
Program correctness

Overview and motivation

Marcello Bonsangue

Spring 2008

r

6/9/2008

2

PenC - Spring 2006

Slide 2

Course Information

̈ My e-mail: marcello@liacs.nl

̈ My office: 155a

̈ All important information on

www.liacs.nl/~marcello/penc.html

̊ Schedule

̊ Grades

̊ È

Visit it regularly

6/9/2008

3

PenC - Spring 2006

Slide 3

Lectures
̈ Where: room WI312

̈ When: Friday (11:15 - 13:00)

February 8 15 22 29

March 7 14 28

April 4 11 18 25

May 9 16

Class participation is important

6/9/2008

4

PenC - Spring 2006

Slide 4

Practice
̈ Where: room WI312

̈ When: Friday (13:45 - 15:30)

February 8 15 22 29

March 7 14 28

April 4 11 18 25

May 9 16

Class participation is essential

6/9/2008

5

PenC - Spring 2006

Slide 5

Grading
̈ This course is worth 5 ECTS

̈ Evaluation by home assignment (20%)
+
written examination (80%)

max {0.2*HA + 0.8 WE, 1.0*WE}

̈ Written examination
̊ when: Wednesday 11 June from 14:00 to 17:00
̊ where: room ???

and also

̊ when: Thursday 21 Augustus from 10:00 to 13:00
̊ where: room ???

6/9/2008

6

PenC - Spring 2006

Slide 6

Reading

Logic in Computer Science:

Modelling and Reasoning about Systems

Michael R. A. Huth and Mark D. Ryan

Cambridge University Press, 2004

ISBN 0 521 54310 X paperback

6/9/2008

7

PenC - Spring 2006

Slide 7

Expected Background

̈ Propositional logic

̈ Predicate logic

̈ Sets and functions

̈ Induction

̈ Recursion

̈ Imperative programming

6/9/2008

8

PenC - Spring 2006

Slide 8

Course Organization

̈ The course cover model and proof-based techniques for

proving programs correct

̈ The course combines

̊ theory (logics)

̊ practice (program and system modeling)

̈ Course goals:

̊ introduction to fundamental concepts of formal methods

̊ usage of formal methods in software engineering

6/9/2008

9

PenC - Spring 2006

Slide 9

Formal Methods

̈ Formal methods includes all applications
of mathematics to software engineering
problems.

̊ type checking

̊model checking

̊program correctness

̊semantics

6/9/2008

10

PenC - Spring 2006

Slide 10

Formal Methods

̈ We consider formal methods for verifying the
correctness of computer systems (hardware
and/or software)

̈ Logics provide a mean for mechanizing
verification details

computer aided verification

̊ fully automated (e.g. model checking)

̊ interactive (e.g. program correctness)

6/9/2008

11

PenC - Spring 2006

Slide 11

Why?

̈ Avoid loss of life

Therac 25, a computer-controlled radiation
therapy machine made by Atomic Energy of
Canada killed 6 people by radiation overdoses
between 1985 and 1987 because of a timing
problem on a data entry:

ÐCp operator mistake could be fixed within 8 seconds,
but even though the monitor reflected the operator
change, the change did not affected a part of the
rtqitcoÑ

6/9/2008

12

PenC - Spring 2006

Slide 12

Why?

̈ Save costs

In 1994, 2 million Intel Pentium V had a
bug in the FDIV operation. It could be
detected by the following MS-Excel
operation:

(4195835/3145727)x3145727-4195835 = 512 !!!

̊Cost to Intel: $475 million

̊From 1994 Intel applies formal verification
techniques to its products

6/9/2008

13

PenC - Spring 2006

Slide 13

Why?

̈ Guarantee security

In 1998 several e-mail systems did not
check for the length of e-mail addresses,
and allowed their buffers to overflow
causing the applications to crash.

Hostile hackers used this fault to trick the
operating system into running a malicious
program in its place.

6/9/2008

14

PenC - Spring 2006

Slide 14

Do you trust your system?

The real wonder is that the system works

as well as it does
(Peterson, 1996)

but remember that software systems provide the
infrastructure in virtually all industries today:

̈ air traffic control

̈ water level management

̈ energy production and distribution

̈ ...

6/9/2008

15

PenC - Spring 2006

Slide 15

Why Formal Methods?

̈ Testing and simulation techniques are
never exhaustive

̈ Formal verification proves that a system
works based on:

̊mathematical principles

̊exhaustive verification techniques

̊mathematical model structures

6/9/2008

16

PenC - Spring 2006

Slide 16

Warning

̈ The use of formal methods does not solve all these

problems

̊ proof: hand-checked or machine supported?

̊ modelling task: difficult and yet crucial!

̈ Formal methods should be part of a methodology

together with

̊ Reviews (of requirements, design, and code)

̊ Testing (of software units and their integration)

Program correctness

Transition systems

Marcello Bonsangue

Spring 2007

r

6/9/2008

Slide 2

Formal Verification

Verification techniques comprise

̈ a modelling framework M, M,

to describe a system

̈ a specification language

to describe the properties to be verified

̈ a verification method Ma , `
to establish whether a model satisfies a property

6/9/2008

Slide 3

Transition Systems

̈ A very general modelling framework

̈ Intuitively: a system evolves from one state
to another under the action of a transition

0 1

2

A modulo 3 counter

inc inc

inc

dec
dec

dec

-

-

-

6/9/2008

Slide 4

Example: an assignment

States: s:Var -> Val

s uÓ

yjgtg"uÓ?u]u*z+-31z_"cpf

f[v/x](y) =
f(y) if x y

v if x = y{

x := x+1

6/9/2008

Slide 5

Example: a digicode

̈ 3 keys: A, B, C

̈ The door open when ABA is keyed

1 2 3 4
AB

A

A
B,C

B,C

C

6/9/2008

Slide 6

FkikeqfgÓu"gzgewvkqpu
̈ 1

̈ 11, 12

̈ 111, 112, 121, 122, 123

̈ ...
1

1

1

2

2 1 2 3

1 21 2 3 1 2 3 1 412

6/9/2008

Slide 7

A few definitions

̈ Transition system: <S,L, >

̊S set of states

̊L set of transition labels

̊ SxLxS transition relation

̈ Path: a sequence of infinite transitions
which follow each other

For example

3 1 2 4"È
is a path of the digicode

B A A

6/9/2008

Slide 8

Adding data

̈ Real-life systems consist of control and data. We
can model them by
̊ control = states+transitions

̊ data = state variables

̈ A transition system interact with state variables in
two ways
̊ guards a transition cannot occur if the

condition does not holds

̊ assignment a transition can modify the value

of some state variables

6/9/2008

Slide 9

Back to the digicode

̈ We do not tolerate more than 3 mistakes
(recorded by the variable m)

1 2 3 4
AB

A
A

B,C

B,C

C

Err

B,C

A,C

m=3 m:=m+1 m=3 m:=m+1

m=3 m:=m+1

m<3 m:=m+1

m<3 m:=m+1

m<3 m:=m+1
m<3 m:=m+1

m<3 m:=m+1

m<3 m:=m+1

B,C
m<3 m:=m+1

6/9/2008

Slide 10

Unfolding

From a theoretical point of view, transition
systems with state variables are not strictly
necessary, as we can unfold them into
ordinary transition systems.

