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Course Information

̈ My e-mail: marcello@liacs.nl

̈ My office: 155a

̈ All important information on  

www.liacs.nl/~marcello/penc.html

̊ Schedule

̊ Grades

̊ È

Visit it regularly



6/9/2008

3

PenC - Spring 2006

Slide 3

Lectures
̈ Where: room WI312

̈ When: Friday (11:15 - 13:00)

February 8 15 22 29

March 7 14 28 

April 4 11 18 25

May 9 16

Class participation is important
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Practice
̈ Where: room WI312

̈ When: Friday (13:45 - 15:30)

February 8 15 22 29

March 7 14 28 

April 4 11 18 25

May 9 16

Class participation is essential
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Grading
̈ This course is worth 5 ECTS

̈ Evaluation by home assignment (20%) 
+ 
written examination (80%)

max {0.2*HA + 0.8 WE, 1.0*WE}

̈ Written examination
̊ when:  Wednesday 11 June from 14:00 to 17:00 
̊ where: room ???

and also

̊ when: Thursday 21 Augustus from 10:00 to 13:00 
̊ where: room ???
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Reading

Logic in Computer Science: 

Modelling and Reasoning about Systems

Michael R. A. Huth and Mark D. Ryan

Cambridge University Press, 2004

ISBN 0 521 54310 X paperback
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Expected Background

̈ Propositional logic

̈ Predicate logic

̈ Sets and functions

̈ Induction

̈ Recursion

̈ Imperative programming
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Course Organization

̈ The course cover model and proof-based techniques for 

proving programs correct

̈ The course combines

̊ theory (logics)

̊ practice (program and system modeling)

̈ Course goals:

̊ introduction to fundamental concepts of formal methods

̊ usage of formal methods in software engineering
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Formal Methods

̈ Formal methods includes all applications
of mathematics to software engineering
problems.

̊ type checking

̊model checking

̊program correctness

̊semantics
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Formal Methods

̈ We consider formal methods for verifying the
correctness of computer systems (hardware
and/or software)

̈ Logics provide a mean for mechanizing
verification details

computer aided verification

̊ fully automated (e.g. model checking)

̊ interactive (e.g. program correctness)
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Why?

̈ Avoid loss of life

Therac 25, a computer-controlled radiation
therapy machine made by Atomic Energy of
Canada killed 6 people by radiation overdoses
between 1985 and 1987 because of a timing
problem on a data entry:

ÐCp operator mistake could be fixed within 8 seconds,
but even though the monitor reflected the operator
change, the change did not affected a part of the
rtqitcoÑ
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Why?

̈ Save costs

In 1994, 2 million Intel Pentium V had a
bug in the FDIV operation. It could be
detected by the following MS-Excel
operation:

(4195835/3145727)x3145727-4195835 = 512 !!!

̊Cost to Intel: $475 million

̊From 1994 Intel applies formal verification
techniques to its products
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Why?

̈ Guarantee security

In 1998 several e-mail systems did not
check for the length of e-mail addresses,
and allowed their buffers to overflow
causing the applications to crash.

Hostile hackers used this fault to trick the
operating system into running a malicious
program in its place.
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Do you trust your system?

The real wonder is that the system works 

as well as it does
(Peterson, 1996)

but remember that software systems provide the
infrastructure in virtually all industries today:

̈ air traffic control

̈ water level management

̈ energy production and distribution

̈ ...
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Why Formal Methods?

̈ Testing and simulation techniques are 
never exhaustive

̈ Formal verification proves that a system 
works based on:

̊mathematical principles

̊exhaustive verification techniques

̊mathematical model structures
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Warning

̈ The use of formal methods does not solve all these 

problems

̊ proof: hand-checked or machine supported?

̊ modelling task: difficult and yet crucial!

̈ Formal methods should be part of a methodology 

together with 

̊ Reviews (of requirements, design, and code)

̊ Testing (of software units and their integration)
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Formal Verification

Verification techniques comprise

̈ a modelling framework M, M, 

to describe a system

̈ a specification language

to describe the properties to be verified

̈ a verification method Ma , `
to establish whether a model satisfies a property
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Transition Systems

̈ A very general modelling framework

̈ Intuitively: a system evolves from one state 
to another under the action of a transition

0 1

2

A modulo 3 counter

inc inc

inc

dec
dec

dec

-

-

-
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Example: an assignment

States: s:Var -> Val

s uÓ

yjgtg"uÓ?u]u*z+-31z_"cpf

f[v/x](y) =
f(y)  if x y

v       if x = y{

x := x+1
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Example: a digicode

̈ 3 keys: A, B, C

̈ The door open when ABA is keyed

1 2 3 4
AB

A

A
B,C

B,C

C
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FkikeqfgÓu"gzgewvkqpu
̈ 1

̈ 11, 12

̈ 111, 112, 121, 122, 123

̈ ...
1

1

1

2

2 1 2 3

1 21 2 3 1 2 3 1 412
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A few definitions

̈ Transition system:  <S,L, >

̊S set of states

̊L set of transition labels

̊ SxLxS transition relation

̈ Path: a sequence of infinite transitions 
which follow each other

For example

3 1 2 4"È
is a path of the digicode

B A A
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Adding data

̈ Real-life systems consist of control and data. We 
can model them by 
̊ control = states+transitions

̊ data = state variables

̈ A transition system interact with state variables in 
two ways
̊ guards a transition cannot occur if the

condition does not holds

̊ assignment a transition can modify the value

of some state variables
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Back to the digicode

̈ We do not tolerate more than 3 mistakes 
(recorded by the variable m)

1 2 3 4
AB

A
A

B,C

B,C

C

Err

B,C

A,C

m=3 m:=m+1 m=3 m:=m+1

m=3 m:=m+1

m<3 m:=m+1

m<3 m:=m+1

m<3 m:=m+1
m<3 m:=m+1

m<3 m:=m+1

m<3 m:=m+1

B,C
m<3 m:=m+1
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Unfolding

From a theoretical point of view, transition
systems with state variables are not strictly
necessary, as we can unfold them into
ordinary transition systems.

̊The new states correspond to the old ones + a
component for each variable giving its value

̊no more guards and assignment on the new
transitions
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Unfolding: example

̈ The digicode with error counting
1 2 3 4

ABA

C

1 2 3 4
ABA

1 2 3 4
ABA

1 2 3 4
ABA

C

C

A

A

A

B,C

B,C

B,C

B,C

B,C

B,C

Err
B,C B,C

A,C

m=0

m=1

m=2

m=3

m=4
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Composing systems

̈ Systems often consists of cooperating
subsystems. Next we describe how to obtain
a global transition system form its
subsystem by having them cooperate

̈ There are many ways to cooperate:

̊product (no interaction)

̊synchronous product

̈ by message passing

̈ by asynchronous channels

̈ by shared variables
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Product

̈ Subsystems do not interact with each other

̈ The resulting transition system <S,L, > is the
cartesian product of the transition systems
<S1,L1, > ,È, <Sn,Ln, > representing the
subsystems

̊U"?"U3"z"È"zUp
̊L = L1 x È"z"Np
̊<s1.È.un> <t1.Èvn>  if for all i, si ti

<e1.È.gn> ei
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Example

̈ Few transitions of the product of two 
modulo 3 counters

0,2

2,01,00,0

0,1 1,21,1

1,2 2,2
inc,inc

inc,inc
inc,dec

inc,inc

inc,inc
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Synchronized Product

̈ Subsystems interact by doing some step together 
(synchronization). 

̈ To synchronize subsystems we restrict the 
transitions allowed in their cartesian product.

̈ A synchronization set 

Sync L1 x È"z"Np
define the labels of those transitions corresponding 
to a synchronization. Transitions with other labels are 

forbidden.
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Example

̈ Few transitions of two counters counting at the 
same time 

Sync = { <inc,inc>, <dec,dec> }

0,2

2,01,00,0

0,1
1,21,1

1,2 2,2
inc,inc

dec,dec

inc,inc

dec,dec

inc,inc

dec,dec

inc,inc

dec,dec

inc,inc

inc,inc
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Example

̈ Few transitions of two counters counting one at the 
time 

Sync = { <inc,->, <dec,->, <-,inc>, <-,dec>}

0,2

inc,-

2,01,00,0

0,1 2,11,1

1,2 2,2

inc,-

-,inc

-,inc

-,inc

-,inc -,inc

-,inc
inc,- inc,-

inc,-inc,-

dec,-

-,dec
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Message Passing

̈ A special case of synchronized product

̈ Two special sets of labels

̊ !m emission of message m

̊?m reception of message m

̈ In message passing, only transitions in 
which a given emission is executed 
simultaneously with the corresponding 
reception will be permitted
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Example: An elevator

̈ An elevator in a three floors building 
consists of

̊a cabin which goes up and down

̊ three doors which open an close

̊a controller which commands the three doors 
and the cabin

̈ Elevator requests from people at one of
the three floors are not modeled, as they
are the environment outside the system
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Example: An elevator

̈ The cabin

0 1

?up

?down
2

?up

?down

?up?down

̈ The i-th door 

C O

?open(i)

?close(i)

?close(i) ?open(i)
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Example: An elevator

̈ The controller

on2

!close(2)

!open(2)

!up

free2

on0

!close(0)

!open(0)

free0

on1

!close(1)

!open(1)

free1

!up !down

!down

0->2

2->0

!up

!up
!down

!down
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Example: An elevator

̈ The synchronization

̊Sync =

{<?open(0),-,-,-,!open(0)>,<?close(0),-,-,-,!close(0)>,

<-,?open(1),-,-,!open(1)>,<-,?close(1),-,-,!close(1)>,

<-,-,?open(2),-,!open(2)>,<-,-,?close(2),-,!close(2)>,

<-,-,-,?down,!down>,<-,-,-,?up,!up>}
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Asynchronous Messages

̈ Like message passing, but messages are
not received instantly.

̈ Emitted messages but not yet received
remain in a communication channel,
usually a FIFO buffer

̈ A communication channel can be modeled
by a transition system with a variable (for
the buffer content)
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Example:

̈ Producer

x=0

!send(x)
x:=x+1

̈ Buffer

̈ Consumer
y=0

?receive(y)

?send(x)
buf:=buf x

buf= buf=y w

?send(x)
buf:=buf x

buf=y ?receive(y)

buf=y w 
?receive(y); buf:=w
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Formal Verification

Verification techniques comprise

̈ a modelling framework DD
to describe a system

̈ a specification language

to describe the properties to be verified

̈ a verification method D a ,   `
to establish whether a model satisfies a property
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Motivations

̈ For an elevator system, consider the requirements:

̊ any request must ultimately be satisfied

̊ the elevator never traverses a floor for which a request is
pending without satisfying it

̈ Both concern the dynamic behavior of the system.
They can be formalized using a time-dependent
notation, like

z(t) = 1/2gt2

for the free-falling elevator
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Example

̈ In first order logic, with 
̈ E(t) = elevator position at time t
̈ P(n,t) = pending request at floor n at time t
̈ S(n,t) = servicing of floor n at time t

Any request must ultimately be satisfied

t n ( P(n,t) vÓ"@"v"<"U*p.vÓ+"+

The elevator never traverse a floor for which a request is
pending without satisfying it

t vÓ@v n (P(n,t) G*vÓ+ n v>"vÑ>"vÓ<G*vÑ+?p+" v>"vÑÓ>"vÓ<U*p.vÑÓ+
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Temporal Logic

̈ First order logic is too cumbersome for 
these specifications

̈ Temporal logic is a logic tailored for 
describing properties involving time
̊ the time parameter t disappears 

̊ temporal operators mimic linguistic constructs
̈ always, until, eventually  

̊ the truth of a proposition depend on the state 
on which the system is
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LTL: the language

̈ Atomic propositions p1,p2.È.s.000
̊ to make statements about states of the system

̊elementary descriptions which in a given state 
of the system have a well-defined truth value:

̈ the printer is busy

̈ nice weather

̈ open

̈ x+2=y

̊Their choice depend on the system considered 
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LTL: the language

̈ Boolean combinators
̊ true e
̊ false 

̊ negation 

̊ conjunction

̊ disjunction

̊ implication

Note: read p s"cu"Ðif p then qÑ"tcvjgt"vjcp"Ðp implies qÑ. 
Try (1 = 2) Sint_Klas_exists
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LTL: the language

̈ Temporal combinators allows to speak about 
the sequencing of states along a computation 
(rather than about states individually)

̈ neXt X

̊ X = in the next state holds

̊ Examples: XXerror and XXXok

0 1

ok

2

errorwarm, ok

2

error

0 1

ok

2

errorwarm, ok

0

warm,ok



6/9/2008

9

PenC - Spring 2006

Slide 9

LTL: Temporal combinators 

̈ Future F

̊ F = in some future state holds (at least once
and without saying in which state)

̊ For example, warm Fok holds if we are in a ÐyctoÑ
state then we will be in an ÐqmÑ state.

