Spring 2007

Program correctness

Linear Time Temporal Logic

Marcello Bonsangue

Leiden Institute of Advanced Computer Science **Research & Education**

Formal Verification

Verification techniques comprise

a modelling framework M

to describe a system

■ a specification language

to describe the properties to be verified

a verification method $\mathcal{M} \models \phi$, $\Gamma \vdash \phi$

to establish whether a model satisfies a property

Motivations

- For an elevator system, consider the requirements:
	- any request must ultimately be satisfied
	- \Box the elevator never traverses a floor for which a request is pending without satisfying it
- Both concern the dynamic behavior of the system. They can be formalized using a time-dependent notation, like

$$
z(t) = 1/2gt^2
$$

for the free-falling elevator

Example

\blacksquare In first order logic, with

- \blacksquare E(t) = elevator position at time t
- \blacksquare P(n,t) = pending request at floor n at time t
- \bullet S(n,t) = servicing of floor n at time t

Any request must ultimately be satisfied

$$
\forall t \; \forall n \; (\; P(n,t) \Rightarrow \exists t' > t : S(n,t') \;)
$$

The elevator never traverse a floor for which a request is pending without satisfying it

 \forall t \forall t'>t \forall n (P(n,t) \land E(t') \neq n \land ∃t< t"< t':E(t")=n) \Rightarrow ∃t< t"'< t':S(n,t"')

Temporal Logic

First order logic is too cumbersome for these specifications

■ Temporal logic is a logic tailored for describing properties involving time

 \square the time parameter t disappears

- \Box temporal operators mimic linguistic constructs
	- always, until, eventually

 \Box the truth of a proposition depend on the state on which the system is

LTL: the language

\blacksquare Atomic propositions ,p² ,…,q,...

 \Box to make statements about states of the system

- \Box elementary descriptions which in a given state of the system have a well-defined truth value:
	- \blacksquare the printer is busy
	- nice weather
	- **open**
	- \blacktriangleright x+2=y

□ Their choice depend on the system considered

LTL: the language

■ Boolean combinators

Note: read $p \Rightarrow q$ as "*if p then q*" rather than "*p implies q*". Try $(1 = 2) \implies$ Sint Klas exists

LTL: the language

Temporal combinators allows to speak about the sequencing of states along a computation (rather than about states individually)

Leiden Institute of Advanced Computer Science

LIL: Temporal combinators

■ Future F

- \Box F ϕ = *in* some future state ϕ holds (at least once and without saying in which state)
- \Box For example, warm \Rightarrow Fok holds if we are in a "warm" state then we will be in an "ok" state.

LTL: Temporal combinators

■ Globally G

- \Box G ϕ = in all future states ϕ always holds \Box It is the dual of F: G $\phi = \neg F \neg \phi$
- \Box For example G(warm \Rightarrow Fok) holds if at any time when we are in a "warm" state we will later be in an "ok" state.

LTL: Temporal combinators

■ Until U

 $\Box \phi_1 \cup \phi_2 = \phi_2$ will hold in some future state, and in all intermediate states ϕ_1 will hold.

Weak until W

- $\Box \phi_1 W \phi_2 = \phi_1$ holds in all future states until ϕ_2 holds
- \Box it may be the case ϕ_2 will never hold

LTL: Temporal combinators

■ Release Release R

 $\Box \phi_1 R \phi_2 = \phi_2$ holds in all future state up to (and including) a state when ϕ_1 holds (if ever).

 \Box It is the dual of U: $\phi_1 R \phi_2 = \neg(\neg \phi_1 U \neg \phi_2)$

PenC - Spring 2006

LTL - Priorities

■ Unary connectives bind most tightly **,** X,F,G

- Next come U, R and W
- **Finally come** \land **,** \lor **and** \Rightarrow

LTL models: Transition Systems

- Transition system: $\langle S, \rightarrow, L \rangle$
	- \Box Set of states
	- \Box L:S \rightarrow P(Atoms) labelling function
	- $\Box \rightarrow \subseteq SxS$ transition relation
	- Every state s has some successor state s' with $s \rightarrow s'$
- A system evolves from one state to another under the action of a transition
- We label a state with propositions that hold in that state

Computation paths

Path: an infinite sequence π of states such that each consecutive pair is connected by a transition

$$
0 \to 1 \to 2 \to 0 \to \dots
$$

■ For i \geq 1, we write π^i for the suffix of a path π starting at i.

Leiden Institute of Advanced Computer Science

Semantics (I)

Let $M = \langle S, \rightarrow, L \rangle$ be a transition system, and $\pi = s_1 \rightarrow s_2 \rightarrow \dots$ a path of M.

Leiden Institute of Advanced Computer Science

Semantics (II)

- \blacksquare $\pi \models \mathsf{X}\phi$ iff $\pi^2 \vDash \phi$
-
-
- \blacksquare $\pi \vDash \phi_1 \cup \phi_2$
- \blacksquare $\pi \vDash \phi_1 \mathsf{W} \phi_2$ \blacksquare $\pi \models \phi_1 \mathsf{R} \phi_2$

- \blacksquare $\pi \vDash \mathsf{F}\phi$ iff there is 1 \leq i such that $\pi^{\mathsf{i}} \vDash \phi$
- \blacksquare $\pi \models G\phi$ iff for all $1 \leq i, \pi^{i} \models \phi$
	- iff there is 1 \leq i such that π ⁱ \models ϕ_2 and for all $j < i$, $\pi^{j} \vDash \phi_{1}$
	- iff either $\pi \models \phi_1 \cup \phi_2$ or for all $1 \leq i$, $\pi^i \models \phi_2$
	- iff either there is 1 \leq i such that π ⁱ \models ϕ_1 and for all $j \leq i$, $\pi^{j} \vDash \phi_{2}$ or for all $1 \leq k$, $\pi^k \vDash \phi_2$

System properties

\blacksquare M,s $\vDash \phi$ iff $\pi \vDash \phi$ for every path π of M starting from the state s

\blacksquare M, $0 \not\vDash \text{okUerror}$ (Why?)

PenC - Spring 2006

6/9/2008

Leiden Institute of Advanced Computer Science

Slide 18