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Assembling Systems

Basic Quantum Theory

Lecture 4

Assembling Systems
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Assembling Systems (cont’d)
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Assembling Systems (cont’d)
• Quantum theory:

– States can be combined using the tensor product of 
the vectors

– Changes of the system are combined by using the 
tensor product of matrices

– Important: there are many more states that cannot be 
combined from “smaller” ones:

• No tensor product of smaller states
• More interesting ones
• Called entangled states

– Similar for actions

Assembling Systems (cont’d)
• In general:

– Cartesian product of an n-vertex graph with an n’-vertex graph is 
an (n x n’)-vertex graph.

– If we have an n-vertex graph and we are interested in m different 
marbles within this system, this results in the graph with nm

vertices

– with the associated nm-by-nm adjacency matrix 

• Example: bit as a two-vertex graph with a marble on the 0 
vertex or a marble on the 1 vertex. For m bits with a single 
marble one needs a 2m vertex graph or a 2m-by-2m matrix, 
which demonstrates an exponential growth.
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Why Quantum Mechanics?
• Classical mechanics:

– Dichotomy: particles (matter) ↔ waves (light)
– Several experiments prove falseness

• New theory of microscopic world: both matter and light 
manifest a particle-like and a wave-like behavior.

• Double-slit experiment:
– Also with just one photon: which region is more likely for the single 

photon to land. The photon is a true chameleon: sometimes it 
behaves as a particle and sometimes as a wave, depending on 
how it is observed.

– Not only for light (photons), but also with electrons, protons, and 
even atomic nuclei. Clearly indicates: no rigid distinction between 
waves and particles.

Quantum states

Two examples:

I. A particle confined to a set of discrete 
positions on a line

II. A single-particles spin system

Subatomic particle on a line: can only be detected at one of the equally 
spaced points {x0, x1, …, xn-1}, where x1 = x0 + δx, x2 = x1 + δx.

x0 x1 xi Xn-1

δx can be made as small as one wishes.

Classical state

Associate to this current state of the particle an n-dimensional 
complex column vector [c0, c1, …, cn-1]T. Particle at point xi shall be 
denoted by the Dirac ket notation |xi>.

To each of these n basic states, we assiciate:
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that’s all we need!

Quantum state
• Experiments demonstrate that the particle can be in a strange fuzzy 

blending of these states. What does this mean?

• An arbitrary state (ci’s are the complex amplitudes)

• Represented in CCn as

• This state is a superposition of the basis states: it is simultaneously in all
{x0, x1, …, xn-1} locations.

• The complex numbers c0, c1, …, cn-1tells precisely which superposition 
our particle is in.

• We will detect the particle in point xi with a probability

• After the observation we will find the system in one of the basis states
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Properties of kets
• Kets can be added

• Scalar multiply a ket by c

• A ket and all its complex scalar multiples describe the 
same physical state. So the length of a ket does not 
matter as far as physics goes.

• A normalized ket

• Given a normalized ket, we get
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Spin
• What is spin? Stern-Gerlach experiment (1922)

• Split of beam electrons into two streams with opposite spin. 
Wrt a classical spinning top two striking differences:
– Electron does not have an internal structure, it is just a charged 

point.
– All electrons either at the top or at the bottom. Two states: it

spins either clockwise or anticlockwise. 
• Two basic spin states: spin up and down
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Bra-ket
• Physical meaning of inner product: transition amplitudes, how 

likely will the state of the system change before a specific 
measurement (start state) to another (end state) after the 
measurement.

• How to calculate a transition amplitude? 

– Bra state:
– Transition amplitude: multiply as matrices

– Denoted as:
– Nothing else than the inner product: from states to state transitions.
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Summary Quantum States
• Association of a vector space to a quantum space. The dimension 

reflects the amount of basis states of the system.

• States can be superposed, by adding their representing vectors.

• A state is left unchanged if its representing vector is multiplied by a 
complex scalar.

• The state space has a geometry, given by its inner product. This
geometry has a physical meaning: it tells us the likelihood for a 
given state to transition into another one after being measured.
States that are orthogonal to one another are mutually exclusive.

Observables
• To each physical observable there corresponds a 

hermitian operator.

– An observable is a linear operator, which means it maps states to 
states. Apply Ω to the state vector |ψ>, the resulting state is Ω |ψ>.

– The eigenvalues of a hermitian operator are all real.