0 1

ok

2

errorwarm, ok

2

error

0 1

ok

2

errorwarm, ok

0

warm,ok
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LTL: Temporal combinators

̈ Globally G

̊G = in all future states always holds

̊ It is the dual of F: G = F

̊ For example G(warm Fok) holds if at any time when
we are in a ÐyctoÑ state we will later be in an ÐqmÑ
state.

̊G(warm X warm)? G(ok Xwarm)?

0 1

ok

2 error

warm, ok
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LTL: Temporal combinators

̈ Until U

̊ 1U 2 = 2 will hold in some future state,
and in all intermediate states 1 will
hold.

̈ Weak until W

̊ 1W 2 = 1 holds in all future states until

2 holds

̊it may be the case 2 will never hold
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LTL: Temporal combinators

̈ Release R

̊ 1R 2 = 2 holds in all future state up to
(and including) a state when 1 holds (if
ever).

̊It is the dual of U: 1R 2 = ( 1U 2)
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LTL - Priorities

̈ Unary connectives bind most tightly
̊ , X,F,G

̈ Next come U, R and W

̈ Finally come , and 

F

G U
p

q

r p

Fp Gr qUp
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LTL models: Transition Systems

̈ Transition system:  <S, ,L>
̊ S set of states
̊ L:S G(Atoms) labelling function

̊ SxS transition relation
̊ Gxgt{"uvcvg"u"jcu"uqog"uweeguuqt"uvcvg"uÓ"ykvj"u" uÓ"

̈ A system evolves from one state to another under the action of a transition

̈ We label a state with propositions that hold in that state

0 1

2

warm, ok ok

cold
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Computation paths

̈ Path: an infinite sequence of states such 
that each consecutive pair is connected by 
a transition

0 1 2 0 È

̈ For i œ"3."we write i for the suffix of a path 
starting at i.
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Semantics (I)

̈ Let M = <S, ,L> be a transition system,
and =s1 s2 È a path of M.

̈ a e always

̈ a p iff p l(s1)

̈ a iff g
̈ a 1 2 iff a 1 and a 2
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Semantics (II)

̈ aX iff 2 a

̈ a F iff there is 1 i such that i a

̈ a G iff for all 1 i, i a

̈ a 1U 2 iff there is 1 i such that i a 2

and for all j<i, j a 1

̈ a 1W 2 iff either a 1U 2 or for all 1 i, i a 2

̈ a 1R 2 iff either there is 1 i such that i a 1

and for all j i, j a 2

or for all 1 k, k a 2
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System properties

̈ M,s a iff a for every path of M 

starting from the state s 

̈ M,0 a okWerror

̈ M,0 g okUerror     (Why?)

0 1

ok

2 error

warm, ok
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LTL equivalences

̈ De Morgan-based

̊ Fh » G h
̊ Xh » X h X-self duality: on a path each 

state has a unique successor 

̈ Until reduction

̊Fh » T U h
̊Fh » T U h
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LTL: Adequate sets of connectives 

̈ Theorem: The set of operators

T, , , U,X 

is adequate for LTL.

̊fUy » (E[ yU( f y)] AG y)

̊fRy » ( fU y)

̊fWy » yR(f y)
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Other LTL equivalences

̈ Gh » h ® XGh
̈ Fh » h ° XFh
̈ hUy » y ° (h ® XhUy)

̈ Theorem: fUy » ( yU( f y)) Fy
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Verification goals

̈ Formulating properties requires some
expertise

̈ Today we present categories of
fundamental properties commonly used for
system verification

̊reachability properties

̊safety properties

̊ liveness properties

̊ fairness properties
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Reachability

̈ A reachability property states that some
particular situation can be reached

̊Simple

̈ ÐYg can obtain n < 0Ñ
̈ ÐYg can enter a critical ugevkqpÑ

̊Conditional

̈ ÐYg"ecp"gpvgt"c"etkvkecn"ugevkqp"ykvjqwv"vtcxgtukpi"p?"2Ñ
̊Any

̈ Ðyg"ecp"cnyc{u"tgvwtp"vq"vjg"kpkvkcn"uvcvgÑ
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Reachability in LTL

̈ LTL misses the existential quantifier on 
paths, thus it can only express reachability 
negatively:

something is not reachable 

̈ Simple reachability

̊¬G(n œ0)

̊¬G(no_critic_sec)
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Safety

̈ A safety property states that, under certain
conditions, an event never occurs

̊ ÐVyq processes will never be both in their critical
ugevkqpÑ

̊ ÐC memory overflow will never qeewtÑ

̈ In general, safety statements express that an
undesirable event will not occur.

̈ The negation of a reachability property is a safety
property (and the other way around)



6/9/2008

Slide 9

Safety in LTL

̈ Typically expressed by the combinator G in LTL

̈ Examples

̊G(¬critic_sec1 ® ¬critic_sec2)

̊ G(¬overflow)

̈ Conditional safety

ÐCu long the key is not in, the car yqpÓv uvctvÑ
̊ ¬start W key

̊ ¬start U key as we are not required to have the key in
some day
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Liveness

̈ A liveness property states that, under certain
conditions, an event will ultimately occur
̊ ÐCp{ request will be ucvkuhkgfÑ
̊ ÐVjg light will turn itggpÑ
̊ Ðchvgt the rain, the uwpujkpgÑ

̈ Liveness is not reachability
ÐVjg light will turn green (some day, regardless of the

system dgjcxkqt+Ñ
vs.

ÐKv"ku"rquukdng"hqt"vjg"nkijv"*uqog"fc{+"vq"vwtp"itggpÑ
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Liveness

̈ In general, liveness statements express that
happy event will occur in the end

̈ Termination is a liveness property:

̊ÐVjg program will vgtokpcvgÑ
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Liveness in LTL

̈ Typically expressed by the combinator F

̈ Examples

̊G(req µ Fsat) in LTL

̈ In LTL h1Uh2 is a liveness property, whereas

h1Wh2 is a safety property
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Deadlock

̈ A deadlock property states that, the system
can never be in a situation in which no
progress is possible

̈ Safety? Liveness?
̊Deadlock freeness in LTL

GX T

whatever state may be reached (G) there

exists an immediate successor state (X T)
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Fairness

̈ A fairness property states that, under
certain conditions, an event will occur (or
will fail to occur) infinitely often

̊ÐKh access to a critical section is infinitely
often requested, then access will be granted
infinitely often
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Fairness in LTL
̈ Typically expressed by the combinators

̊GF (infinitely often)

̊FG (eventually always)

̈ Examples

̊GF critic_in ° FG¬ critic_req
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LTL equivalences

̈ We say that two LTL formulas f and y are 
semantically equivalent, writing f y if for 

all models M and for all paths of M we 
have

a f iff a y
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De Morgan-based equivalences

̊ F G

̊ G F

̊ X X X-self duality: on a path each 

state has a unique successor 

̊ ( U y) R y
̊ ( R y) U y
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Distributivities

̊F( y) F Fy
̊G( y) G Gy



6/9/2008

Slide 5

Reductions

̊F T U 

̊G R 

̊ U y W y Fy
̊ W y U y Fy

̊f W y y R (f y)

̊f R y y W (f y)
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LTL: Adequate sets of connectives 

̈ A set of operators S is adequate for LTL if every formula in
LTL can be expressed as an equivalent one using only the
operators in S.

̈ Theorem: The set of operators

T, , , X, U

is adequate for LTL.

̈ Without negation, the set of operators

T, , , , X, U, R 
is adequate but T, , , , X, R, G is not (because one cannot define F). 
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Other LTL equivalences

̈ G XG

̈ F XF

̈ Uy y ( X( Uy))

̈ Theorem: fUy ( yU( f y)) Fy
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CTL

̈ CTL = Computational Tree Logic
̊ the temporal combinators are under the 

immediate scope of the path quantifiers

̈ Why CTL? The truth of CTL formulas
depends only on the current state and not on
the current execution!

Benefit: easy and efficient model checking

Disadvantages: hard for describing individual path
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The language

̈ Path quantifiers allows to speaks about sets
of executions.
̊The model of time is tree-like: many futures are

possible from a given state

̈ Inevitably A
from the current state all executions satisfy

̈ Possibly E
from the current state there exists an execution

satisfying  
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CTL - Syntax

̈ ::= p1 | p2 ̃"È

T | | | | | |

AX | AF | AG | A[ U ] |

EX | EF | EG | E[ U ] .
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CTL - Priorities

̈ Unary connectives bind most tightly

̊ , AG, EG, AF, EF, AX, and EX

̈ Next come , and 

̈ Finally come, AU and EU

̈ Example:

AGp1 EGp2 is not the same as AG(p1 EGp2)
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CTL - yes or no?

̈ Yes
̊ EFE[p U q]

̊ A[p U EF q]

̈ No
̊ EF(p U q)

̊ FG p

̈ Yes or no?
̊ AG(p A[p U ( p A[ p U q])])

̊ AF[(p U q) (q U p)] 
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A is not G

̈ A states that all the executions starting
from the current state will satisfy

̈ G state that holds at every state of the
execution considered

̈ A and E quantify over paths in a tree

̈ G and F quantify over positions along a given path
in a tree
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Combining E and F  (I)

̈ EF

Ðkv is possible that will hold in the futureÒ
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Combining E and F  (II)

̈ EG =E F

Ðkv is possible that will always jqnfÑ
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Combining E and F  (III)

̈ AF = E F

Ðkv is inevitable that will hold in the hwvwtgÑ
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Combining E and F  (IV)

̈ AG = EF

Ð is always vtwgÑ

̈ In this case is an invariant, that is, a
property that is true continuously
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Example

̈ All executions starting from 0 satisfy 

AFEXerror
Why? Because from 0 all executions traverse 1 and 
may go to 2

̈ There exists an execution which does not
satisfy AFAXerror. Which one?

0 1

ok

2
error

warm, ok
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Examples

̈ AGEF

Along every execution (A)

from every state (G)

it is possible (E)

that we will encounter a state (F)

satisfying 

that is, is always reachable



6/9/2008

Slide 14

CTL - Satisfaction

̈ Let M = <S, ,l> be a transition system with
l(s) the set of atomic propositions satisfied by
a state s S.

