresentation layerPresentation layerPresentation layer

Dialogue with users

• AAAApplicationpplicationpplicationpplication logiclogiclogiclogic

Application for individual user

• Business logicBusiness logicBusiness logicBusiness logic

Logic for processing

across users, divisions

• Data managementData managementData managementData management

Storage of data

presentation
logic

business
logic

data
management

application
logic

client

server

Unit of change

Unit of responsibility

Unit of deployment

Unit of change

Unit of responsibility

Unit of deployment

14

Software Engineering 2008

MRV Chaudron

Sheet 14

E
x
a
m
p
le
 3
-
ti
e
r

S
y
s
te
m

Diagram from
Wikipedia, 2007

15

Software Engineering 2008

MRV Chaudron

Sheet 15

Layering in Computer Networks:
OSI & Internet

Physical

Data Link

Network

Transport

Session

Presentation

Application

Picture from Jeremy Bradbury,
Queens Univ. Canada

16

Software Engineering 2008

MRV Chaudron

Sheet 16

Layer 3: End-to-End

Layer 2: Datalink

Layer 1: Physical

Request Confirm

Distributed (e.g. TCP)

Distributed (e.g. IP)

Local (e.g. OS)

Response Indication

Bitpipe

Protocol

Layering (2)
Example: Communication Stack

17

Software Engineering 2008

MRV Chaudron

Sheet 17

A Component-based Reference
Architecture for Computer Games

(E. Folmer, 2007)

g
e
n
e
ric

g
e
n
e
ric

g
e
n
e
ric

g
e
n
e
ric

s
p
e
c
ific

s
p
e
c
ific

s
p
e
c
ific

s
p
e
c
ific

18

Software Engineering 2008

MRV Chaudron

Sheet 18

«layer»

Business Layer

«layer»

Common Elements
«layer»

Presentation and Dialogue Layer

«layer»

Persistence Layer

«subsystem»
P

«subsystem»
M

«subsystem»
F

«subsystem»
D

«subsystem»
C

«subsystem»
M

«subsystem»
P«subsystem»

M

«subsystem»
F

«subsystem»
D«subsystem»

C

«subsystem»
M

«subsystem»
P

«subsystem»
D

«subsystem»
M

«subsystem»
F

«subsystem»
C

«subsystem»
M

«subsystem»
Client / Browser

«subsystem»
E

«subsystem»
Apache

«subsystem»
RC

«subsystem»
JR

«subsystem»
PL

«subsystem»
S

«subsystem»
Client Authentication

«subsystem»
Data Security

4

19

Software Engineering 2008

MRV Chaudron

Sheet 19

Peer to Peer Reference ArchitecturePeer to Peer Reference ArchitecturePeer to Peer Reference ArchitecturePeer to Peer Reference Architecture

Communication
layer

Group mngmnt
layer

Quality of service
layer

Application
layer

Domain specific
layer

communication

discovery locating & routing

security resource aggregation reliability

scheduling meta-data managementmessaging

tools applications services

20

Software Engineering 2008

MRV Chaudron

Sheet 20

What is Modularity?

We can “see it” via a
Design Structure Matrix (DSM)

21

Software Engineering 2008

MRV Chaudron

Sheet 21

What is a dependency?

� Component A requires B for it to work
�Functional coupling

� A change in module B requires change
in module A

� Implementation coupling

�Typically requires: re-testing A & B

Run-timeRun-time

Development-timeDevelopment-time

22

Software Engineering 2008

MRV Chaudron

Sheet 22

Dependencies in the code

� There is coupling between
two classes AAAA and BBBB if:
�AAAA has an attribute that refers to (is of type) BBBB.

�AAAA calls on services of an object BBBB.

�AAAA has a method which references BBBB

(via return type or parameter).

�AAAA is a subclass of (or implements) class BBBB.

This is not an exhaustive definition

23

Software Engineering 2008

MRV Chaudron

Sheet 23

Dependency: Coupling
Coupling is the degree of interdependence
between modules

high coupling low coupling

Design Principle: Reduce coupling where possible

24

Software Engineering 2008

MRV Chaudron

Sheet 24

Benefits of Low Coupling/Dependencies

Fewer interconnections between modules reduces

• time needed for understandingunderstandingunderstandingunderstanding the modules and

interactions

• the chance that changeschangeschangeschanges in one module cause

problemsproblemsproblemsproblems in other modules, which enhances

reusability

• the chance that a fault in one module will cause a

failurefailurefailurefailure in other modules, which enhances

robustness

Page-Jones, M. 1980. The Practical Guide to Structured Systems Design. New York, Yourdon Press, 1980.

5

25

Software Engineering 2008

MRV Chaudron

Sheet 25

Guideline: Minimize Dependency

Avoid dependencies where possible:

Design components so that

� they know about as few other components as possible

�use as few parameters as possible

� for as short a time as possible

�minimize number of calls between components

Ref: Component are from Mars – Chaudron & De Jong

26

Software Engineering 2008

MRV Chaudron

Sheet 26

Design Principle:
Reduce coupling where possible

� Coupling occurs when there are interdependencies
between one module and another

� When interdependencies exist, changes in one place will
require changes somewhere else.