̊The new states correspond to the old ones + a
component for each variable giving its value

̊no more guards and assignment on the new
transitions

6/9/2008

Slide 11

Unfolding: example

̈ The digicode with error counting
1 2 3 4

ABA

C

1 2 3 4
ABA

1 2 3 4
ABA

1 2 3 4
ABA

C

C

A

A

A

B,C

B,C

B,C

B,C

B,C

B,C

Err
B,C B,C

A,C

m=0

m=1

m=2

m=3

m=4

6/9/2008

Slide 12

Composing systems

̈ Systems often consists of cooperating
subsystems. Next we describe how to obtain
a global transition system form its
subsystem by having them cooperate

̈ There are many ways to cooperate:

̊product (no interaction)

̊synchronous product

̈ by message passing

̈ by asynchronous channels

̈ by shared variables

6/9/2008

Slide 13

Product

̈ Subsystems do not interact with each other

̈ The resulting transition system <S,L, > is the
cartesian product of the transition systems
<S1,L1, > ,È, <Sn,Ln, > representing the
subsystems

̊U"?"U3"z"È"zUp
̊L = L1 x È"z"Np
̊<s1.È.un> <t1.Èvn> if for all i, si ti

<e1.È.gn> ei

6/9/2008

Slide 14

Example

̈ Few transitions of the product of two
modulo 3 counters

0,2

2,01,00,0

0,1 1,21,1

1,2 2,2
inc,inc

inc,inc
inc,dec

inc,inc

inc,inc

6/9/2008

Slide 15

Synchronized Product

̈ Subsystems interact by doing some step together
(synchronization).

̈ To synchronize subsystems we restrict the
transitions allowed in their cartesian product.

̈ A synchronization set

Sync L1 x È"z"Np
define the labels of those transitions corresponding
to a synchronization. Transitions with other labels are

forbidden.

6/9/2008

Slide 16

Example

̈ Few transitions of two counters counting at the
same time

Sync = { <inc,inc>, <dec,dec> }

0,2

2,01,00,0

0,1
1,21,1

1,2 2,2
inc,inc

dec,dec

inc,inc

dec,dec

inc,inc

dec,dec

inc,inc

dec,dec

inc,inc

inc,inc

6/9/2008

Slide 17

Example

̈ Few transitions of two counters counting one at the
time

Sync = { <inc,->, <dec,->, <-,inc>, <-,dec>}

0,2

inc,-

2,01,00,0

0,1 2,11,1

1,2 2,2

inc,-

-,inc

-,inc

-,inc

-,inc -,inc

-,inc
inc,- inc,-

inc,-inc,-

dec,-

-,dec

6/9/2008

Slide 18

Message Passing

̈ A special case of synchronized product

̈ Two special sets of labels

̊ !m emission of message m

̊?m reception of message m

̈ In message passing, only transitions in
which a given emission is executed
simultaneously with the corresponding
reception will be permitted

6/9/2008

Slide 19

Example: An elevator

̈ An elevator in a three floors building
consists of

̊a cabin which goes up and down

̊ three doors which open an close

̊a controller which commands the three doors
and the cabin

̈ Elevator requests from people at one of
the three floors are not modeled, as they
are the environment outside the system

6/9/2008

Slide 20

Example: An elevator

̈ The cabin

0 1

?up

?down
2

?up

?down

?up?down

̈ The i-th door

C O

?open(i)

?close(i)

?close(i) ?open(i)

6/9/2008

Slide 21

Example: An elevator

̈ The controller

on2

!close(2)

!open(2)

!up

free2

on0

!close(0)

!open(0)

free0

on1

!close(1)

!open(1)

free1

!up !down

!down

0->2

2->0

!up

!up
!down

!down

6/9/2008

Slide 22

Example: An elevator

̈ The synchronization

̊Sync =

{<?open(0),-,-,-,!open(0)>,<?close(0),-,-,-,!close(0)>,

<-,?open(1),-,-,!open(1)>,<-,?close(1),-,-,!close(1)>,

<-,-,?open(2),-,!open(2)>,<-,-,?close(2),-,!close(2)>,

<-,-,-,?down,!down>,<-,-,-,?up,!up>}

6/9/2008

Slide 23

Asynchronous Messages

̈ Like message passing, but messages are
not received instantly.

̈ Emitted messages but not yet received
remain in a communication channel,
usually a FIFO buffer

̈ A communication channel can be modeled
by a transition system with a variable (for
the buffer content)

6/9/2008

Slide 24

Example:

̈ Producer

x=0

!send(x)
x:=x+1

̈ Buffer

̈ Consumer
y=0

?receive(y)

?send(x)
buf:=buf x

buf= buf=y w

?send(x)
buf:=buf x

buf=y ?receive(y)

buf=y w
?receive(y); buf:=w

Program correctness

Linear Time Temporal Logic

Marcello Bonsangue

Spring 2007

r

6/9/2008

2

PenC - Spring 2006

Slide 2

Formal Verification

Verification techniques comprise

̈ a modelling framework DD
to describe a system

̈ a specification language

to describe the properties to be verified

̈ a verification method D a , `
to establish whether a model satisfies a property

6/9/2008

3

PenC - Spring 2006

Slide 3

Motivations

̈ For an elevator system, consider the requirements:

̊ any request must ultimately be satisfied

̊ the elevator never traverses a floor for which a request is
pending without satisfying it

̈ Both concern the dynamic behavior of the system.
They can be formalized using a time-dependent
notation, like

z(t) = 1/2gt2

for the free-falling elevator

6/9/2008

4

PenC - Spring 2006

Slide 4

Example

̈ In first order logic, with
̈ E(t) = elevator position at time t
̈ P(n,t) = pending request at floor n at time t
̈ S(n,t) = servicing of floor n at time t

Any request must ultimately be satisfied

t n (P(n,t) vÓ"@"v"<"U*p.vÓ+"+

The elevator never traverse a floor for which a request is
pending without satisfying it

t vÓ@v n (P(n,t) G*vÓ+ n v>"vÑ>"vÓ<G*vÑ+?p+" v>"vÑÓ>"vÓ<U*p.vÑÓ+

6/9/2008

5

PenC - Spring 2006

Slide 5

Temporal Logic

̈ First order logic is too cumbersome for
these specifications

̈ Temporal logic is a logic tailored for
describing properties involving time
̊ the time parameter t disappears

̊ temporal operators mimic linguistic constructs
̈ always, until, eventually

̊ the truth of a proposition depend on the state
on which the system is

6/9/2008

6

PenC - Spring 2006

Slide 6

LTL: the language

̈ Atomic propositions p1,p2.È.s.000
̊ to make statements about states of the system

̊elementary descriptions which in a given state
of the system have a well-defined truth value:

̈ the printer is busy

̈ nice weather

̈ open

̈ x+2=y

̊Their choice depend on the system considered

6/9/2008

7

PenC - Spring 2006

Slide 7

LTL: the language

̈ Boolean combinators
̊ true e
̊ false

̊ negation

̊ conjunction

̊ disjunction

̊ implication

Note: read p s"cu"Ðif p then qÑ"tcvjgt"vjcp"Ðp implies qÑ.
Try (1 = 2) Sint_Klas_exists

6/9/2008

8

PenC - Spring 2006

Slide 8

LTL: the language

̈ Temporal combinators allows to speak about
the sequencing of states along a computation
(rather than about states individually)

̈ neXt X

̊ X = in the next state holds

̊ Examples: XXerror and XXXok

0 1

ok

2

errorwarm, ok

2

error

0 1

ok

2

errorwarm, ok

0

warm,ok

6/9/2008

9

PenC - Spring 2006

Slide 9

LTL: Temporal combinators

̈ Future F

̊ F = in some future state holds (at least once
and without saying in which state)

̊ For example, warm Fok holds if we are in a ÐyctoÑ
state then we will be in an ÐqmÑ state.