̈ Idea for a model: A CTL formula refers to a
given state of a given transition system

̊M,s a means Ð is true at state uÑ

We will define it by induction 

on the structure of 
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CTL - Semantics (I)

̈ M,s a T for all s in S

̈ M,s a p iff p l(s)

̈ M,s a iff not M,s a
̈ M,s a 1 2 iff M,s a 1 and M,s a 2

:

:
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CTL - Semantics (II)

̈ M,s a AX iff for all uÓ such that s uÓ
we have O.uÓ a

̈ M,s a EX iff there exists uÓ such that

s uÓ and O.uÓ a
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CTL - Semantics (III)

̈ M,s a AG iff for all executions

s0 s1 s2 s3 È with

s = s0 we have M,sia

̈ M,s a EG iff there exists an execution

s0 s1 s2 s3 È with

s = s0 and such that M,sia
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CTL - Semantics (IV)

̈ M,s a AF iff for all executions

s0 s1 s2 s3È with s = s0

there is i such that M,sia

̈ M,s a EF iff there exists an execution

s0 s1 s2 s3È with s=s0

and there is i such that

M,sia
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CTL - Semantics (V)

̈ M,s a A[ 1U 2] iff for all executions

s s1 s2 s3È there is i

such that M,si a 2 and
for each j < i M,sja 1

̈ M,s a E[ 1U 2] iff there exists an execution

s s1 s2 s3È and there is i
such that M,si a 2 and

for each j < i M,sja 1
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CTL equivalences

̈ De Morgan-based

̊ AF EG

̊ EF AG

̊ AX EX X-self duality: on a path each 

state has a unique successor 

̈ Until reduction

̊AF A[T U ]

̊EF E[T U ]
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CTL: Adequate sets of connectives 

̈ Theorem: The set of operators

T, , , {AX or EX}, {EG,AF or AU}, and EU 

is adequate for CTL.

̊A[fUy] (E[ yU( f y)] EG y)
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CTL: Weak until and release 

̈ Use LTL equivalence to define:
̊A[fRy] E[ fU y]

̊E[fRy] A[ fU y]

̊A[fWy] A[yR(f y)]

̊E[fWy] E[yR(f y)]
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Other CTL equivalences

̈ EG EX EG

̈ AG AX AG

̈ AF AX AF

̈ EF EX EF

̈ A[ Uy] y ( AXA[ Uy])

̈ E[ Uy] y ( EXE[ Uy])
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CTL* - Syntax

̈ State formulas (evaluated in states)

::= T | p |  | | Ay | Ey

̈ Path formulas (evaluated along paths)

y ::= | y | y y | X | F | G | U
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Examples

̈ AGF

Along every execution (A)

from every state (G)

we will encounter a state (F)

satisfying 

that is, is satisfied infinitely often
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Model

̈ Let M = <S, ,l> be a transition system with
l(s) the set of atomic propositions satisfied by
a state s S.

̈ Idea for a model: A formula of temporal logic
refers to an instant i of an execution of a
transition system M

̈ M, ,i a means

Ð is true at position i of path of OÑ
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Semantics (I)

̈ M, ,i a T always

̈ M, ,i a p iff p l( (i))

̈ M, ,i a iff not M, ,i a
̈ M, ,i a 1 2 iff M, ,i a 1 and

M, ,i a 2
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Semantics (II)

̈ M, ,i a X iff M, ,i+1 a

̈ M, ,i a F iff there exists i j such

that M, ,j a

̈ M, ,i a G iff M, ,ja for all i j

̈ M, ,i a 1U 2 iff there exists i j such
that M, ,j a 2 and for all
i k<j we have M, ,k a 1
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Semantics (III)

̈ M, ,i a E iff there exists Ó such that
(0)... (i)= Ó*0)... Ó*k+

and M, Ó.k a

̈ M, ,i a A iff for all Ó such that

(0)... (i) = Ó*0)... Ó*k+ we
have M, Ó.k a
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LTL and CTL CTL*

̈ Semantically, an LTL formula is equivalent 
to the CTL* formula A

̈ CTL is a restricted fragment of CTL* with path 
formulas

y ::= X | F | G | U 

and the same state formulas as CTL*, i.e.

::= T | p |  | | Ay | Ey
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Expressivity

CTL*

CTL LTL

1 2 3 4
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In CTL but not in LTL

1 = AG EF p in CTL

From any state we can always get to a state in which p

holds

s uÓ
p

s

p
p

M OÓ

̈ It cannot be expressed as LTL formula because

̊ All executions starting from s in OÓ are also executions
starting from s in M

̊ In CTL M,s a 1 but OÓ.u g 1
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In CTL and in LTL

2 = AG(p AFq) in CTL

and

2 = G(p Fq) in LTL

ÐCp{ p is eventually followed by a sÑ



6/9/2008

Slide 34

In LTL but not in CTL

3 = GFp Fq in LTL

ÐKh p holds infinitely often along a path, then
there is a state in which q jqnfuÑ

Note: FGp is different from AFAGp since the
first is satisfied in

whereas the latter is not (starting from s).

s uÓ
p p

uÓÓ
p
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Neither in CTL nor in LTL

4 = E(GFp) in CTL*

ÐVjgtg is a path with infinitely many
state in which p jqnfuÑ

̊Not expressible in LTL: Trivial

̊Not expressible in CTL: very complex
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Boolean combination of path in CTL

̈ CTL = CTL*  but 

̊Without boolean combination of path formulas

̊Without nesting of path formulas

̈ Vjg"hktuv"tguvtkevkqp"ku"pqv"tgcn"È
̊E[Fp Fq] EF[p EFq] EF[q EFp] 

̈ First p and then q or viceversa
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Oqtg"igpgtcnn{"È
̊E[ (pUq)] E[ qU( p q)] EG q

̊E[(p1Uq1) (p2Uq2)] E[(p1 p2)U(q1 E[p2Uq2])] 
E[(p1 p2)U(q2 E[p1Uq1])]

̊E[Fp Gq] E[q U (p EG q)]

̊E[ Xp] EX p

̊E[Xp Xq] EX(p q)

̊E[Fp Xq] EX(q EFp)

̊A[ ] E[ ] 
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Past operators

analogues of
-------------------------------------------------
̈ Previous P X neXt

̈ Since S U Until

̈ Once O F Future

̈ Historically H G Globally

̈ In LTL they do not add expressive power, 
but CTL they do!
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Formal Verification

Verification techniques comprise

̈ a modelling framework M, M, 

to describe a system

̈ a specification language

to describe the properties to be verified

̈ a verification method Ma , `
to establish whether a model satisfies a property

Today
for 
CTL
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Model Checking

̈ Question: does a given transition system
satisfies a temporal formula?

̈ Simple answer: use definition of a !

̊We cannot implement it as we have to unwind
the transition system in a possibly infinite tree

Can we do better? and most 
probably!
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The problem

̈ We need efficient algorithms to solve the 
problems
[1] M,s a

[2] M,s a

where M should have finitely many states,

and is a CTL formula.

̈ We concentrate to solution of [2], as [1] can 
be easily derived from it.

?

?
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The solution

̈ Input: A CTL model M and CTL formula 

̈ Output: The set of states of M which 
satisfy 

̈ Basic principles:

̊Translate any CTL formula in terms of the 
connectives AF, EU,EX, , , and .

̊Label the states of M with sub-formulas of that are 
satisfied there, starting from the smallest sub-
formulas and working outwards towards 

̊Output the states labeled by 
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The labelling

̈ An immediate sub-formula of a formula
is any maximal-length formula other
than itself

̈ Let be a sub-formula of and assume
the states of M have been already labeled
by all immediate sub-formulas of .

̈ Which states have to be labeled by ?

We proceed by case analysis
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The basic labeling

̈ no states are labeled

̈ p label a state s with p if p l(s)

̈ 1 2 label a state s with 1 2 if s is
already labeled with 1 and 2

̈ label a state s with if s is not
already labeled with
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The EX labeling

̈EX Label with EX any state s with one
of its successors already labeled
with

EX
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The EU labeling

̈ E[ 1U 2] 2 ( 1 EXE[ 1U 2 ])

1. Label with E[ 1U 2] any state s already labeled 
with 2

2. Repeat until no change: label any state s  with 
E[ 1U 2] if s is labeled with 1 and at least one of 
its successor is already labeled with E[ 1U 2]

E[ 1U 2] repeat

È"wpvkn"pq"ejcpig

1

E[ 1U 2]

1

E[ 1U 2]
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The AF labeling

̈ AF AXAF

1. Label with AF any state s already labeled with

2. Repeat until no change: label any state s with AF
if all successors of s are already labeled with AF

AF

AF

AF

AF

AF

AF

AF

repeat

È"wpvkn"pq"ejcpig
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The EG labeling (direct)

̈ EG EXEG AF

1. Label all the states with EG

2. Delete the label EG from any state s not labeled with

3. Repeat until no change: delete the label EG from any
state s if none of its successors is labeled with EG

EG

repeat

È"wpvkn"pq"ejcpig
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Complexity

The complexity of the model checking algorithm is

O(f*V*(V+E))

where f = number of connectives in 

V = number of states of M

E = number of transitions of M

It can be easily improved to an 

algorithm linear both in the size of the formula 

and of the model
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State explosion

̈ The algorithm is linear in the size of the model but
the size of the model is exponential in the number
of variables, components, etc.

Can we reduce state explosion?

̊ Abstraction (what is relevant?)

̊ Induction *hqt"ÒukoknctÓ"eqorqpgpvu+
̊ Composition (divide and conquer)

̊ Reduction (prove semantic equivalence)

̊Ordered binary decision diagrams
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Example: Input

= AF(E[ q U p] v EXq)

p

p

q

q
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Example: EU - step 1

1. Label with E[ qUp] all states which satisfy p

p
E[ qUp] q

qp
E[ qUp]
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Example: EU-step 2.1

p
E[ qUp] q

qp
E[ qUp]

E[ qUp]

E[ qUp]

2.1 label with E[ qUp] any state that is already labeled with q 
and with one of its successor already labeled by E[ qUp]
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Example: EU-step 2.2

2.2 label with E[ qUp] any state that is already labeled with q 
and with one of its successor already labeled by E[ qUp]

P
E[ qUp] q

qP
E[ qUp]

E[ qUp]

E[ qUp]

No!

E[ qUp]



6/9/2008

Slide 18

Example: EX-step 3

3. Label with EXq any state with one of it successors already 
labeled by q

p
E[ qUp]

q
EXq

qp
E[ qUp]

E[ qUp]

E[ qUp]

E[ qUp]

EXq

EXq
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Example: -step 4

4. Label with = E[ qUp] v EXq any state s already labeled by 
E[ qUp]  or EXq

p,
E[ qUp]

,q
EXq

q,p
E[ qUp]

E[ qUp]

E[ qUp]

E[ qUp]

EXq

EXq



6/9/2008

Slide 20

Example: AF-step 5.1

5.1 Label with = AF(E[ qUp]vEXq) any state already 
labeled by = E[ qUp]vEXq

p, ,
E[ qUp]

, ,q
EXq

q, ,p
E[ qUp]

,
E[ qUp]

,
E[ qUp]

,
E[ qUp]

,
EXq

,
EXq
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Example: AF-step 5.2

5.2 Label with any state with all successor already labeled 
by .

p, ,
E[ qUp]

, ,q
EXq

,q, ,p
E[ qUp]

,
E[ qUp]

,
E[ qUp]

,
E[ qUp]

,
EXq

,
EXq
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Example: Output

̈ All states satisfy AF(E[ q U p] v EXq)

p

p

q

q
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Context

1. We have defined the semantics of CTL
formulas M,s a

2. We have given an efficient method for
model checking a CTL formula returning all
states s such that M,s a

Next we present an algorithm for it and proves 
its correctness  
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The algorithm SAT

̈ UCV""uvcpfu"hqt"ÒsatisfiesÓ
̊ Input: a well-formed CTL formula

̊Output: a subset of the states of a 
transition system M = <S, ,l>

̈ Written in Pascal-like

̊ function return

̊ local_var

̊ while do od

̊ case is end_case
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The main function (I)

function SAT( )

begin

case is

T : return S

: return

atomic : return {s S | l(s) }

1 : return S - SAT( 1)

1 2 : return SAT( 1) SAT( 2)

1 2 : return SAT( 1) SAT( 2)

1 2 : return SAT( 1 2)

:
:
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The main function (II)

:
:
AX 1 : return SAT( EX 1)

EX 1 : return SAT_EX( 1)

A[ 1 U 2] : return

SAT( E[ 2U( 1 2)] EG 2)

E[ 1 U 2] : return SAT_EU( 1, 2)

EF 1 : return SAT(E[T U 1])

AF 1 : return SAT_AF( 1)

EG 1 : return SAT( AF 1)   /*SAT_EG( 1)*/

AG 1 : return SAT( EF 1)

end_case

end
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The function SAT_EX

function SAT_EX( )

local_var X,Y

begin

X := SAT( )

Y := { s S | s uÓ"<"uÓ" X}

return Y

end
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The function SAT_AF

function SAT_AF( )

local_var X,Y

begin

X := S

Y := SAT( )

while X Y do

X := Y

Y := Y { s S | s uÓ"<"uÓ" Y } 

od

return Y

end
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The function SAT_EU

function SAT_EU( , )

local_var W,X,Y

begin

W := SAT( )
X := S
Y := SAT( ) /* Calculated only once  */

while X Y do 

X := Y

Y := Y (W { s S | s uÓ"<"uÓ" Y })

od

return Y

end
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The function SAT_EG

function SAT_EG( )

local_var X,Y

begin
X :=
Y := SAT( )

while X Y do 

X := Y

Y := Y { s S | s uÓ"<"uÓ" Y }

od

return Y

end
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Does it work?