� A network of interdependencies makes it hard to see at a
glance how some component works.

� Type of coupling:

� Content, Common, Control, Stamp, Data, Routine Call, Type use,
Inclusion/Import, External

27

Software Engineering 2008

MRV Chaudron

Sheet 27

Separation of Concerns

� Zaken die niet bij elkaar horen moeten
in verschillende eenheden (componenten
/ procedures / ..) worden geaddresseerd

28

Software Engineering 2008

MRV Chaudron

Sheet 28

Example Design Principles
Telecom Domain:

Separate the encoding/decoding of a
message from the handling of a
message, so

� decode1 ; decode2 ; decode3 ;

action1 ; action2

And not

� decode1 ; action1 ; decode2 ;

action2 ; decode3

handle

encode/
decode

handle &
encode/
decode

29

Software Engineering 2008

MRV Chaudron

Sheet 29

Aspect Orientation

Design & maintain concerns in isolation

Automatically construct implementation

by ‘weaving’ concerns

30

Software Engineering 2008

MRV Chaudron

Sheet 30

. x x x x x

x . x x x x x x x x x

Drive x x . x x x

System x x x . x x x x x x x x

x x . x

x x x x . x x x

x x x . x x

x x x . x x x x

x x x . x x x x x

Main x x x . x x x

Board x x x x x x x x . x x x x x

x x x x x . x x

x x x x x x . x x x

x x x . x

x x x . x x x

x x x x . x x x x

LCD x x x . x x

Screen x x x x . x x x

x x x x x x x . x x x

x x x . x

x x x x . x x x x

x x x . x x x x

x x x x x . x x x

Packaging x x x x . x x

x x x x x . x x

x x x x . x x

x x x x x .

x x x x x .

Graphics controller on Main Board or not?

If yes, screen specifications change;

If no, CPU must process more; adopt different interrupt protocols

Design Structure Matrix Map of a Laptop Computer

6

31

Software Engineering 2008

MRV Chaudron

Sheet 31

Design Structure Matrix Map of a Modular System

. x x x x

x . x x

Design x . x x Design Rules Task Group

Rules x x . x

x x x .

x . x x x

x x . x x x

Drive x x x x . x

System x x x x x . x x Hidden Modules

x x x . x many Task groups
x x x x .

x . x x

x x x x x . x x

x x . x x x x

Main x x x x x . x x

Board x x x x x x x . x x

x x x x x . x

x x x x x x . x
x x x x x .

x x . x x x

x x x . x x x

LCD x x x . x

Screen x x x x x . x x

x x x x x . x
x x x x x x .

x x . x x x x

x x x . x x x x

x x x . x x x

Pack- x x x x x x . x x

aging x x x . x x

x x x x x . x x

x x x x x .
x x x x x x .

x x x x x x . x x x x
System x x x x x x x x . x x System

Testing x x x x x x x x x . x x x Integration

& Integ- x x x x x x x x x x x x and Testing

ration x x x x x x x x . x Task Group
x x x x x x x x x x x .

32

Software Engineering 2008

MRV Chaudron

Sheet 32

DSM of Mozilla before and after redesignDSM of Mozilla before and after redesignDSM of Mozilla before and after redesignDSM of Mozilla before and after redesign

Formerly Mozilla was the commercial Netscape Navigator,

then released into open source.

From: Exploring the Structure of Complex Software Designs: An Empirical Study of Open
Source and Proprietary Code, Alan MacCormack, John Rusnak, Carliss Baldwin,
Harvard Business School, draft October 1st 2005

number

of files

1.3 dependencies per KSLOC2.4 dependencies per KSLOC

33

Software Engineering 2008

MRV Chaudron

Sheet 33

Types of CouplingTypes of CouplingTypes of CouplingTypes of Coupling

c
o
n
s
id
e
re
d

w
o
rs
e

• Data coupling
• data from one module is used in another

• Data type coupling

• two modules use the same data type

• Control coupling

•actions one module are controlled
by another module (switch)

• Content coupling
• a module refers to the internals
of another module Bind to interface

of components
34

Software Engineering 2008

MRV Chaudron

Sheet 34

9.9 Difficulties and Risks in
Design

� Like modelling, design is a skill that
requires considerable experience

� Individual software engineers should not
attempt the design of large systems

� Aspiring software architects should actively
study designs of other systems

� Poor designs can lead to expensive
maintenance

� Ensure you follow the principles discussed
in this chapter

35

Software Engineering 2008

MRV Chaudron

Sheet 35

Difficulties and Risks in Design

� It requires constant effort to ensure a
software system’s design remains good
throughout its life

� Make the original design as flexible as possible
so as to anticipate changes and extensions.