• The eigenvalues of a hermitian operator Ω associated 
with a physical observable are the only possible values the 
observable can take as a result of measuring it on a given 
state. Furthermore, the eigenvectors of Ω form a basis for 
the state space.

Position observable
• Where can the particle be found?

• Acts on the basic states:

– P acts as multiplication by position.

• On arbitrary states:

• Matrix representation of the operator in the standard basis:  
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Momentum observable
• Classical: momentum = velocity x mass

• Quantum analog: 

Is the rate of change of the state vector from one point to the next.
The constant ћ (pronounced h bar) is a universal constant, called 
the reduced Planc constant.

Many more observables, but position and momentum are 
in a sense building blocks.
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Spin operators
• Given a direction in space, in which way is the particle 

spinning?

• Is the particle spinning up or down in the z direction? 
Left or right in the x direction? In or out in the y
direction?

• The three corresponding operators:

• Orthonormal bases: 
– Sz has eigenbasis up and down
– Sy has eigenbasis in and out
– Sx has eigenbasis left and right
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More on operators/observables

• p117-125: FYI, not really important for 
quantum computation

Sum up on observables
• Observables are represented by hermitian

operators. The result of an observation is always 
an eigenvalue of the hermitian.

• The expression <ψ|Ω|ψ> represents the 
expected value of observing Ω on |ψ>.

• Observables in general do not commute. This 
means that the order of observations matters. 
Moreover, if the commutator of two observables 
is not zero, there is an intrinsic limit to our 
capability of measuring their values 
simultaneously.

Measuring
• The act of carrying out an observation on a given 

physical system is called measuring.

• Classical:
– Measuring leaves the system in whatever state it already was, at

least in principle.
– The result of a measurement on a well-defined state is 

predictable.

• Quantum world:
– Systems do get perturbed and modified as a result of a 

measurement.
– Only the probability of observing specific values can be 

calculated: measurement is inherently a nondeterministic 
process.

What happens?

• Let Ω be an observable and |ψ> be a state. If the result 
of measuring Ω is the eigenvalue λ, the state after 
measurement will always be an eigenvector 
corresponding to λ.

• The probability of the transition to an eigenvector is 
equal to |<e|ψ>|2. It is the projection of |ψ> along |e>.   

Measurement with more than one 
observable

• Beam of light:
– Vibrates along all possible directions 

orthogonal to its line of propagation.
– Vibrates only in a specific direction: 

polarization.

• Experiment: multiple polarization sheets.

One sheet

Light partially passing 
through one 
polarization sheet.
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Two sheets

No light passing through 
two polarization sheets at 
orthogonal angles.

Three sheets
No effect if third sheets is placed on left or right of the two 
other sheets: no light!

However, placed in-between: only one-eight of the original 
light will pass through all three sheets!

Summary on measuring

• The end state of the measurement of an 
observable is always one of its eigenvectors.

• The probability for an initial state to collapse into 
an eigenvector of the observable is given by the 
length squared of the projection.

• When we measure several observables, the 
order of measurement matters.

Quantum dynamics
• Systems evolving in time.

• The evolution of a quantum system (that is not a 
measurement) is given by a unitary operator or 
transformation

• Unitary transformations are closed under composition 
and inverse:
– The product of two arbitrary unitary matrices is unitary.
– The inverse of a unitary transformation is unitary. 
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Quantum dynamics (cont’d)
• Assume we have a rule     that associates with each 

instance of time 

a unitary matrix

• Starting with an initial state vector 
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Quantum dynamics (cont’d)

Orbit of |ψ>

A quantum computation will start with an initial state |ψ>, followed by 
the application of a sequence of unitary operators to that state. When 
we are done, we will measure the output and get the final state.

Symmetric in time
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Quantum dynamics (cont’d)

• How is the sequence of unitary transformations 
selected in real-life quantum mechanics? 

• How is the dynamics determined? 
• How does the system change?

• Answer: the Schrödinger equation (see book)

Quantum dynamics: recap
• Quantum dynamics is given by unitary 

transformations.

• Unitary transformations are invertible: thus, all 
closed system dynamics are reversible in time 
(as long as no measurement is involved).

• The concrete dynamics is given by the 
Schrödinger equation, which determines the 
evolution of a quantum system.

Reading

• This lecture: Ch 3.4 & Ch 4.1-4.4, p 97-132.

• Next lecture: Ch 4.5 & start Ch 5.