̈ Claim: For a given model M=<S, , l> 
and well-formed CTL formula ,

SAT( ) = { s S | M,s a } = [[ ]]

Is this true?

def
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The proof (I)

̈ The claim is proved by induction on the structure of the
formula.

̈ For = T, , or atomic the set [[ ]] is computed directly

̈ For , 1 2, 1 2 or 1 2 we apply induction
and predicate logic equivalences

̊Example:

SAT( 1 2) = SAT( 1) SAT( 2)

= [[ 1]] [[ 2]] (induction)

= [[ 1 2]]
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The proof (II)

̈ For EX we apply induction

SAT(EX ) = SAT_EX( )

= { s S | s uÓ : uÓ SAT( )}

= { s S | s uÓ : uÓ [[ ]]} (induction)

= { s S | s uÓ : O.uÓ a } (definition [[-]])

= { s S | M,s a EX } (definition a )

= [[EX ]] (definition [[-]])
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The proof (III)

̈ For AX , A[ 1 U 2], EF , or AG we can rely on
logical equivalences and on the correctness of
SAT_EX, SAT_AF, SAT_EU, and SAT_EG

̊ Example:

SAT(AX ) = SAT( EX )

= S - SAT_EX( ) (def. SAT( ))

= S - [[EX ]] (correctness SAT_EX)

= [[AX ]] (logical equivalence)

But we still have to prove the correctness 

of SAT_AF, SAT_EU, and SAT_EG



6/9/2008

Slide 14

EG as fixed point

Recall that EG EX EG . Since

EX = { s S | s uÓ"<"uÓ" [[ ]]} 

we have the following fixed-point definition of EG

[[EG ]] = [[ ]] { s S | s uÓ"<"uÓ" [[EG ]]}

?
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Fixed points

̈ Let S be a set and F:Pow(S) Pow(S) be a a function

̊F is monotone if

X Y implies F(X) F(Y) 

for all subsets X and Y of S

̊A subset X of S is a fixed point of F if

F(X) =X

̊A subset X of S is a least fixed point of F if 

F(X) = X and X Y 

for all fixed point Y of F
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Examples

̈ S = {s,t} and F:X U X {s}

̊ F is monotone

̊ {s} and {s,t} are all fixed points of F

̊ {s} is the least fixed point of F

̈ S = {s,t} and G:XUif X={s} then {t} else {s}

̊G is not monotone

̈ {s} {s,t} but G({s}) = {t} {s} = G({s,t})

̊G does not have any fixed point
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Fixed points (II)

Let Fi(X) = F(F(ÈF(X)È)) for i > 0 (thus F1(X) = F(X))'()
i-times

̈ Theorem: Let S be a set with n+1 elements. If
F:Pow(S) Pow(S) is a monotone function then

1) Fn+1( ) is the least fixed point of F

2) Fn+1(S) is the greatest fixed point of F

Least and greatest fixed points can be computed and the 
computation is guaranteed to terminate !
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Computing EG

̈ To find a set [[EG ]] such that

[[EG ]] = [[ ]] { s S | s uÓ"<"uÓ" [[EG ]]}

we look if it is a fixed point of the function

F(X) = [[ ]] { s S | s uÓ"<"uÓ" X}

̈ Theorem: Let n = |S| be the size of S and F 
defined as above. We have

1. F is monotone
2. [[EG ]]  is the greatest fixed point of F
3. [[EG ]] = Fn+1(S) 
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Correctness of SAT_EG

1. Inside the loop it always holds Y SAT( )

2. Because Y SAT( ), substitute in SAT_EG

Y := Y { s S | s uÓ : uÓ Y }

with Y := SAT( ) { s S | s uÓ : uÓ Y }

3. Note that SAT_EG( ) is calculating the greatest fixed
point (use induction!)

F(X) = [[ ]] { s S | s uÓ"<"uÓ" X}

4. It follows from the previous theorem that SAT_EG( )

terminates and computes [[EG ]].
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Example: EG

Let us compute [[EGq]].
p

s4

q

q

s3

s2s0 s1

It is the greatest fixed point of

F(X) = [[q]] { s S | s uÓ"<"uÓ" X }

= {s0,s4} { s S | s uÓ"<"uÓ" X }
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Example: EG

̈ Iterating F on S until it stabilizes

̊ F1(S) ={s0,s4} { s S | s uÓ"<"uÓ" S }

= {s0,s4} S

= {s0,s4}

̊ F2(S) =F(F1(S)) 

= F({s0,s4})

= {s0,s4} { s S | s uÓ"<"uÓ" {s0,s4} }

= {s0,s4}

̈ Thus {s0,s4} is the greatest fixed point of F and equals [[EGq]]
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EU as fixed point

̈Recall that E[ U ] ( EX E[ U 
]).

̈Since EX = { s S | s uÓ"<"uÓ" [[ ]]} we 
obtain

[[E[ U ]]] = [[ ]] ([[ ]] {s S | s uÓ<"uÓ [[E[ U ]]]})

?
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Computing E[ U ]

̈ As before, we show that [[E[ U ]]] is a fixed point
of the function

G(X) = [[ ]] ([[ ]] { s S | s uÓ"<"uÓ" X})

̈ Theorem: Let n = |S| be the size of S and G defined 
as above. We have

1. G is monotone

2. [[E[ U ]]]  is the least fixed point of G

3. [[E[ U ]]] = Gn+1( ) 
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Correctness of SAT_EU

1. Inside the loop it always holds W=SAT( ) and Y SAT( ).

2. Substitute in SAT_EU

Y:=Y (W { s S | s uÓ"<"uÓ" Y })

with
Y:=SAT( ) (SAT( ) { s S | s uÓ"<"uÓ" Y })

3. Note that SAT_EU( ) is calculating the least fixed point of

G(X) = [[ ]] ([[ ]] { s S | s uÓ"<"uÓ" X})

4. It follows from the previous theorem that SAT_EU( , )

terminates and computes [[E[ U ]]]
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Example: EU

Let us compute [[EFp]] = [[E[TUp]]].

It is the least fixed point of
G(X) = [[p]] ([[T]] { s S | s uÓ"<"uÓ" X})

= {s3} (S { s S | s uÓ"<"uÓ" X })

= {s3} { s S | s uÓ"<"uÓ" X }

p

s4

q

q

s3

s2s0 s1
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Example: EU
̈ Iterating G on until it stabilizes we have

̊ G1( ) = {s3} { s S | s uÓ"<"uÓ" }

= {s3} = {s3}

̊ G2( ) = G(G1( )) = G({s3})

= {s3} { s S | s uÓ"<"uÓ" {s3} }

= {s1,s3}

̊ G3( ) = G(G2( )) = G({s1,s3})

= {s3} { s S | s uÓ"<"uÓ" {s1,s3} }

= {s0,s1, s2,s3}

̊ G4( ) =G(G3( )) = G({s0,s1, s2,s3})

= {s3} { s S | s uÓ"<"uÓ" {s0,s1, s2,s3} }

= {s0,s1, s2,s3}

̈ Thus [[EFp]] = [[E[TUp]]]  = {s0,s1,s2,s3}.
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AF as fixed point

Since AF AX AF and

AX = { s S | s uÓ"<"uÓ" [[ ]]}

we obtain

[[AF ]] = [[ ]] { s S | s uÓ"<"uÓ" [[AF ]]}

?



6/9/2008

Slide 28

Computing AF

̈ Again, consider [[AF ]] as a fixed point of the
function

H(X) = [[ ]] { s S | s uÓ"<"uÓ" X}

̈ Theorem: Let n = |S| be the size of S and G 
defined as above. We have

1. H is monotone

2. [[AF ]]  is the least fixed point of H

3. [[AF ]] = Hn+1( ) 
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Correctness of SAT_AF

1. Inside the loop it always holds Y SAT( ).

2. Substitute in SAT_AF

Y:=Y { s S | s uÓ"<"uÓ" Y })

with
Y:=SAT( ) { s S | s uÓ"<"uÓ" Y }

3. Note that SAT_AF( ) is calculating the least fixed point of

H(X) = [[ ]] { s S | s uÓ"<"uÓ" X}

4. It follows from the previous theorem that AT_AF( )
terminates and computes [[AF ]]
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Context

̈ Model checking CTL was relatively easy
because the truth of formulas depends

on the current state (CTL)

and not

on an execution path (LTL)

and not

on the tree of all executions (CTL*)

̈ Next we concentrate on model checking LTL
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LTL: a recap
̈ Syntax

::= e | p | ¬ | | X | U

All other connectives can be written in
the above syntax
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LTL formulas as languages (I)

̈ = GFp (infinitely often p)

̊ The execution s1 s2 s3 s4 È satisfies if it contains

infinitely many sn1
, sn2

, È at which p holds. In between

there can be an arbitrary but finite number of state at which

p holds.

As a language (( p)*.p)

-regular expressions

* = an arbitrary but finite number of repetitions

= an infinite number of repetitions
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LTL formulas as languages(II)

̈ = FGp (Eventually  always  p)

̈ The execution s1 s2 s3 s4 È satisfies
if from a certain state onwards at all states

p holds.

̈ As -regular expression (p + p)*.p
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Automata on finite words: a recap

̈ A non-deterministic finite automaton is a special kind of
transition systems for recognizing languages on finite
words

̈ NF-automaton A = < ,S, , I,F>
̊ finite alphabet 

̊ S finite set of states

̊ S x x S transition relation 

̊ I S initial states

̊ F S accepting states

̈ The language of  an automaton A is
L(A) = {a1a2... an * | s1 s2 È" sn F with s1 I}

a3a2a1
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Properties of finite languages

̈ Theorem: L(A1x A2) = L(A1) L(A2)

A1x A2 = < ,S1xS2, , I1xI2,F1xF2> where

<s,t> >uÓ.vÓ@""khh""u" 1 uÓ"cpf"v" 2 vÓ

̈ Theorem: L(A) = is decidable

It is enough to find a path from an initial state 

in I to a final state in F.

a a a
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Automata on infinite words: Buchi

̈ A Buchi automaton is a special kind of transition
systems for recognizing languages on infinite
words

̈ Buchi automaton A = < ,S, , I,F>

̊ finite alphabet 

̊ S finite set of states

̊ S x x S transition relation 

̊ I S initial states

̊ F S accepting states
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Buchi automata

An infinite execution of a Buchi automaton A 

s1 s2 s3 s4 È"
is accepted by A if 

̊ s1 I

̊ there exists infinitely many i > 0 such that si F

̈ The language of  a Buchi automaton A is

L (A) = {a1a2... | s1 s2 È"ceegrvgf"d{"C’

a3a2a1

a2a1
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Example 

̈ abcccccccc... accepted

̈ abcbcbcbcb... accepted

̈ cdedddddddÈ rejected

s0
s1

b
a c

s2

c

b
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Properties of infinite languages

̈ Theorem: L (A1 A2) = L (A1) L (A2)

A1 A2=< ,S1xS2x{1,2}, ,I1xI2x {1},F1xS2x{1}>

where <s,t,i> >uÓ.vÓ.l@""khh""

̊ s 1 uÓ"cpf"v" 2 vÓ"cpf"k?l"wpnguu"

̊ i=1 and s F1 in which case j = 2, or

̊ i=2 and t F2 in which case j =1.