0 1

ok

2

errorwarm, ok

2

error

0 1

ok

2

errorwarm, ok

0

warm,ok

6/9/2008

10

PenC - Spring 2006

Slide 10

LTL: Temporal combinators

̈ Globally G

̊G = in all future states always holds

̊ It is the dual of F: G = F

̊ For example G(warm Fok) holds if at any time when
we are in a ÐyctoÑ state we will later be in an ÐqmÑ
state.

̊G(warm X warm)? G(ok Xwarm)?

0 1

ok

2 error

warm, ok

6/9/2008

11

PenC - Spring 2006

Slide 11

LTL: Temporal combinators

̈ Until U

̊ 1U 2 = 2 will hold in some future state,
and in all intermediate states 1 will
hold.

̈ Weak until W

̊ 1W 2 = 1 holds in all future states until

2 holds

̊it may be the case 2 will never hold

6/9/2008

12

PenC - Spring 2006

Slide 12

LTL: Temporal combinators

̈ Release R

̊ 1R 2 = 2 holds in all future state up to
(and including) a state when 1 holds (if
ever).

̊It is the dual of U: 1R 2 = (1U 2)

6/9/2008

13

PenC - Spring 2006

Slide 13

LTL - Priorities

̈ Unary connectives bind most tightly
̊ , X,F,G

̈ Next come U, R and W

̈ Finally come , and

F

G U
p

q

r p

Fp Gr qUp

6/9/2008

14

PenC - Spring 2006

Slide 14

LTL models: Transition Systems

̈ Transition system: <S, ,L>
̊ S set of states
̊ L:S G(Atoms) labelling function

̊ SxS transition relation
̊ Gxgt{"uvcvg"u"jcu"uqog"uweeguuqt"uvcvg"uÓ"ykvj"u" uÓ"

̈ A system evolves from one state to another under the action of a transition

̈ We label a state with propositions that hold in that state

0 1

2

warm, ok ok

cold

6/9/2008

15

PenC - Spring 2006

Slide 15

Computation paths

̈ Path: an infinite sequence of states such
that each consecutive pair is connected by
a transition

0 1 2 0 È

̈ For i œ"3."we write i for the suffix of a path
starting at i.

6/9/2008

16

PenC - Spring 2006

Slide 16

Semantics (I)

̈ Let M = <S, ,L> be a transition system,
and =s1 s2 È a path of M.

̈ a e always

̈ a p iff p l(s1)

̈ a iff g
̈ a 1 2 iff a 1 and a 2

6/9/2008

17

PenC - Spring 2006

Slide 17

Semantics (II)

̈ aX iff 2 a

̈ a F iff there is 1 i such that i a

̈ a G iff for all 1 i, i a

̈ a 1U 2 iff there is 1 i such that i a 2

and for all j<i, j a 1

̈ a 1W 2 iff either a 1U 2 or for all 1 i, i a 2

̈ a 1R 2 iff either there is 1 i such that i a 1

and for all j i, j a 2

or for all 1 k, k a 2

6/9/2008

18

PenC - Spring 2006

Slide 18

System properties

̈ M,s a iff a for every path of M

starting from the state s

̈ M,0 a okWerror

̈ M,0 g okUerror (Why?)

0 1

ok

2 error

warm, ok

Program correctness

Using temporal logics

Marcello Bonsangue

Spring 2007

r

6/9/2008

Slide 2

LTL equivalences

̈ De Morgan-based

̊ Fh » G h
̊ Xh » X h X-self duality: on a path each

state has a unique successor

̈ Until reduction

̊Fh » T U h
̊Fh » T U h

6/9/2008

Slide 3

LTL: Adequate sets of connectives

̈ Theorem: The set of operators

T, , , U,X

is adequate for LTL.

̊fUy » (E[yU(f y)] AG y)

̊fRy » (fU y)

̊fWy » yR(f y)

6/9/2008

4

PenC - Spring 2006

Slide 4

Other LTL equivalences

̈ Gh » h ® XGh
̈ Fh » h ° XFh
̈ hUy » y ° (h ® XhUy)

̈ Theorem: fUy » (yU(f y)) Fy

6/9/2008

Slide 5

Verification goals

̈ Formulating properties requires some
expertise

̈ Today we present categories of
fundamental properties commonly used for
system verification

̊reachability properties

̊safety properties

̊ liveness properties

̊ fairness properties

6/9/2008

Slide 6

Reachability

̈ A reachability property states that some
particular situation can be reached

̊Simple

̈ ÐYg can obtain n < 0Ñ
̈ ÐYg can enter a critical ugevkqpÑ

̊Conditional

̈ ÐYg"ecp"gpvgt"c"etkvkecn"ugevkqp"ykvjqwv"vtcxgtukpi"p?"2Ñ
̊Any

̈ Ðyg"ecp"cnyc{u"tgvwtp"vq"vjg"kpkvkcn"uvcvgÑ

6/9/2008

Slide 7

Reachability in LTL

̈ LTL misses the existential quantifier on
paths, thus it can only express reachability
negatively:

something is not reachable

̈ Simple reachability

̊¬G(n œ0)

̊¬G(no_critic_sec)

6/9/2008

Slide 8

Safety

̈ A safety property states that, under certain
conditions, an event never occurs

̊ ÐVyq processes will never be both in their critical
ugevkqpÑ

̊ ÐC memory overflow will never qeewtÑ

̈ In general, safety statements express that an
undesirable event will not occur.

̈ The negation of a reachability property is a safety
property (and the other way around)

6/9/2008

Slide 9

Safety in LTL

̈ Typically expressed by the combinator G in LTL

̈ Examples

̊G(¬critic_sec1 ® ¬critic_sec2)

̊ G(¬overflow)

̈ Conditional safety

ÐCu long the key is not in, the car yqpÓv uvctvÑ
̊ ¬start W key

̊ ¬start U key as we are not required to have the key in
some day

6/9/2008

Slide 10

Liveness

̈ A liveness property states that, under certain
conditions, an event will ultimately occur
̊ ÐCp{ request will be ucvkuhkgfÑ
̊ ÐVjg light will turn itggpÑ
̊ Ðchvgt the rain, the uwpujkpgÑ

̈ Liveness is not reachability
ÐVjg light will turn green (some day, regardless of the

system dgjcxkqt+Ñ
vs.

