Spring 2007

Marcello Bonsangue

Formal Verification

- Verification techniques comprise
- a modelling framework
 - to describe a system
- a specification language

to describe the properties to be verified **a verification method** $M \models \phi, \Gamma \vdash \phi$

to establish whether a model satisfies a property

Μ, Γ

Model Checking

- Question: does a given transition system satisfies a temporal formula?
- Simple answer: use definition of \models !
 - □ We cannot implement it as we have to unwind the transition system in a possibly infinite tree
 - Can we do better?

6/9/2008

The problem

- We need efficient algorithms to solve the problems

 [1] M,s ⊨ φ
 [2] M,s ⊨ φ
 - where M should have finitely many states, and ϕ is a CTL formula.
- We concentrate to solution of [2], as [1] can be easily derived from it.

The solution

- **Input:** A CTL model M and CTL formula ϕ
- Output: The set of states of M which satisfy \u03c6
- Basic principles:
 - □ Translate any CTL formula ϕ in terms of the connectives AF, EU,EX, \land ,¬, and \bot .
 - \Box Label the states of M with sub-formulas of φ that are satisfied there, starting from the smallest sub-formulas and working outwards towards φ
 - \Box Output the states labeled by ϕ

The labelling

- An immediate sub-formula of a formula φ is any maximal-length formula ψ other than φ itself
- Let ψ be a sub-formula of φ and assume the states of M have been already labeled by all immediate sub-formulas of ψ.
- Which states have to be labeled by ψ?
 We proceed by case analysis

The basic labeling

- ⊥ no states are labeled
- $\bullet p \qquad \text{label a state s with p if } p \in I(s)$
- $\phi_1 \land \phi_2$ label a state s with $\phi_1 \land \phi_2$ if s is already labeled with ϕ_1 and ϕ_2
- $\neg \phi$ label a state s with $\neg \phi$ if s is not already labeled with ϕ

The EX labeling

■EXφ

Label with EX ϕ any state s with one of its successors already labeled with ϕ

Slide 8

6/9/2008

The EU labeling

• $E[\phi_1 U \phi_2] \equiv \phi_2 \lor (\phi_1 \land EXE[\phi_1 U \phi_2])$

- 1. Label with E[$\phi_1 U \phi_2$] any state s already labeled with ϕ_2
- 2. <u>Repeat until no change</u>: label any state s with $E[\phi_1 U \phi_2]$ if s is labeled with ϕ_1 and at least one of its successor is already labeled with $E[\phi_1 U \phi_2]$

The AF labeling

- $AF\phi \equiv \phi \lor AXAF\phi$
- 1. Label with AF ϕ any state s already labeled with ϕ
- 2. Repeat until no change: label any state s with AF ϕ if all successors of s are already labeled with AF ϕ

The EG labeling (direct)

•
$$EG\phi \equiv \phi \land EXEG\phi \equiv \neg AF\neg \phi$$

- 1. Label all the states with $EG\phi$
- 2. Delete the label EG ϕ from any state s not labeled with ϕ
- 3. <u>Repeat until no change</u>: delete the label EG ϕ from any state s if none of its successors is labeled with EG ϕ

Complexity

The complexity of the model checking algorithm is O(f*V*(V+E))

where $f = number of connectives in \phi$

V = number of states of M

E = number of transitions of M

Slide 12

6/9/2008

State explosion

The algorithm is linear in the size of the model but the size of the model is exponential in the number of variables, components, etc.

Can we reduce state explosion?

- □ Abstraction (what is relevant?)
- □ Induction (for 'similar' components)
- □ Composition (divide and conquer)
- □ Reduction (prove semantic equivalence)
- Ordered binary decision diagrams

Example: Input

$\phi = AF(E[\neg q U p] v EXq)$

Slide 14

Leiden Institute of Advanced Computer Science

6/9/2008

Example: EU - step 1

1. Label with E[-qUp] all states which satisfy p

6/9/2008

Example: EU-step 2.1

2.1 label with E[¬qUp] any state that is already labeled with ¬q and with one of its successor already labeled by E[¬qUp]

Example: EU-step 2.2

2.2 label with E[¬qUp] any state that is already labeled with ¬q and with one of its successor already labeled by E[¬qUp]

Leiden Institute of Advanced Computer Science

6/9/2008

Example: EX-step 3

3. Label with EXq any state with one of it successors already labeled by q

6/9/2008

Example: v-step 4

 Label with σ = E[¬qUp] v EXq any state s already labeled by E[¬qUp] or EXq

6/9/2008

Example: AF-step 5.1

5.1 Label with $\phi = AF(E[\neg qUp]vEXq)$ any state already labeled by $\sigma = E[\neg qUp]vEXq$

6/9/2008

Example: AF-step 5.2

5.2 Label with ϕ any state with all successor already labeled by ϕ .

Slide 21

Leiden Institute of Advanced Computer Science

6/9/2008

Example: Output

All states satisfy AF(E[¬q U p] v EXq)

6/9/2008