̈ Theorem: L (A) = is decidable

It is enough to find a path from an initial state s I to a final state t F 

such that t has a path to t itself.

a

a a
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Transition systems and 
Buchi automata

̈ Any transition systems M = <S, M,s0> with a
labelling function `:S 2Prop can be seen as a
Buchi automata AM = < ,S, , I,F> where

̊ = 2Prop assignment of truth values to propositions 
(i.e. valuations)

̊ S same states
̊ s t iff s M t  and a = `(s) transition relation

̊ I = {s0} same initial state 

̊ F = S every state is final

a



6/9/2008

Slide 13

Example

̈ The system: M =

p
q

p
q

p
q

p
q

becomes the Buchi automaton p,q

p

p
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LTL and Buchi automata

̈ An LTL formula denotes a set of infinite traces which satisfy 
that formula

̈ A Buchi automaton accepts a set of infinite traces

̈ Theorem: Given an LTL formula , we can build a Buchi 
automaton 

A = < ,S, ,I,F>

where =2Prop consists of the subsets of (possibly negated)
atomic propositions (i.e. valuations), which accepts only and
all the executions satisfying the formula .
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Example (1)

̈ = Fp eventually p

A =

p,q
p

q
p,q
p

p,q
p

q
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Example (2)

̈ = p U q p until q

A =

p
p,q

q

p,q
p

q
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LTL and Buchi automata

̈ Not every Buchi automaton is an LTL 
formula:

p

p

Ðr"jqnfu"qp"gxgt{"qff"uvgrÑ
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Model checking LTL:the idea 

̈ Let be an LTL formula and M,s be a transition
system specifying the behavior of a system

̊ A corresponds to all allowable behavior of the system

̊ AM corresponds to all possible behavior of the system

(all infinite paths of M that are potentially interesting)

To see whether a system satisfies a specification
we need to check if every path of AM is in A

L (AM) L (A )
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Model checking LTL

̈ To check set inclusion note that

B A B  A = 

̈ Further, L (A ) = L (A ) thus 

Every possible path is allowable 

is equivalent to say that

there is no path that is possible and not allowable

that is M,s a if and only if L (AM) L (A ) =
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The method

̈ Problem: M,s a ?

1. Construct a Buchi automaton A representing 
the negation of the desired LTL  specification 

2. Construct the automaton AM representing the 
system behavior

3. Construct the automaton AM A

4. Check if L (AM A ) = 

5. If yes then M,s a
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Example (1)

̈ Specification: = G(p XFq)
Any occurence of p must be followed (later) by an
occurrence of q

̈ = F(p XG q)
there exist an occurrence of p after which q will
never be encountered again

̈ A =

s0 s1
p,q
p

q

p,q
p

p
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Example (2)

̈ The system: M =
p
q

and its Buchi automaton AM p,q
t0

t1

t2

t3
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Example: (3)

̈ The product A AM

p,qs0t01 s1t01

s1t12

s1t21
s1t32

s0t11

s0t21

s0t31

p,q

s1t02

s1t11

s1t22
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Example: (4)

̈ L(A AM) = ?

p,qs0t01 s1t01

s1t12

s1t21
s1t32

s0t11

s0t21

s0t31

p,q

s1t02

s1t11

s1t22

There is a path starting from <s0t01> that
passes infinitely often through the final states
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Example: (5)

̈ Since L(A AM) is not empty

M,s g G(p XFq)

The counterexample is given by the path

t0t1t2t3t0t1t2t0t1t2t0È
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From LTL to Buchi automata

̈ General approach:

̊Rewrite formula in normal form

̊Translate formula into generalized Buchi 
automata

̊Turn generalized Buchi automata into 
ordinary Buchi automata
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Normal form

̈ LTL formulas with the until operator U that may 
contains also the next operators X

̈ Every formula can be converted into an equivalent 
formula in normal form expressing an infinite 
behavior using equivalences such as:

̊ T = T U T

̊ p = p XT

̊ F = T U G = R

̊ 1R 2= ( 1U 2)
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Additional simplifications

̈ Use extra equivalences to reduce size of the 
formula. For example:

̊ =

̊X 1 X 2 = X( 1 2)

̊X 1 X 2 = X( 1 2)

̊X 1U X 2 = X( 1U 2)
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Example:

̈ G(Fp q) = G( Fp q)

= R ( Fp q)

= ( U ( (T U p) q))

̈ p q = (p q) T

= (p q) XT

= (p q) XGT

= (p q) X(T U T)
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Generalized Buchi Automata

̈ They differ from (normal) Buchi automata only in the 

ceegrvcpeg"eqpfkvkqp."yjkej"ku"c"Òugv"qh"ceegrvcpeg"ugvuÓ."
i.e. = 2S

̈ The language of a generalized Buchi automaton 

A = < ,S, , I, = > is 

L(A) = ̆ { L(AF) | F = and AF = < ,S, , I,F> }

that is, a path has to visit for each set of final states F =
infinitely many times states from F.
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Example

̈ A generalized Buchi automaton:

ca

̈ Gxgt{"rcvj"qh"eÓu"ykvj"gkvjgt"gxgpvwcnn{"qpg"
a or eventually one b is accepted

1
c

b

2

1,2

c

c
c
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Generalized Buchi Automata

̈ A generalised Buchi automaton A = < ,S, , I, = >  

can be translated back into an ordinary Buchi 

automata by taking the intersection of the automata 

AF = < ,S, , I,F> for each F =.

̈ If = = then every infinite path is accepted.

̈ The ordinary  Buchi automata of < ,S, , I, > is 

< ,S, , I, S > 
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Gzcorng"*eqpvÓf+
̈ The translation of the previous automaton into 

an ordinary Buchi automaton is

ac

b cc

c

c
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Closure of a formula

̈ Given an LTL formula define its closure
Cl( ) to be the set of subformulas of and 
of their complement.

̊ Cl( ) 

̊ Cl( ) implies Cl( ) 

̊ 1 2 Cl( ) implies 1, 2 Cl( ) 

̊ X Cl( ) implies Cl( )

̊ 1U 2 Cl( ) implies 1, 2 Cl( )
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Constructing the automata A :states

̈ The states Sub( ) of the automata are the maximal subsets 
S of Cl( ) that have no propositional inconsitency

1. For all Cl( ), S iff ¬ S
2. If T Cl( ) then T S 

3. 1 2 S iff 1 S or 2 S, whenever 1 2 Cl( )

4. ( 1 2) S iff ¬ 1 S and ¬ 2 S, whenever ( 1 2) Cl( )

5. If 1U 2 S then 1 S or 2 S 

6. If ¬( 1U 2 ) S then ¬ 2 S

Intuition: S implies that holds in S

̊ The initial states are those states containing  
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Example

̈ Cl(pUq) = {p,q,¬p,¬q, pUq, ¬(pUq) }

̈ Sub(pUq) = { { p, q,pUq},

{p,¬q,pUq},

{p,¬q,¬(pUq)}

{¬p,q, pUq}

{¬p,¬q, ¬(pUq)}}
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Constructing the automata: transitions

Define the transition relation by setting s uÓ iff
1. X s implies uÓ
2. ¬X s implies ¬ uÓ
3. 1U 2 s and 2 s implies 1U 2 uÓ
4. ¬( 1U 2) s and 1 s implies ¬( 1U 2) uÓ"
5. a = set of all atomic propositions that hold in s 

N.B.: Conditions 3. and 4. are there because 

1U 2  2 ( 1 X( 1U 2))

1R 2 2 ( 1 X( 1R 2))

a
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Constructing the automata: acceptance

̈ For each iU i Cl( ) define the set of accepting states Fi by
̊ s Fi  iff  ¬( i U i) s or i s 

̊ The above means that we only accept executions for which infinitely 
many time ¬( i U i) i holds

̈ Intuition:
For each iU i Cl( ) we have to guarantee that eventually i holds.

1. Suppose we accept an execution for which only finitely many time
¬( iU i) i holds.

2. Then we can find a suffix such that ¬( i U i) i will never hold, that
is ( i U i) ¬ i will always hold.

3. Thus we have an execution for which our goal is not guaranteed
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Complexity

̈ A has size O(2| |) in the worst case

̈ The product A B has size O(|A|x|B|)

̈ We can determine if there no acceptable 
path in A B in O(|A B|) time

̈ Thus, model checking M,s  a can be done 

in O(|M|x 2| |) time
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Example: pUq

̈ Cl(pUq) = { p, ¬p, q, ¬q, pUq, ¬(pUq) }

pUq
p,q

¬(pUq)
p,¬q

pUq

¬p,q
pUq
p,¬q

¬(pUq)
¬p,¬q

p,¬q

p,¬q

p,¬q

p,¬q

p,¬q
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Example: pUq

̈ The previous automata is equivalent to

p,¬q
p,q

¬p,q

p,q 
p,¬q
¬p,q

¬p,¬q
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Example II

̈ Buchi automaton for atomic proposition p 

̊ p = p X(T U T) = 

̊ Cl( ) = { p,¬p, T,¬T,TUT, ¬(T U T), X(TUT),¬X(TUT), ,¬ } 

̊ Sub( ) = {1,2,3} with 

̈ 1 ={p,T,TUT, X(TUT), },

̈ 2 = {¬p, T,TUT, X(TUT), ¬ }

̈ 3 = {p, T,TUT, ¬X(TUT), ¬ }}
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Example II

̈ Buchi automaton for atomic proposition p

2

1

p

p

3

p

¬p

¬p
¬p
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System verification
̈ Model checking verification is
̊model based M,s a f
̊ fully automatic

̊ intended for hardware or software systems with
finitely many states

̈ control is the main issue

̈ no complex data

̈ mainly reactive
̊ reaction-> computation -> reaction -> È
̊ not intended to terminated
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System verification

̈ Program verification:

̊Proof based `
̈ It is impossible to check infinite states !

̊Semi-automatic

̊ intended for software systems with possibly
infinite states

̈ mainly sequential

̈ transformational
̊ input -> computation -> output

̊ like methods of an object
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Program verification
The verification framework:

1. Convert an informal specification S in an
ÒequivalentÓ formula of some logic

2. Write a program P realizing (or S)

3. Prove that P satisfies the formula
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A simple language

̈ Syntactic sets associated to the language:

̊ positive and negative integers n,...

̊ truth values true,false

̊Var program variables x,È
̊Aexp arithmetic expressions a,...

̊Bexp boolean expressions b,...