ÐKv"ku"rquukdng"hqt"vjg"nkijv"*uqog"fc{+"vq"vwtp"itggpÑ

6/9/2008

Slide 11

Liveness

̈ In general, liveness statements express that
happy event will occur in the end

̈ Termination is a liveness property:

̊ÐVjg program will vgtokpcvgÑ

6/9/2008

Slide 12

Liveness in LTL

̈ Typically expressed by the combinator F

̈ Examples

̊G(req µ Fsat) in LTL

̈ In LTL h1Uh2 is a liveness property, whereas

h1Wh2 is a safety property

6/9/2008

Slide 13

Deadlock

̈ A deadlock property states that, the system
can never be in a situation in which no
progress is possible

̈ Safety? Liveness?
̊Deadlock freeness in LTL

GX T

whatever state may be reached (G) there

exists an immediate successor state (X T)

6/9/2008

Slide 14

Fairness

̈ A fairness property states that, under
certain conditions, an event will occur (or
will fail to occur) infinitely often

̊ÐKh access to a critical section is infinitely
often requested, then access will be granted
infinitely often

6/9/2008

Slide 15

Fairness in LTL
̈ Typically expressed by the combinators

̊GF (infinitely often)

̊FG (eventually always)

̈ Examples

̊GF critic_in ° FG¬ critic_req

Program correctness

LTL equivalences

Marcello Bonsangue

Spring 2007

r

6/9/2008

Slide 2

LTL equivalences

̈ We say that two LTL formulas f and y are
semantically equivalent, writing f y if for

all models M and for all paths of M we
have

a f iff a y

6/9/2008

Slide 3

De Morgan-based equivalences

̊ F G

̊ G F

̊ X X X-self duality: on a path each

state has a unique successor

̊ (U y) R y
̊ (R y) U y

6/9/2008

Slide 4

Distributivities

̊F(y) F Fy
̊G(y) G Gy

6/9/2008

Slide 5

Reductions

̊F T U

̊G R

̊ U y W y Fy
̊ W y U y Fy

̊f W y y R (f y)

̊f R y y W (f y)

6/9/2008

Slide 6

LTL: Adequate sets of connectives

̈ A set of operators S is adequate for LTL if every formula in
LTL can be expressed as an equivalent one using only the
operators in S.

̈ Theorem: The set of operators

T, , , X, U

is adequate for LTL.

̈ Without negation, the set of operators

T, , , , X, U, R
is adequate but T, , , , X, R, G is not (because one cannot define F).

6/9/2008

7

PenC - Spring 2006

Slide 7

Other LTL equivalences

̈ G XG

̈ F XF

̈ Uy y (X(Uy))

̈ Theorem: fUy (yU(f y)) Fy

Program correctness

Branching-time temporal logics

Marcello Bonsangue

Spring 2007

r

6/9/2008

Slide 2

CTL

̈ CTL = Computational Tree Logic
̊ the temporal combinators are under the

immediate scope of the path quantifiers

̈ Why CTL? The truth of CTL formulas
depends only on the current state and not on
the current execution!

Benefit: easy and efficient model checking

Disadvantages: hard for describing individual path

6/9/2008

Slide 3

The language

̈ Path quantifiers allows to speaks about sets
of executions.
̊The model of time is tree-like: many futures are

possible from a given state

̈ Inevitably A
from the current state all executions satisfy

̈ Possibly E
from the current state there exists an execution

satisfying

6/9/2008

Slide 4

CTL - Syntax

̈ ::= p1 | p2 ̃"È

T | | | | | |

AX | AF | AG | A[U] |

EX | EF | EG | E[U] .

6/9/2008

Slide 5

CTL - Priorities

̈ Unary connectives bind most tightly

̊ , AG, EG, AF, EF, AX, and EX

̈ Next come , and

̈ Finally come, AU and EU

̈ Example:

AGp1 EGp2 is not the same as AG(p1 EGp2)

6/9/2008

Slide 6

CTL - yes or no?

̈ Yes
̊ EFE[p U q]

̊ A[p U EF q]

̈ No
̊ EF(p U q)

̊ FG p

̈ Yes or no?
̊ AG(p A[p U (p A[p U q])])

̊ AF[(p U q) (q U p)]

6/9/2008

Slide 7

A is not G

̈ A states that all the executions starting
from the current state will satisfy

̈ G state that holds at every state of the
execution considered

̈ A and E quantify over paths in a tree

̈ G and F quantify over positions along a given path
in a tree

6/9/2008

Slide 8

Combining E and F (I)

̈ EF

Ðkv is possible that will hold in the futureÒ

6/9/2008

Slide 9

Combining E and F (II)

̈ EG =E F

Ðkv is possible that will always jqnfÑ

6/9/2008

Slide 10

Combining E and F (III)

̈ AF = E F

Ðkv is inevitable that will hold in the hwvwtgÑ

6/9/2008

Slide 11

Combining E and F (IV)

̈ AG = EF

Ð is always vtwgÑ

̈ In this case is an invariant, that is, a
property that is true continuously

6/9/2008

Slide 12

Example

̈ All executions starting from 0 satisfy

AFEXerror
Why? Because from 0 all executions traverse 1 and
may go to 2

̈ There exists an execution which does not
satisfy AFAXerror. Which one?

0 1

ok

2
error

warm, ok

6/9/2008

Slide 13

Examples

̈ AGEF

Along every execution (A)

from every state (G)

it is possible (E)

that we will encounter a state (F)

satisfying

that is, is always reachable

6/9/2008

Slide 14

CTL - Satisfaction

̈ Let M = <S, ,l> be a transition system with
l(s) the set of atomic propositions satisfied by
a state s S.

̈ Idea for a model: A CTL formula refers to a
given state of a given transition system

̊M,s a means Ð is true at state uÑ

We will define it by induction

on the structure of

6/9/2008

Slide 15

CTL - Semantics (I)

̈ M,s a T for all s in S

̈ M,s a p iff p l(s)

̈ M,s a iff not M,s a
̈ M,s a 1 2 iff M,s a 1 and M,s a 2

:

:

6/9/2008

Slide 16

CTL - Semantics (II)

̈ M,s a AX iff for all uÓ such that s uÓ
we have O.uÓ a

̈ M,s a EX iff there exists uÓ such that

s uÓ and O.uÓ a

6/9/2008

Slide 17

CTL - Semantics (III)

̈ M,s a AG iff for all executions

s0 s1 s2 s3 È with

s = s0 we have M,sia

̈ M,s a EG iff there exists an execution

s0 s1 s2 s3 È with

s = s0 and such that M,sia

6/9/2008

Slide 18

CTL - Semantics (IV)

̈ M,s a AF iff for all executions

s0 s1 s2 s3È with s = s0

there is i such that M,sia

̈ M,s a EF iff there exists an execution

s0 s1 s2 s3È with s=s0

and there is i such that

M,sia

6/9/2008

Slide 19

CTL - Semantics (V)

̈ M,s a A[1U 2] iff for all executions

s s1 s2 s3È there is i

such that M,si a 2 and
for each j < i M,sja 1

̈ M,s a E[1U 2] iff there exists an execution

s s1 s2 s3È and there is i
such that M,si a 2 and

for each j < i M,sja 1

6/9/2008

Slide 20

CTL equivalences

̈ De Morgan-based

̊ AF EG

̊ EF AG

̊ AX EX X-self duality: on a path each

state has a unique successor

̈ Until reduction

̊AF A[T U]

̊EF E[T U]

6/9/2008

Slide 21

CTL: Adequate sets of connectives

̈ Theorem: The set of operators

T, , , {AX or EX}, {EG,AF or AU}, and EU

is adequate for CTL.