� Ensure that the design documentation is usable
and at the correct level of detail

� Ensure that change is carefully managed

36

Software Engineering 2008

MRV Chaudron

Sheet 36

Inheritance vs. Composition

� The two most common techniques for reusing
functionality in object-oriented systems are class
inheritance and object composition

� Class inheritance defines the implementation of one
class in terms of another’s implementation. With
inheritance the internals of parent classes are often
visible to sub-classes (white box).

� In object composition new functionality is obtained
by assembling or composing objects to get more
complex functionality. Internal details of objects are
not visible, objects appear as black boxes.

7

37

Software Engineering 2008

MRV Chaudron

Sheet 37

Pros and Cons of Inheritance

� Pros: Class inheritance is defined statically at
compile-time and is straightforward to use, since
it´s supported directly by the programming
language. Class inheritance makes it easier to modify
the implementation being reused.

� Cons: You can not change the implementations
being inherited at run-time. Inheritance exposes as
subclass to details of its parent’s implementation.
Any change in the parent’s implementation will force
the subclass to change. One cure is to only inherit
from abstract classes since they provide little or no
implementation.

38

Software Engineering 2008

MRV Chaudron

Sheet 38

Pros and Cons of
Composition

� Composition is defined at run-time through
objects acquiring references to other objects.

� Composition requires objects to respect each
other’s interface. Because objects are accessed
solely through their interfaces we don’t break
encapsulation. Any object can be replaced at
run-time by another as long as it has the same
type.

� Because an object´s implementation is written
in terms ob object interfaces, there are
substantially fewer implementation
dependencies.

39

Software Engineering 2008

MRV Chaudron

Sheet 39

Inheritance vs. Object Comp.

� Favoring object composition over class
inheritance helps you keep each class
encapsulated and focused on one task.

� Classes and class hierarchies remain small
and managable.

� A design based on object composition has
more objects (if fewer classes) and the system
behavior depends on their interrelationships
instead of being defined in one class.

© Lethbridge/Laganière 2005

Chapter 9: Architecting and designing software

ESE 4.40

Assigning Responsibilities

> Evenly distribute system intelligence
— avoid procedural centralization of responsibilities
— keep responsibilities close to objects rather than their clients

> State responsibilities as generally as possible
— “draw yourself” vs. “draw a line/rectangle etc.”
— leads to sharing

> Keep behaviour together with any related information
— principle of encapsulation

© Lethbridge/Laganière 2005

Chapter 9: Architecting and designing software

ESE 4.41

Assigning Responsibilities ...

> Keep information about one thing in one place
— if multiple objects need access to the same information

1. a new object may be introduced to manage the information, or

2. one object may be an obvious candidate, or

3. the multiple objects may need to be collapsed into a single one

> Share responsibilities among related objects
— break down complex responsibilities

© Lethbridge/Laganière 2005

Chapter 9: Architecting and designing software

ESE 4.42

Characterizing Classes
according to Rebecca J. Wirfs-Brock, IEEE Software, March/April 2006

■ Information holder: an object designed to know certain information and provide that
information to other objects.

■ Structurer: an object that maintains relationships between objects and information about
those relationships.

Complex structurers might pool, collect, and maintain groups of many objects; simpler
structurers maintain relationships between a few objects. An example of a generic
structurer is a Java HashMap, which relates keys to values.

■ Service provider: an object that performs specific work and offers services to others on
demand.

■ Controller: an object designed to make decisions and control a complex task.

■ Coordinator: an object that doesn’t make many decisions but, in a rote or mechanical
way, delegates work to other objects. The Mediator pattern is one example.

■ Interfacer: an object that transforms information or requests between distinct parts of a
system. The edges of an application contain user-interfacer objects that interact with
the user and external interfacer objects, which communicate with external systems.
Interfacers also exist between subsystems. The Facade pattern is an example of a
class designed to simplify interactions and limit clients’ visibility of objects within a
subsystem.

8

43Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Guidelines for Naming Inventions

“…the relation of thought to word is not a thing but a process, a continual

movement back and forth from thought to word and from word to thought. …
Thought is not merely expressed in words; It comes into existence through

them.”

—Lev Vygotsky, thought and language

Fit a name into some naming scheme

Java example: Calendar� GregorianCalendar�JulianCalendar?

ChineseCalendar?

Give service providers “worker” names

Service providers are “workers”, “doers”, “movers” and “shakers “

Java example: StringTokenizer, ClassLoader, and Authenticator

Choose a name that suits a role

Objects named “Manager” organize and pool collections of similar

objects

AccountManager organizes Account objects
44Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Guidelines for Naming Inventions

Choose names that don’t limit behavior options

Account or AccountRecord?

Record—information or facts set down in writing—an informational
object

Account—sounds livelier—an object that makes informed decisions on

the information it represents

Choose a name that suits a lifetime

A ninety-year old named “Junior”?

ApplicationInitializer or ApplicationCoordinator?

Include facts most relevant to the users of a class

MillisecondTimerAccurateWithinPlusOrMinusTwoMilleseconds or

Timer?

Eliminate naming conflicts by adding description

Rename a Properties candidate to TransactionHistoryProperties