̊Com commands c, ...
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Arithmetic expressions

̈ A ::= n | x | (A+A) | (A-A) | (A*A) 

where n N and x Var

̈ Here * binds more tightly than - and +

̈ Examples:
2 + 3 * 4 - 5 is (2 + 3) * (4 - 5)

- 3 is (0 - 3)

- -5 is (0 - -5)

2 + x + 5 is (2 + x) + 5
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Boolean expressions

̈ B ::= true | false | B | B B | B B | A A

̈ Examples:
A1 = A2 is (A1 A2) (A2 A1)

A1 A2 is (A1 = A2)

̈ Boolean expression are built on top of arithmetic
expressions

̈ 3+5 9

̈ 4 = 5 is a correct boolean expression !!!

̈ true 10 is not a boolean expression
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Commands

̈ C ::= skip |

x := A | 

C;C | 

if B then C else C fi | 

while B do C od

̈ Example (Fact1)
y := 1;
z := 0;
while z 0 do

z := z + 1;
y := y*z
od
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The behaviour

̈ We need a formal model to understand 
correctly the behavior of a program

̈ State : Var N

̈ An arithmetic expression a in a state 
evaluates to an integer n

<a, > n

configuration
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Evaluating arithmetic expressions

̊ <n, > n

̊ <x, > (x)

̊ If n is the sum of n1 and n2

<a1, > n1 <a2, > n2
------------------------------------------------------------

<a1+ a2, > n 

̊ If n is the subtraction of n2 from n1

<a1, > n1 <a2, > n2
-------------------------------------------------------------

<a1-a2, > n 

̊ If n is the product of n1 and n2

<a1, > n1 <a2, > n2
-------------------------------------------------------

<a1*a2, > n
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An Example Derivation

̈ What is the n such that

<(3+4)-(x*2), > n ?
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Semantics of arithmetic expressions

̈ Two arithmetic expressions are equivalent if they
evaluate to the same value in all states

a1 a2

iff

( n N. . <a1, > n  <a2, > n)

̈ Examples:

̊ <2+3, > 5 and <3+2, > 5 thus (2+3) (3+2)

̊ 2+x is not equivalent to 2+3 because there are states in
which x evaluates to an integer different from 3
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Evaluating Boolean expressions

̊ <true, > T

̊ <false, > F

<b, > T <b, > F
̊ ---------------------- ----------------------

< b, > F < b, > T

<b1, > t1 <b2, > t2 
̊ ------------------------------------------

<b1 b2, > t

where t = T if both t1 = T and t2 =T, otherwise t = F



6/9/2008

Slide 14

Evaluating boolean expressions

<b1, > t1 <b2, > t2 
̊ -----------------------------------------

<b1 b2, > t

where t = T if t1 = T or  t2 =T, and t = F otherwise

̊ If n1 is less than n2 then
<a1, > n1 <a2, > n2 --------------------------------------------------

<a1 a2, > T

̊ If n1 is greater than or equal to n2 then
<a1, > n1 <a2, > n2 
--------------------------------------------------

<a1 a2, > F
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Semantics of Boolean expressions

̈ Two Boolean expressions are equivalent if they
evaluate to the same truth value in all states

b1 b2

iff

( . <b1, > T <b2, > T)

̈ We could improve the evaluation of Boolean
expressions using

̊ a left-first sequential strategy

̊ a parallel strategy 
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The command behaviour

̈ A program may 

̊ terminate in a final state or

̊ diverge and never yield a final state 

̈ We denote by 

<c, > Ó"
the execution of a command c in an initial  state 

and terminating in a final state Ó

̈ Recall: [n/x] (y) = {
n if x = y

(y) if x y
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Executing commands I

̊ <skip, > 

<a, > n
̊ ---------------------------------

<x := a, > [n/x]

<c1, > ÓÓ <c2, ÓÓ@" Ó
̊ -------------------------------------------------------------

<c1; c2, > Ó

<b, > T <c1, > Ó
̊ -----------------------------------------------

<if b then c1 else c2 fi, > Ó

<b, > F <c2, > Ó
̊ -----------------------------------------------

<if b then c1 else c2 fi, > Ó
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Example: MAX

̈ What is the final state Ó of

<if x < y then z:=y else z:= x fi, > Ó

for (x) = 2, (y) = 1 and (z) = 0 ?
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Executing commands II

<b, > F
̊ --------------------------------------

<while b do c od, > 

<b, > T       <c, > ÓÓ <while b do c od, ÓÓ@" Ó
̊ -------------------------------------------------------------------------------------------------------

<while b do c od, > Ó
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Semantics of commands

̈ Two commands are equivalent if when executed from
the same initial state they terminate in the same final
state

c1 c2

iff

( , Ó0"<c1, > Ó"" <c2, > Ó+

̈ Examples
̊ x := x  skip

̊ while b do c of if b then c; while b do c od 

else skip

fi
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Execution of Commands

̈ The order of evaluation is important and explicit.
̊ c1 is evaluated before c2 in c1; c2

̊ c2 is not evaluated in if true then c1 else c2 fi

̊ b is evaluated first in if b then c1 else c2 fi

̊ e"ku"pqv"gxcnwcvgf"kp"Ðwhile false do c od

̈ The execution rules suggest an interpreter but abstract 
from a concrete one

̈ Execution is deterministic: only one rule can be applied 
at  time.
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Axiomatic Semantics

̈ We have introduced

̊a syntax for sequential programs

̊An operational semantics (transition system) for
ÐtwppkpiÑ those programs from a starting state. A
computation may terminate in a state or run forever.

̈ We would also like to have a semantics for
reasoning about program correctness
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Axiomatic semantics

̈ We need

̊A logical language for making assertions about
programs
̈ The program terminates

̈ If x = 0 then y = z+1 throughout the rest of the execution of
the program

̈ If the program terminates, then x = y + z

̊A proof system for establishing those assertions
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Why axiomatic semantics

̈ Documentation of programs and interfaces
*Og{gtÓu"Fgukip"d{"Eqpvtcev+

̈ Guidance in language design and coding

̈ Proving the correctness of algorithms

̈ Extended static checking
̊ checking array bounds

̈ Proof-carrying code

̈ Why not testing?

̊ Dijkstra: Program testing can be used to show the 
presence of  bugs, but never to show their absence!
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The idea

ÐCompute a number y whose square is less than
the input xÑ

We have to write a program P such that 

y*y < x

But what if x = -4?

There is no program computing y!!
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The idea (continued)

ÐIf the input x is a positive number then compute a

number y whose square is less than the input xÑ

We need to talk about the states before and after
the execution of the program P

{ x>0 } P { y*y < x }
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The idea (continued)

̈ Hoare triple for partial correctness

apar { } c { }

If the command c terminates when it is executed in
a state that satisfies , then the resulting state will
satisfy

program termination is not required

postcondition
precondition

command
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Examples

̈ apar{ y ‘ x } z := x; z := z +1 { y < z } is valid

̈ apar{ true } while true do skip od { false } is valid

̈ Let Fact = y := 1; z := 0;
while z x do

z := z + 1;
y := y*z

od

Is apar { x 0 } Fact { y = x! } valid?
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̈ Hoare triple for total correctness

atot { } c { }

If the command c is executed in a state that satisfies
then c is guaranteed to terminate and the resulting

state will satisfy

program termination is required

postcondition
precondition

command

Total correctness



6/9/2008

Slide 10

Example

̈ atot { y ‘ x } z := x; z := z +1 { y < z } is valid

̈ atot{ true } while true do skip od { false } is not valid

̈ atot { false } while true do skip od { true } is valid

̈ Let Fact = y := 1; z := 0;
while z x do

z := z + 1;
y := y*z

od

Is atot { x 0 } Fact { y = x! } valid?
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Partial and total correctness: meaning

̈ Hoare triple for partial correctness apar { } c { }
If holds in a state and <c, > Ó"vjgp"

holds in Ó

̈ Hoare triple for total correctness atot { } c { }
If holds in a state then 

there exists a Ó"uwej"vjcv">e. > Ó""cpf" holds in Ó

̈ To be more precise, we need to:
̊ Formalize the language of assertions for and 

̊ Say when an assertion holds in a state.
̊Give rules for deriving Hoare triples
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The assertion language

̈ Extended arithmetic expressions

a ::= n | x | i |(a+a) | (a-a) | (a*a) 

n N, x Var, i LVar

̈ Assertions (or extended Boolean expressions)

::= true | | | a a | i.

i LVar
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Program variables

̈ We need program variables Var in our assertion
language

̊ To express properties of a state of a program as basic
assertion such as

x = n         i.e. ÐThe value of x is pÑ

that can be used in more complex formulas such as 

x = n y+1 = x*(y-x)         k0g0"ÐIf the value of x is n then 

that of y + 1 is x times y - xÑ
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Logical variables

̈ We need a set of logical variables LVar
̊ To express mathematical properties such as

i. n = i * m       i.e. Ðan integer n is multiple of another oÑ

̊ To remember the value of a program variable destroyed
by a computation

Fact2    y := 1;
while x 0 do

y := y*x;
x := x Î 1

od

apar{ x 0 } Fact2 { y = x! } is not valid but 

apar{ x = x0 x 0 } Fact2 { y = x0! } is.
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Meaning of assertions

̈ Next we assign meaning to assertions

̊ Problem<"Ð holds in a state Ñ may depends on 
the value of the logical variables in 

̊ Solution: use interpretations of logical variables

̊ Examples

̈ z x holds in a state :Var N with (x) = 3 for all 
interpretations I:LVar N of the logical variables 
such that I(i) 3 

̈ i i+1 holds in a state for all interpretations
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Meaning of expressions

̈ Given a state :Var N and an interpretation
I:LVar N we define the meaning of an expression e
as [[e]]I , inductively given by

̊ [[n]]I = n

̊ [[x]]I = (x)

̊ [[i]]I = I(i)

̊ [[a1+a2]]I = [[a1]]I +[[a2]]I

̊ [[a1-a2]]I = [[a1]]I - [[a2]]I

̊ [[a1*a2]]I = [[a1]]I *[[a2]]I
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Meaning of assertions

̈ Given a state : Var N and an interpretation
I:LVar N we define

,I a
inductively by

̊ ,I a true
̊ ,I a iff not ,I a
̊ ,I a iff ,I a and ,I a
̊ ,I a a1 a2 iff [[a1]]I [[a2]]I

̊ ,I a i. iff ,I[n/i] a for all n N
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Partial and total correctness

̈ Partial correctness:   I apar { } c { }

( ,I a and <c, > Ó"+" Ó.K"a

̈ Total correctness:    I atot { } c { }

. ,I a Ó0*>e." > Ó"cpf" Ó.K"a )

where and are assertions and c is a command
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Validity

̈ To give an absolute meaning to 
{i x} x := x+3 {i x}

we have to quantify over all interpretations I

̈ Partial correctness:   

apar { } c { } I. I apar { } c { }

̈ Total correctness:  

atot { } c { }   I. I atot { } c { }
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Deriving assertions

̈ We have the meaning of both

apar{ } c { }    and     atot { } c { }

but it depends on the operational semantics and it
cannot be effectively used

̈ Thus we want to define a proof system to derive
symbolically valid assertions from valid assertions.
̊ `par { }c{ } means that the Hoare triple { }c{ } can be

derived by some axioms and rules

̊ Similarly for `tot { }c{ }
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Free and bound variables

̈ A logical variable is bound in an assertion if it
occurs in the scope of a quantifier

i. n = i * m

̈ A logical variable is free if it is not bound

i + 100 < 77 i. j+i = 3

free
bound
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Substitution (I)

̈ For an assertion , logical variable i and
arithmetic expression e we define

[e/i]

as the assertion resulting by substituting in the
free occurrence of i by e.

̈ Definition for extended arithmetic expressions

n[e/i] = n (a1+a2)[e/i]=(a1[e/i]+a2[e/i])

x[e/i] = x (a1-a2)[e/i]=(a1[e/i]-a2[e/i])

i[e/i] = e (a1*a2)[e/i]=(a1[e/i]*a2[e/i])

j[e/i] = j
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Substitution (II)

̈ Definition for assertions

true[e/i] = true

( )[e/i] = ( [e/i])

( 1 2)[e/i] = ( 1[e/i] 2[e/i])

(a1 a2)[e/i] = (a1[e/i] a2[e/i])

( i. )[e/i] = i.