̊A[fUy] (E[yU(f y)] EG y)

6/9/2008

Slide 22

CTL: Weak until and release

̈ Use LTL equivalence to define:
̊A[fRy] E[fU y]

̊E[fRy] A[fU y]

̊A[fWy] A[yR(f y)]

̊E[fWy] E[yR(f y)]

6/9/2008

23

PenC - Spring 2006

Slide 23

Other CTL equivalences

̈ EG EX EG

̈ AG AX AG

̈ AF AX AF

̈ EF EX EF

̈ A[Uy] y (AXA[Uy])

̈ E[Uy] y (EXE[Uy])

6/9/2008

Slide 24

CTL* - Syntax

̈ State formulas (evaluated in states)

::= T | p | | | Ay | Ey

̈ Path formulas (evaluated along paths)

y ::= | y | y y | X | F | G | U

6/9/2008

Slide 25

Examples

̈ AGF

Along every execution (A)

from every state (G)

we will encounter a state (F)

satisfying

that is, is satisfied infinitely often

6/9/2008

Slide 26

Model

̈ Let M = <S, ,l> be a transition system with
l(s) the set of atomic propositions satisfied by
a state s S.

̈ Idea for a model: A formula of temporal logic
refers to an instant i of an execution of a
transition system M

̈ M, ,i a means

Ð is true at position i of path of OÑ

6/9/2008

Slide 27

Semantics (I)

̈ M, ,i a T always

̈ M, ,i a p iff p l((i))

̈ M, ,i a iff not M, ,i a
̈ M, ,i a 1 2 iff M, ,i a 1 and

M, ,i a 2

6/9/2008

Slide 28

Semantics (II)

̈ M, ,i a X iff M, ,i+1 a

̈ M, ,i a F iff there exists i j such

that M, ,j a

̈ M, ,i a G iff M, ,ja for all i j

̈ M, ,i a 1U 2 iff there exists i j such
that M, ,j a 2 and for all
i k<j we have M, ,k a 1

6/9/2008

Slide 29

Semantics (III)

̈ M, ,i a E iff there exists Ó such that
(0)... (i)= Ó*0)... Ó*k+

and M, Ó.k a

̈ M, ,i a A iff for all Ó such that

(0)... (i) = Ó*0)... Ó*k+ we
have M, Ó.k a

6/9/2008

30

PenC - Spring 2006

Slide 30

LTL and CTL CTL*

̈ Semantically, an LTL formula is equivalent
to the CTL* formula A

̈ CTL is a restricted fragment of CTL* with path
formulas

y ::= X | F | G | U

and the same state formulas as CTL*, i.e.

::= T | p | | | Ay | Ey

6/9/2008

Slide 31

Expressivity

CTL*

CTL LTL

1 2 3 4

6/9/2008

Slide 32

In CTL but not in LTL

1 = AG EF p in CTL

From any state we can always get to a state in which p

holds

s uÓ
p

s

p
p

M OÓ

̈ It cannot be expressed as LTL formula because

̊ All executions starting from s in OÓ are also executions
starting from s in M

̊ In CTL M,s a 1 but OÓ.u g 1

6/9/2008

Slide 33

In CTL and in LTL

2 = AG(p AFq) in CTL

and

2 = G(p Fq) in LTL

ÐCp{ p is eventually followed by a sÑ

6/9/2008

Slide 34

In LTL but not in CTL

3 = GFp Fq in LTL

ÐKh p holds infinitely often along a path, then
there is a state in which q jqnfuÑ

Note: FGp is different from AFAGp since the
first is satisfied in

whereas the latter is not (starting from s).

s uÓ
p p

uÓÓ
p

6/9/2008

Slide 35

Neither in CTL nor in LTL

4 = E(GFp) in CTL*

ÐVjgtg is a path with infinitely many
state in which p jqnfuÑ

̊Not expressible in LTL: Trivial

̊Not expressible in CTL: very complex

6/9/2008

36

PenC - Spring 2006

Slide 36

Boolean combination of path in CTL

̈ CTL = CTL* but

̊Without boolean combination of path formulas

̊Without nesting of path formulas

̈ Vjg"hktuv"tguvtkevkqp"ku"pqv"tgcn"È
̊E[Fp Fq] EF[p EFq] EF[q EFp]

̈ First p and then q or viceversa

6/9/2008

37

PenC - Spring 2006

Slide 37

Oqtg"igpgtcnn{"È
̊E[(pUq)] E[qU(p q)] EG q

̊E[(p1Uq1) (p2Uq2)] E[(p1 p2)U(q1 E[p2Uq2])]
E[(p1 p2)U(q2 E[p1Uq1])]

̊E[Fp Gq] E[q U (p EG q)]

̊E[Xp] EX p

̊E[Xp Xq] EX(p q)

̊E[Fp Xq] EX(q EFp)

̊A[] E[]

6/9/2008

38

PenC - Spring 2006

Slide 38

Past operators

analogues of

̈ Previous P X neXt

̈ Since S U Until

̈ Once O F Future

̈ Historically H G Globally

̈ In LTL they do not add expressive power,
but CTL they do!

Program correctness

Model-checking CTL

Marcello Bonsangue

Spring 2007

r

6/9/2008

Slide 2

Formal Verification

Verification techniques comprise

̈ a modelling framework M, M,

to describe a system

̈ a specification language

to describe the properties to be verified

̈ a verification method Ma , `
to establish whether a model satisfies a property

Today
for
CTL

6/9/2008

Slide 3

Model Checking

̈ Question: does a given transition system
satisfies a temporal formula?

̈ Simple answer: use definition of a !

̊We cannot implement it as we have to unwind
the transition system in a possibly infinite tree

Can we do better? and most
probably!

6/9/2008

Slide 4

The problem

̈ We need efficient algorithms to solve the
problems
[1] M,s a

[2] M,s a

where M should have finitely many states,

and is a CTL formula.

̈ We concentrate to solution of [2], as [1] can
be easily derived from it.

?

?

6/9/2008

Slide 5

The solution

̈ Input: A CTL model M and CTL formula

̈ Output: The set of states of M which
satisfy

̈ Basic principles:

̊Translate any CTL formula in terms of the
connectives AF, EU,EX, , , and .

̊Label the states of M with sub-formulas of that are
satisfied there, starting from the smallest sub-
formulas and working outwards towards

̊Output the states labeled by

6/9/2008

Slide 6

The labelling

̈ An immediate sub-formula of a formula
is any maximal-length formula other
than itself

̈ Let be a sub-formula of and assume
the states of M have been already labeled
by all immediate sub-formulas of .

̈ Which states have to be labeled by ?