( j. )[e/i] = j. [e/i] j i

̈ Pictorially, if = ---i--i--i- with i free, then

[e/i] = ---e--e--e-
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Proof rules partial correctness (I)

̈ There is one derivation rule for each 
command in the language.

̊ { } skip { }                       skip

̊ { [a/x]} x := a { }              ass

{ } c1 { }      { } c2 { }
̊ ------------------------------- seq

{ } c1; c2 { }
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Proof rules partial correctness (II)

{ b} c1 { }        { b} c2 { } 
̊ -------------------------------------------- if

{ } if b then c1 else c2 fi { } 

{ b} c { }
̊ -------------------------------------- while

{ } while b do c od { b} 

` Ó""""""{ Ó} c { Ó}     ` Ó"
̊ ----------------------------------------------- cons

{ } c { }
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A first example: assignment

̈ NgvÓu"rtqxg"vjcv

`par {true} x:=1 {x=1}

---------------------- ass
` true  1=1 {1=1} x:=1 {x=1}      

--------------------------------------------------- cons
{true} x:=1 {x=1}
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Another example: assignment

̈ Prove that {true} x:= e {x=e} when x does not appear 
in e

1. Because x does ot appear in e we have 
(x=e)[e/x]   (x[e/x]=e[e/x])   (e=e) 

2. Use assignment + consequence to obtain the proof

---------------------- ass

` true  e=e {e=e} x:=e {x=e}

--------------------------------------------------- cons
{true} x:=e {x=e}
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Another example: conditional

̈ Prove  `par {true} if y‘1 then x:=1 else x:=y fi {x>0}

---------------------- ass                             ass ---------------------
`true y‘1 1>0   {1>0} x:=1 {x>0}         `true y>1 y>0    {y>0} x:=y 

{x>0}
------------------------------------------------ cons -----------------------------------------------

{true y ‘1} x:=1 {x>0} {true y >} x:=y {x>0}      
------------------------------------------------------------------------ if

{true} if y‘1 then x:=1 else x:=y fi {x>0}
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An example: while

̈ Prove `par {0 x} while x>0 do x:=x-1 od {x=0}

We take as invariant 0 ‘ x in the while-rule 

------------------------------ ass

` 0 ‘ x x>0 0 ‘ x-1      {0 ‘ x-1} x:=x-1 {0 ‘ x}

------------------------------------------------------------------- cons

{0 ‘ x x>0 } x:=x-1 {0 ‘ x}

-------------------------------------------------------------while

{0 ‘ x} while x >0 do x:=x-1 od {0 ‘ x x ‘ 0}                 ` 0 ‘ x x ‘ 0 x=0

------------------------------------------------------------------------------------------------------ cons

{x ‘ 0} x >0 do x:=x-1 od {x=0}
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An example: while, again

Prove that {x ‘ 0} while x ‘ 5 do x:=x+1 od {x=6}

1. We start with the invariant x ‘ 6 in the while-rule 

-------------------------------- ass
` x ‘ 6 x ‘ 5 x+1 ‘ 6      {x+1 ‘ 6}x:=x+1 {x ‘ 6}

---------------------------------------------------------------------------- cons
{x ‘ 6 x ‘ 5} x:=x+1 {x ‘ 6}

---------------------------------------------------------------while
{x ‘ 6} while x ‘ 5 do x:=x+1 od {x ‘ 6 x>5}

2. We finish with the consequence rule

` x‘0 x‘6    {x ‘ 6} while x ‘ 5 do x:=x+1 od {x ‘ 6 x>5}     ` x‘6 x>5 x=6

-----------------------------------------------------------------------------------------------------------------
{x ‘ 0} while x ‘ 5 do x:=x+1 od {x=6}
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Auxiliary rules

̈ They can be derived from the previous ones

̊ { } c { }   if the program variables in do not appear in c

̊ { } x := a { x0.( [x0 /x] x = a[x0/x])} 

{ 1} c1 { }        { 2} c2 { } 
̊ ------------------------------------------------------------------------------------

{(b 1) ( b 2 )} if b then c1 else c2 fi { }

{ 1} c { }        { 2} c { } 
̊ ---------------------------------------

{ 1 2} c { } 

{ 1} c { 1}    { 2} c { 2}
̊ ---------------------------------------

{ 1 2} c { 1 2 }
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Comments on Hoare logic

̈ The rules are syntax directed

̊Three problems:

̈ When to apply the consequence rule

̈ How to prove the implication in the consequence rule

̈ What invariant to use in the while rule

̈ The last is the real hard one

̊Should it be given by the programmer?
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An extensive example: a program

DIV k
q := 0;

r := x;

while r y do

r := r-y; 

q := q+1

od

We wish to prove

{x 0 y > 0 } DIV { q*y+r=x 0 r y }
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Axiomatic semantics

̈ We have a language for asserting properties of
programs (syntax).

̈ We know when an assertion is true (validity).

̈ We have a symbolic way for deriving assertions
(proof system).

̈ What is the relation between validity and
provability?
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Hoare Logic
soundness and completeness

̈ Soundness (what can be proved is valid):

`par { } c { }      implies    apar { } c { } 

̈ Completeness (what is valid can be proved):

apar { } c { }      implies    `par { } c { }
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Soundness

̈ Theorem: The proof system for partial correctness 
is sound

equivalently, if `par { } c { } then 

,I ( ,I apar and <c, > Ó"+" Ó.K apar

Proof by induction on the length of the derivation of 
the Hoare triples, reasoning about each axiom and 
rule separately. (why?)
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Soundness of skip

Case: last rule used in the derivation is 

{ } skip { }. 

We have to prove

,I ( ,I apar and <skip, > Ó+" Ó.K"apar

Which follows because Ó"?" .
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Soundness of assignment

Case last rule in the derivation is { [a/x]} x := a { }

Take and I such that ,I a [a/x]. Then

< x := a, > [a/x]

We need to prove [a/x],I a , which follows from the
substitution lemma

LEMMA: ,I a [a/x] implies [a/x],I a

Proof: by induction on the structure of
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Soundness of consequence rule

̈ Case last rule in the derivation is

` Ó""""{ Ó} c { Ó}     ` Ó"
------------------------------------------

{ } c { }

̈ From soundness of first order logic we have 

,I a Ó0"
Hence ,I a Ó0

̈ From induction hypothesis we get Ó.K"a Ó0

̈ From soundness of first order logic we finally obtain 

Ó.K"a Ó" .

Therefore Ó.K"a
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Soundness of while

̈ Case last rule in the derivation is

{ b} c { }
----------------------------------------
{ } while b do c od { b}

̈ Assume ,I a . We proceed by induction on the derivation of 
<while b do c od, > Ó
̊ There are two cases (we treat only one):

<b, > T     <c, > Ó""">while b do c od, Ó@" ÓÓ
------------------------------------------------------------------------------

<while b do c od, > ÓÓ

̊ We need to prove ÓÓ.K"a b
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Soundness of while (II)

̈ By definition of derivation of <b, > T we obtain 

,I a b

Hence ,I a b

̈ By induction hypothesis on derivation of { b} c { } we have 

Ó.K"a

̈ By induction hyp. on derivation of <while b do c od, Ó@" ÓÓ"
we finally obtain

ÓÓ.K"a b
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Hoare Logic

̈ We have seen that if we can derive an
assertion in the Hoare logic then this
assertion is true (soundness).

̈ Next we concentrate on the opposite
direction (completeness).
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Completeness of Hoare Logic

̈ Can we prove that if an assertion is true then it is
derivable?

̈ More formally, can we prove

apar{ } c { }   implies `par{ } c { }?

̈ The answer is yes, but only if the underlying logic is
complete (a implies ` ) and expressive enough

̊ This is called relative completeness.
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Idea for proving completeness

̈ To prove atot{ } c { } implies `tot{ } c { }

1. Assume we can compute wp(c, ) such that

¸ wp(c, ) is a precondition of , i.e.

`tot {wp(c, )} c { }

¸ wp(c, ) is the weakest precondition of , i.e.

atot{ } c { } implies a wp(c, )

2. By completeness of the underlying logic and the 
consequence rule we obtain

` wp(c, )           `tot {wp(c, )} c { }
-------------------------------------------------------

`tot { } c { }
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Weakest precondition (Dijkstra)

̈ Assertions can be ordered

Precondition of c implying that 
holds after its  execution

false true

wp(c, )

strong weak

̈ Thus to verify { } c { } we compute 
wp(c, ) and prove wp(c, )
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Weakest precondition

̈ The definition of the weakest precondition
follows the rules of the Hoare logic

̈ SKIP

------------------
{ } skip { }

wp(skip, ) = 
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Weakest precondition

̈ ASSIGNMENT

----------------------------
{ [a/x]} x := a { }

wp(x:=a, ) = [a/x]

̈ SEQUENTIAL COMPOSITION

{ } c1 { }      { } c2 { }
------------------------------

{ } c1; c2 { }

wp(c1; c2, ) = wp(c1,wp(c2, )) 
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Weakest precondition

̈ CONDITIONAL

{ 1} c1 { }        { 2} c2 { } 
-------------------------------------------------------

{b 1 b 2} if b then c1 else c2 fi { }

wp(if b then c1 else c2 fi, ) = b wp(c1, ) b wp(c2, )
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Weakest precondition

̈ LOOP
1. We already know that

while b do c od if b then (c;while b do c od) else skip fi

2. Let w = while b do c od and W = wp(w, ). We have

W = b wp(c,W) b 

3. This is a recursive equation
̈ We know how to solve it

̈ We need a complete partial order (cpo) of assertions
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A CPO of assertions

̈ Refinement order:

‘ iff     a
True is the bottom: it does not says much about a 
state.

̈ It forms a complete partial order: the least upper 
bound of every chain 1‘ 2‘È"‘ n‘ is the 
infinite conjunction /\ i

where  ,I a /\ i iff   ,I a i for all i
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Weakest precondition (LOOP)

̈ Let F(X) = b wp(c, X) b .

̈ Then F is monotone and continuous. Thus it has 
a least fixed point (the weakest fixed point) and 

wp(while b do c od, ) = /\ Fi(true)

̈ We need an assertion language expressive 
enough to be able to write /\ Fi(true).
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Weakest precondition (LOOP)

̈ Define a family of preconditions wp(while b do c od, )k as
follows:

wp(while b do c od, )0      = b 

wp(while b do c od, )n+1  = 

b wp(c, wp(while b do c od, )n) b 

Then wp(while b do c od, ) = /\ wp(while b do c od, )k

̈ Here wp(while b do c od, )k is the weakest precondition on
which the loop - if terminated in k or less iterations -
terminates in .
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Weakest precondition: properties

̈ For each command c in our language we have 

̊ wp(c,true) = true

̊ if Ó"vjgp"wp(c, ) wp(c, Ó) 

̊ wp(c, Ó) = wp(c, ) wp(c, Ó)

̊ wp(c, Ó) = wp(c, ) wp(c, Ó)

̈ wp(c,false) characterizes all states in which c does 

not terminate
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Proof outlines

̈ Formal proofs are long and tedious to follow.

̈ It is better to organize the proof in small local
isolated steps

̈ We can use the structure of the program to
structure our proof!
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The idea
̈ For the program P = c1; c2; c3; È cn we want

to show

`par{ 0} P { n}

̈ We can split the problem into smaller ones if 
we find formulas iÓs such that

`par{ i} ci{ i+1}
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The idea (cont.d)

̈ Thus we have to find a calculus for presenting a proof
`par{ 0} P { n} by interleaving formulas with code

{ 0} 

c1; 
{ 1}   justification (i.e. skip, ass, if, while, implied)
c2;
{ 2}  justification
c3;...
{ n-1}   justification
cn

{ n} 

Composition is implicit !
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Verification condition
Problem: How can we find the iÓs ?

Solution: Use Hoare rules and calculate
verification conditions, i.e. conditions needed
to establish the validity of certain assertions.

Precondition of c implying that 
holds after its  execution

false true

wp(c, )

strong weak

vc
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Skip, assignment, implied

̈ --------------- skip
{ } skip { } 

̈ ---------------------- assignment
{ [a/x]} x := a { }

`
̈ ------------- implied

{ } { }
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Example

̈ To prove `par{y = 5 } x := y + 1 { x = 6 }

{y = 5}

{y+1 = 6}  implied

x := y + 1 

{x = 6} assignment

we only need to prove the verification 
condition y = 5 y+1 = 6
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Composition, conditional

{ } c1 { } { } c2 { } 
̈ ------------------------------ seq

{ } c1; { } c2 { }

{ 1} c1 { } { 2} c2 { } 
̈ ----------------------------------------------------------- if

{b 1 b 2 }if b then{ 1}c1{ }else{ 2}c2{ } fi{ }
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Example
̈ To prove `par{true} z:=x; z:=z+y; u:=z {u = x+y}

{true}

{ x+y = x+y } implied
z:=x;
{ z+y = x+y } assignment
z:=z+y;
{ z = x+y }  assignment
u:=z
{ u = x+y } assignment

we only need to prove the verification condition
true x+y = x+y 
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Example

Suppose we want to prove

{true}
a := x+1;
if a = 1 then y := 1 else y := a fi

{y = x+1}
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Example

{ true }

{x+1=1 1=x+1 x+1 1 x+1=x+1} implied
a := x+1;
{a=1 1=x+1 a 1 a=x+1} assignment
if a = 1 

then {1 = x+1}
y := 1

{ y = x+1} assignment 

else

{a = x+1}

y := a 

{ y = x+1 } assignment

fi

{ y = x+1 } if-then-else
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While statement

{I b} c {I}
--------------------------------------------- while
{I} while b do {I b} c {I} od {I b} 

̈ We must discover an invariant I
̊ I need not hold during the execution of c

̊ if I holds before c is executed then it holds if and when 
c terminates. 
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Invariant

̈ For any while b do c od these are invariants

̊ true

̊ false

̊ b

because  {I b } c { I } is valid. However they are 
useless to prove

I      or       I b 

when considering the while in a context.

̈ To find a useful invariant it may help to look at the 
execution of the while and at the relationships among 
the variables manipulated by the while-body
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Example

̈ Let W = while x 0 do y := x*y; x := x-1 od

̈ To prove {x = n n 0 y=1 } W { y = n! }

iteration x 0 ?x y

0

1

2

3

4

5

6

6

5

4

3

2

1

0

1

6

30

120

360

720

720

true

true

true

true

true 

true

false
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Example I
̈ Invariant  Hypothesis   y*x! = n! 

{y*x! = n! }
while x 0 do
{ y*x! = n! x 0} invariant and guard
{ x*y*(x-1)! = n! } implied
y := x*y; 
{ y*(x-1)! = n! } assignment
x := x-1
{ y*x! = n! } assignment
od
{ y*x! = n! x 0 } while

correct !!! 
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Example II

̈ Since y*x! = n! is an invariant we have

{x = n n 0 y=1 }

{y*x! = n! } implied

W 

{ y*x! = n! x 0 } while

{ y*x! = n! x 0 } implied

{ y = n! } implied??

The invariant is too weak! 
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Example III
̈ Another invariant  hypothesis   y*x! = n! x 0

{y*x! = n! x 0 }
while x 0 do
{y*x! = n! x 0 x 0 } Inv. Hyp. and guard

{x*y*(x-1)! = n! x 1 } implied
y := x*y; 
{y*(x-1)! = n! x-1 0} assignment
x := x-1
{ y*x! = n! x 0 } assignment
od
{ y*x! = n! x 0 x 0 } while

correct !!! 
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Example IV

̈ With the new invariant we have

{x = n n 0 y=1 }

{y*x! = n! x 0 } implied

W 

{ y*x! = n! x 0 x 0 }  while

{ y*x! = n! x = 0 } implied

{ y = n! } implied

Yes! 
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Array Types and Array Syntax

̈ Let c]3"È"p_ denote an array with as index an 
integer between 1 and n (included) 

̈ Then a[e] denotes the element at position i in 
the array a if the evaluation of the expression 
e is the integer i with 1 i n 

̈ And |a| denote the length of the array a, 
̊ i.e. |a| = n
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Meaning of array assignments

̈ Let a, b be two array variables. Then:

̊a:=b assigns the value of array a to the array 
variable b

̊c]g_<?gÓ assigns the value of gÓ to position e in the 
array a

̊but c]g_<?gÓ hcknu."qt"Òiqgu"ytqpiÓ."kh"e 0 or e<|a|

̈ In partial correctness, we do not need to take 
array boundaries into account

̊For example, {true}a[|a|+1] {true}  is valid
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Array assignments and aliasing

̈ Simple assignments remain simple:
{ [b/a]} a:=b { }

is valid (partial correctness)

̈ But what about c]g_<?gÓ ?

̈ How can we substitute a[e] by gÓ ?

̈ Moreover, a[e] may have aliases:
a[3], a[1+2], a[5-2], etc. all denote the same 
location
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Arrays as functions

̈ An array a[1È|a|] of values can be seen as a
function a from the index values to the element
values

update: c]g_"<?"gÓ is the same as c"<?c]gÓ1g_

reading: a[e] is the same as a(e)

gÓ" if e=i 
̈ Recall that c]gÓ1g_*k+ =

a(i) otherwise
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The solution: function substitution

̈ Since an array is just a variable whose
type happens to be ÐhwpevkqpÑ. we can
simply replace the entire function

̈ a[i] := e is the same as a := a[e/i] thus
along the lines of the ordinary assignment
axiom we have

{ ]c]gÓ1g_1c_’"c]g_"<?"gÓ"} }
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Weakest precondition of array updates

̈ The formula ]c]gÓ1g_1c_"ku"not the weakest 
precondition of y0t0v0"cp"cttc{"wrfcvg"c]g_<?gÓ

Why? 

Because the value e may fall outside that of the 
array a, so update may also fail! For total 
correctness we have to prove that assignment  
fqgupÓv"hckn0

̈ yr*c]g_"<?"gÓ. )= ]c]gÓ1g_1c_" 2>gø̃c̃
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Example I

̈ { true } a[3] := 5 { a[3] = 5 }

We get:

(a[3] = 5)[a[5/3]/a] a[5/3][3] =5

Clearly, true a[5/3][3]=5
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Example II

̈ {a[j] = 4} a[i] := a[j]+1 {a[i] = 5}

(a[i] = 5)[a[a[j]+1/i]/a]

a[a[j]+1/i][i] =5

a[j]+1 = 5

a[j] = 4
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Example 3

̈ {|b|>2} a:=b; a[1]:=3; a[1]:= a[1]+1; b:=a {b[1]=4}
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Example 4

{ a[i] = i } a[a[i]] := i { a[i] = i }

(a[i] = i)[(a[i/a[i]])/a]

a[i/a[i]](i) = i

(a[i] = i i = i) (a[i] i a[i] = i)

a[i] = i
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̈ Hoare triple for total correctness

atot { } c { }

If the command c is executed in a state that satisfies
then c is guaranteed to terminate and the resulting

state will satisfy

program termination is required

postcondition
precondition

command

Total correctness
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Example

̈ atot { y ‘ x } z := x; z := z +1 { y < z } is valid

̈ atot{ true } while true do skip od { false } is not valid

̈ atot { false } while true do skip od { true } is valid

̈ Let Fact = y := 1; z := 0;
while z x do

z := z + 1;
y := y*z

od

Is atot { x 0 } Fact { y = x! } valid?
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Total correctness

̈ Total correctness:    I atot { } c { }

. ,I a Ó0*>e." > Ó"cpf" Ó.K"a )

where and are assertions and c is a 
command
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Validity

̈ To give an absolute meaning to 

{i x} x := x+3 {i x}

we have to quantify over all interpretations I

̈ Total correctness:  

atot { } c { }   I. I atot { } c { }
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Towards a calculus

̈ Partial correctness does not tell anything 
about termination

̈ Only while b do c od introduces the 
possibility of non-termination

a proof calculus for total correctness is the 
same as that for partial correctness except 
for the while-rule
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Intuition

̈ To prove total correctness we need

̊a proof of partial correctness

̊a proof that the while statement terminates

̈ Termination can be proved by finding an
integer expression E (the variant) that

̊ is always non-negative

̊decreases every time we execute the body of the
while statement
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Proof rules 
total and partial correctness (I)

̈ { } skip { }                       skip

̈ { [a/x] def(a)} x := a { }              ass

{ } c1 { }      { } c2 { }
̈ ------------------------------- seq

{ } c1; c2 { }
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Proof rules 
total and partial correctness (II)

{ b} c1 { }        { b} c2 { }
̈ -------------------------------------------- if

{ } if b then c1 else c2 fi { }

` Ó""""""{ Ó} c { Ó}     ` Ó"
̈ ----------------------------------------------- cons

{ } c { }
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Proof rule total correctness (III)

{ b 0 E=E0 } c { 0 E E0 }
---------------------------------------------
{ 0 E } while b do c od { b}

where E0 is a logical variable for retaining the initial 
value of E

Finding E cannot be mechanized !!!
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Proof outline

̈ Proof outline for total correctness are similar 

to those for partial correctness except for 

̊ the precondition of the while which now writes

{ 0 E }

̊ the body of the while which now writes

{ b 0 E=E0 } c { 0 E E0 }
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An example

DIV 

q := 0;

r := x;

while r y do

r := r-y; 

q := q+1

od

We wish to prove

{x 0 y > 0 } DIV { q*y+r=x 0 r y }
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{x 0 y > 0 }

{ 0*y+x=x 0 x } implied
q := 0;
{q*y+x=x 0 x } ass.
r := x;
{ I } ass.
while r y do

{ I r y } Inv guard
{ (q+1)*y+ r-y =x 0 r-y } implied
r := r-y; 
{ (q+1)*y+r=x 0 r } ass.
q := q+1
{ I } ass.

od
{ I r y } while
{ q*y+r=x 0 r y } implied

where I q*y+r=x 0 r is the invariant

An example (II)
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{x 0 y > 0 }
{ 0*y+x=x 0 x } implied
q := 0;
{q*y+x=x 0 x } ass.
r := x;
{ I 0 r } ass.
while r y do

{ I r y 0 r=z } Inv guard
{ (q+1)*y+ r-y =x 0 r-y z } implied?????
r := r-y; 
{ (q+1)*y+r=x 0 r z } ass.
q := q+1
{ I 0 r z } ass.

od
{ I r y } while
{ q*y+r=x 0 r y } implied

where I q*y+r=x 0 r is the invariant and r is the variant

An example (III)
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{x 0 y > 0 }

{ 0*y+x=x 0 x y 0 } implied
q := 0;
{q*y+x=x 0 x y 0 } ass.
r := x;
{ I 0 r } ass.
while r y do

{ I r y 0 r=z } Inv guard
{ (q+1)*y+ r-y =x y 0 0 r-y z }  implied
r := r-y; 
{ (q+1)*y+r=x y 0 0 r z } ass.
q := q+1
{ I 0 r z } ass.

od
{ I r y } while
{ q*y+r=x 0 r y } implied

where I q*y+r=x 0 r y 0 is the invariant and r is the variant

An example (IV)