We proceed by case analysis

6/9/2008

Slide 7

The basic labeling

̈ no states are labeled

̈ p label a state s with p if p l(s)

̈ 1 2 label a state s with 1 2 if s is
already labeled with 1 and 2

̈ label a state s with if s is not
already labeled with

6/9/2008

Slide 8

The EX labeling

̈EX Label with EX any state s with one
of its successors already labeled
with

EX

6/9/2008

Slide 9

The EU labeling

̈ E[1U 2] 2 (1 EXE[1U 2])

1. Label with E[1U 2] any state s already labeled
with 2

2. Repeat until no change: label any state s with
E[1U 2] if s is labeled with 1 and at least one of
its successor is already labeled with E[1U 2]

E[1U 2] repeat

È"wpvkn"pq"ejcpig

1

E[1U 2]

1

E[1U 2]

6/9/2008

Slide 10

The AF labeling

̈ AF AXAF

1. Label with AF any state s already labeled with

2. Repeat until no change: label any state s with AF
if all successors of s are already labeled with AF

AF

AF

AF

AF

AF

AF

AF

repeat

È"wpvkn"pq"ejcpig

6/9/2008

Slide 11

The EG labeling (direct)

̈ EG EXEG AF

1. Label all the states with EG

2. Delete the label EG from any state s not labeled with

3. Repeat until no change: delete the label EG from any
state s if none of its successors is labeled with EG

EG

repeat

È"wpvkn"pq"ejcpig

6/9/2008

Slide 12

Complexity

The complexity of the model checking algorithm is

O(f*V*(V+E))

where f = number of connectives in

V = number of states of M

E = number of transitions of M

It can be easily improved to an

algorithm linear both in the size of the formula

and of the model

6/9/2008

Slide 13

State explosion

̈ The algorithm is linear in the size of the model but
the size of the model is exponential in the number
of variables, components, etc.

Can we reduce state explosion?

̊ Abstraction (what is relevant?)

̊ Induction *hqt"ÒukoknctÓ"eqorqpgpvu+
̊ Composition (divide and conquer)

̊ Reduction (prove semantic equivalence)

̊Ordered binary decision diagrams

6/9/2008

Slide 14

Example: Input

= AF(E[q U p] v EXq)

p

p

q

q

6/9/2008

Slide 15

Example: EU - step 1

1. Label with E[qUp] all states which satisfy p

p
E[qUp] q

qp
E[qUp]

6/9/2008

Slide 16

Example: EU-step 2.1

p
E[qUp] q

qp
E[qUp]

E[qUp]

E[qUp]

2.1 label with E[qUp] any state that is already labeled with q
and with one of its successor already labeled by E[qUp]

6/9/2008

Slide 17

Example: EU-step 2.2

2.2 label with E[qUp] any state that is already labeled with q
and with one of its successor already labeled by E[qUp]

P
E[qUp] q

qP
E[qUp]

E[qUp]

E[qUp]

No!

E[qUp]

6/9/2008

Slide 18

Example: EX-step 3

3. Label with EXq any state with one of it successors already
labeled by q

p
E[qUp]

q
EXq

qp
E[qUp]

E[qUp]

E[qUp]

E[qUp]

EXq

EXq

6/9/2008

Slide 19

Example: -step 4

4. Label with = E[qUp] v EXq any state s already labeled by
E[qUp] or EXq

p,
E[qUp]

,q
EXq

q,p
E[qUp]

E[qUp]

E[qUp]

E[qUp]

EXq

EXq

6/9/2008

Slide 20

Example: AF-step 5.1

5.1 Label with = AF(E[qUp]vEXq) any state already
labeled by = E[qUp]vEXq

p, ,
E[qUp]

, ,q
EXq

q, ,p
E[qUp]

,
E[qUp]

,
E[qUp]

,
E[qUp]

,
EXq

,
EXq

6/9/2008

Slide 21

Example: AF-step 5.2

5.2 Label with any state with all successor already labeled
by .

p, ,
E[qUp]

, ,q
EXq

,q, ,p
E[qUp]

,
E[qUp]

,
E[qUp]

,
E[qUp]

,
EXq

,
EXq

6/9/2008

Slide 22

Example: Output

̈ All states satisfy AF(E[q U p] v EXq)

p

p

q

q

Program correctness

SAT and its correctness

Marcello Bonsangue

Spring 2007

r

6/9/2008

Slide 2

Context

1. We have defined the semantics of CTL
formulas M,s a

2. We have given an efficient method for
model checking a CTL formula returning all
states s such that M,s a

Next we present an algorithm for it and proves
its correctness

6/9/2008

Slide 3

The algorithm SAT

̈ UCV""uvcpfu"hqt"ÒsatisfiesÓ
̊ Input: a well-formed CTL formula

̊Output: a subset of the states of a
transition system M = <S, ,l>

̈ Written in Pascal-like

̊ function return

̊ local_var

̊ while do od

̊ case is end_case

6/9/2008

Slide 4

The main function (I)

function SAT()

begin

case is

T : return S

: return

atomic : return {s S | l(s) }

1 : return S - SAT(1)

1 2 : return SAT(1) SAT(2)

1 2 : return SAT(1) SAT(2)

1 2 : return SAT(1 2)

:
:

6/9/2008

Slide 5

The main function (II)

:
:
AX 1 : return SAT(EX 1)

EX 1 : return SAT_EX(1)

A[1 U 2] : return

SAT(E[2U(1 2)] EG 2)

E[1 U 2] : return SAT_EU(1, 2)

EF 1 : return SAT(E[T U 1])

AF 1 : return SAT_AF(1)

EG 1 : return SAT(AF 1) /*SAT_EG(1)*/

AG 1 : return SAT(EF 1)

end_case

end

6/9/2008

Slide 6

The function SAT_EX

function SAT_EX()

local_var X,Y

begin

X := SAT()

Y := { s S | s uÓ"<"uÓ" X}

return Y

end

6/9/2008

Slide 7

The function SAT_AF

function SAT_AF()

local_var X,Y

begin

X := S

Y := SAT()

while X Y do

X := Y

Y := Y { s S | s uÓ"<"uÓ" Y }

od

return Y

end

6/9/2008

Slide 8

The function SAT_EU

function SAT_EU(,)

local_var W,X,Y

begin

W := SAT()
X := S
Y := SAT() /* Calculated only once */

while X Y do

X := Y

Y := Y (W { s S | s uÓ"<"uÓ" Y })

od

return Y

end

6/9/2008

Slide 9

The function SAT_EG

function SAT_EG()

local_var X,Y

begin
X :=
Y := SAT()

while X Y do

X := Y

Y := Y { s S | s uÓ"<"uÓ" Y }

od

return Y

end

6/9/2008

Slide 10

Does it work?

̈ Claim: For a given model M=<S, , l>
and well-formed CTL formula ,

SAT() = { s S | M,s a } = [[]]

Is this true?

def

6/9/2008

Slide 11

The proof (I)

̈ The claim is proved by induction on the structure of the
formula.

̈ For = T, , or atomic the set [[]] is computed directly

̈ For , 1 2, 1 2 or 1 2 we apply induction
and predicate logic equivalences

̊Example:

SAT(1 2) = SAT(1) SAT(2)

= [[1]] [[2]] (induction)

= [[1 2]]

6/9/2008

Slide 12

The proof (II)

̈ For EX we apply induction

SAT(EX) = SAT_EX()

= { s S | s uÓ : uÓ SAT()}

= { s S | s uÓ : uÓ [[]]} (induction)

= { s S | s uÓ : O.uÓ a } (definition [[-]])

= { s S | M,s a EX } (definition a)

= [[EX]] (definition [[-]])

6/9/2008

Slide 13

The proof (III)

̈ For AX , A[1 U 2], EF , or AG we can rely on
logical equivalences and on the correctness of
SAT_EX, SAT_AF, SAT_EU, and SAT_EG

̊ Example:

SAT(AX) = SAT(EX)

= S - SAT_EX() (def. SAT())

= S - [[EX]] (correctness SAT_EX)

= [[AX]] (logical equivalence)

But we still have to prove the correctness

of SAT_AF, SAT_EU, and SAT_EG

6/9/2008

Slide 14

EG as fixed point

Recall that EG EX EG . Since

EX = { s S | s uÓ"<"uÓ" [[]]}

we have the following fixed-point definition of EG

[[EG]] = [[]] { s S | s uÓ"<"uÓ" [[EG]]}

?

6/9/2008

Slide 15

Fixed points

̈ Let S be a set and F:Pow(S) Pow(S) be a a function

̊F is monotone if

X Y implies F(X) F(Y)

for all subsets X and Y of S

̊A subset X of S is a fixed point of F if

F(X) =X

̊A subset X of S is a least fixed point of F if

F(X) = X and X Y

for all fixed point Y of F

6/9/2008

Slide 16

Examples

̈ S = {s,t} and F:X U X {s}

̊ F is monotone

̊ {s} and {s,t} are all fixed points of F

̊ {s} is the least fixed point of F

̈ S = {s,t} and G:XUif X={s} then {t} else {s}

̊G is not monotone

̈ {s} {s,t} but G({s}) = {t} {s} = G({s,t})

̊G does not have any fixed point

6/9/2008

Slide 17

Fixed points (II)

Let Fi(X) = F(F(ÈF(X)È)) for i > 0 (thus F1(X) = F(X))'()
i-times

̈ Theorem: Let S be a set with n+1 elements. If
F:Pow(S) Pow(S) is a monotone function then

1) Fn+1() is the least fixed point of F

2) Fn+1(S) is the greatest fixed point of F

Least and greatest fixed points can be computed and the
computation is guaranteed to terminate !

6/9/2008

Slide 18

Computing EG

̈ To find a set [[EG]] such that

[[EG]] = [[]] { s S | s uÓ"<"uÓ" [[EG]]}

we look if it is a fixed point of the function

F(X) = [[]] { s S | s uÓ"<"uÓ" X}

̈ Theorem: Let n = |S| be the size of S and F
defined as above. We have

1. F is monotone
2. [[EG]] is the greatest fixed point of F
3. [[EG]] = Fn+1(S)

6/9/2008

Slide 19

Correctness of SAT_EG

1. Inside the loop it always holds Y SAT()

2. Because Y SAT(), substitute in SAT_EG

Y := Y { s S | s uÓ : uÓ Y }

with Y := SAT() { s S | s uÓ : uÓ Y }

3. Note that SAT_EG() is calculating the greatest fixed
point (use induction!)

F(X) = [[]] { s S | s uÓ"<"uÓ" X}

4. It follows from the previous theorem that SAT_EG()

terminates and computes [[EG]].

6/9/2008

Slide 20

Example: EG

Let us compute [[EGq]].
p

s4

q

q

s3

s2s0 s1

It is the greatest fixed point of

F(X) = [[q]] { s S | s uÓ"<"uÓ" X }

= {s0,s4} { s S | s uÓ"<"uÓ" X }

6/9/2008

Slide 21

Example: EG

̈ Iterating F on S until it stabilizes

̊ F1(S) ={s0,s4} { s S | s uÓ"<"uÓ" S }

= {s0,s4} S

= {s0,s4}

̊ F2(S) =F(F1(S))

= F({s0,s4})

= {s0,s4} { s S | s uÓ"<"uÓ" {s0,s4} }

= {s0,s4}

̈ Thus {s0,s4} is the greatest fixed point of F and equals [[EGq]]

6/9/2008

Slide 22

EU as fixed point

̈Recall that E[U] (EX E[U
]).

̈Since EX = { s S | s uÓ"<"uÓ" [[]]} we
obtain

[[E[U]]] = [[]] ([[]] {s S | s uÓ<"uÓ [[E[U]]]})

?

6/9/2008

Slide 23

Computing E[U]

̈ As before, we show that [[E[U]]] is a fixed point
of the function

G(X) = [[]] ([[]] { s S | s uÓ"<"uÓ" X})

̈ Theorem: Let n = |S| be the size of S and G defined
as above. We have

1. G is monotone

2. [[E[U]]] is the least fixed point of G

3. [[E[U]]] = Gn+1()

6/9/2008

Slide 24

Correctness of SAT_EU

1. Inside the loop it always holds W=SAT() and Y SAT().

2. Substitute in SAT_EU

Y:=Y (W { s S | s uÓ"<"uÓ" Y })

with
Y:=SAT() (SAT() { s S | s uÓ"<"uÓ" Y })

3. Note that SAT_EU() is calculating the least fixed point of

G(X) = [[]] ([[]] { s S | s uÓ"<"uÓ" X})

4. It follows from the previous theorem that SAT_EU(,)

terminates and computes [[E[U]]]

6/9/2008

Slide 25

Example: EU

Let us compute [[EFp]] = [[E[TUp]]].

It is the least fixed point of
G(X) = [[p]] ([[T]] { s S | s uÓ"<"uÓ" X})

= {s3} (S { s S | s uÓ"<"uÓ" X })

= {s3} { s S | s uÓ"<"uÓ" X }

p

s4

q

q

s3

s2s0 s1

6/9/2008

Slide 26

Example: EU
̈ Iterating G on until it stabilizes we have

̊ G1() = {s3} { s S | s uÓ"<"uÓ" }

= {s3} = {s3}

̊ G2() = G(G1()) = G({s3})

= {s3} { s S | s uÓ"<"uÓ" {s3} }

= {s1,s3}

̊ G3() = G(G2()) = G({s1,s3})

= {s3} { s S | s uÓ"<"uÓ" {s1,s3} }

= {s0,s1, s2,s3}

̊ G4() =G(G3()) = G({s0,s1, s2,s3})

= {s3} { s S | s uÓ"<"uÓ" {s0,s1, s2,s3} }

= {s0,s1, s2,s3}

̈ Thus [[EFp]] = [[E[TUp]]] = {s0,s1,s2,s3}.

6/9/2008

Slide 27

AF as fixed point

Since AF AX AF and

AX = { s S | s uÓ"<"uÓ" [[]]}

we obtain

[[AF]] = [[]] { s S | s uÓ"<"uÓ" [[AF]]}

?

6/9/2008

Slide 28

Computing AF

̈ Again, consider [[AF]] as a fixed point of the
function

H(X) = [[]] { s S | s uÓ"<"uÓ" X}

̈ Theorem: Let n = |S| be the size of S and G
defined as above. We have

1. H is monotone

2. [[AF]] is the least fixed point of H

3. [[AF]] = Hn+1()

6/9/2008

Slide 29

Correctness of SAT_AF

1. Inside the loop it always holds Y SAT().

2. Substitute in SAT_AF

Y:=Y { s S | s uÓ"<"uÓ" Y })

with
Y:=SAT() { s S | s uÓ"<"uÓ" Y }

3. Note that SAT_AF() is calculating the least fixed point of

H(X) = [[]] { s S | s uÓ"<"uÓ" X}

4. It follows from the previous theorem that AT_AF()
terminates and computes [[AF]]

Program correctness

Model checking LTL

Marcello Bonsangue

Spring 2007

r

6/9/2008

Slide 2

Context

̈ Model checking CTL was relatively easy
because the truth of formulas depends

on the current state (CTL)

and not

on an execution path (LTL)

and not

on the tree of all executions (CTL*)

̈ Next we concentrate on model checking LTL

6/9/2008

Slide 3

LTL: a recap
̈ Syntax

::= e | p | ¬ | | X | U

All other connectives can be written in
the above syntax

6/9/2008

Slide 4

LTL formulas as languages (I)

̈ = GFp (infinitely often p)

̊ The execution s1 s2 s3 s4 È satisfies if it contains

infinitely many sn1
, sn2

, È at which p holds. In between

there can be an arbitrary but finite number of state at which

p holds.

As a language ((p)*.p)

-regular expressions

* = an arbitrary but finite number of repetitions

= an infinite number of repetitions

6/9/2008

Slide 5

LTL formulas as languages(II)

̈ = FGp (Eventually always p)

̈ The execution s1 s2 s3 s4 È satisfies
if from a certain state onwards at all states

p holds.

̈ As -regular expression (p + p)*.p

6/9/2008

Slide 6

Automata on finite words: a recap

̈ A non-deterministic finite automaton is a special kind of
transition systems for recognizing languages on finite
words

̈ NF-automaton A = < ,S, , I,F>
̊ finite alphabet

̊ S finite set of states

̊ S x x S transition relation

̊ I S initial states

̊ F S accepting states

̈ The language of an automaton A is
L(A) = {a1a2... an * | s1 s2 È" sn F with s1 I}

a3a2a1

6/9/2008

7

PenC - Spring 2006

Slide 7

Properties of finite languages

̈ Theorem: L(A1x A2) = L(A1) L(A2)

A1x A2 = < ,S1xS2, , I1xI2,F1xF2> where

<s,t> >uÓ.vÓ@""khh""u" 1 uÓ"cpf"v" 2 vÓ

̈ Theorem: L(A) = is decidable

It is enough to find a path from an initial state

in I to a final state in F.

a a a

6/9/2008

Slide 8

Automata on infinite words: Buchi

̈ A Buchi automaton is a special kind of transition
systems for recognizing languages on infinite
words

̈ Buchi automaton A = < ,S, , I,F>

̊ finite alphabet

̊ S finite set of states

̊ S x x S transition relation

̊ I S initial states

̊ F S accepting states

6/9/2008

Slide 9

Buchi automata

An infinite execution of a Buchi automaton A

s1 s2 s3 s4 È"
is accepted by A if

̊ s1 I

̊ there exists infinitely many i > 0 such that si F

̈ The language of a Buchi automaton A is

L (A) = {a1a2... | s1 s2 È"ceegrvgf"d{"C’

a3a2a1

a2a1

6/9/2008

Slide 10

Example

̈ abcccccccc... accepted

̈ abcbcbcbcb... accepted

̈ cdedddddddÈ rejected

s0
s1

b
a c

s2

c

b

6/9/2008

11

PenC - Spring 2006

Slide 11

Properties of infinite languages

̈ Theorem: L (A1 A2) = L (A1) L (A2)

A1 A2=< ,S1xS2x{1,2}, ,I1xI2x {1},F1xS2x{1}>

where <s,t,i> >uÓ.vÓ.l@""khh""

̊ s 1 uÓ"cpf"v" 2 vÓ"cpf"k?l"wpnguu"

̊ i=1 and s F1 in which case j = 2, or

̊ i=2 and t F2 in which case j =1.

̈ Theorem: L (A) = is decidable

It is enough to find a path from an initial state s I to a final state t F

such that t has a path to t itself.

a

a a

6/9/2008

Slide 12

Transition systems and
Buchi automata

̈ Any transition systems M = <S, M,s0> with a
labelling function `:S 2Prop can be seen as a
Buchi automata AM = < ,S, , I,F> where

̊ = 2Prop assignment of truth values to propositions
(i.e. valuations)

̊ S same states
̊ s t iff s M t and a = `(s) transition relation

̊ I = {s0} same initial state

̊ F = S every state is final

a

6/9/2008

Slide 13

Example

̈ The system: M =

p
q

p
q

p
q

p
q

becomes the Buchi automaton p,q

p

p

6/9/2008

Slide 14

LTL and Buchi automata

̈ An LTL formula denotes a set of infinite traces which satisfy
that formula

̈ A Buchi automaton accepts a set of infinite traces

̈ Theorem: Given an LTL formula , we can build a Buchi
automaton

A = < ,S, ,I,F>

where =2Prop consists of the subsets of (possibly negated)
atomic propositions (i.e. valuations), which accepts only and
all the executions satisfying the formula .

6/9/2008

Slide 15

Example (1)

̈ = Fp eventually p

A =

p,q
p

q
p,q
p

p,q
p

q

6/9/2008

Slide 16

Example (2)

̈ = p U q p until q

A =

p
p,q

q

p,q
p

q

6/9/2008

Slide 17

LTL and Buchi automata

̈ Not every Buchi automaton is an LTL
formula:

p

p

Ðr"jqnfu"qp"gxgt{"qff"uvgrÑ

6/9/2008

Slide 18

Model checking LTL:the idea

̈ Let be an LTL formula and M,s be a transition
system specifying the behavior of a system

̊ A corresponds to all allowable behavior of the system

̊ AM corresponds to all possible behavior of the system

(all infinite paths of M that are potentially interesting)

To see whether a system satisfies a specification
we need to check if every path of AM is in A

L (AM) L (A)

6/9/2008

Slide 19

Model checking LTL

̈ To check set inclusion note that

B A B A =

̈ Further, L (A) = L (A) thus

Every possible path is allowable

is equivalent to say that

there is no path that is possible and not allowable

that is M,s a if and only if L (AM) L (A) =

6/9/2008

Slide 20

The method

̈ Problem: M,s a ?

1. Construct a Buchi automaton A representing
the negation of the desired LTL specification

2. Construct the automaton AM representing the
system behavior

3. Construct the automaton AM A

4. Check if L (AM A) =

5. If yes then M,s a

6/9/2008

Slide 21

Example (1)

̈ Specification: = G(p XFq)
Any occurence of p must be followed (later) by an
occurrence of q

̈ = F(p XG q)
there exist an occurrence of p after which q will
never be encountered again

̈ A =

s0 s1
p,q
p

q

p,q
p

p

6/9/2008

Slide 22

Example (2)

̈ The system: M =
p
q

and its Buchi automaton AM p,q
t0

t1

t2

t3

6/9/2008

Slide 23

Example: (3)

̈ The product A AM

p,qs0t01 s1t01

s1t12

s1t21
s1t32

s0t11

s0t21

s0t31

p,q

s1t02

s1t11

s1t22

6/9/2008

Slide 24

Example: (4)

̈ L(A AM) = ?

p,qs0t01 s1t01

s1t12

s1t21
s1t32

s0t11

s0t21

s0t31

p,q

s1t02

s1t11

s1t22

There is a path starting from <s0t01> that
passes infinitely often through the final states

6/9/2008

Slide 25

Example: (5)

̈ Since L(A AM) is not empty

M,s g G(p XFq)

The counterexample is given by the path

t0t1t2t3t0t1t2t0t1t2t0È

6/9/2008

26

PenC - Spring 2006

Slide 26

From LTL to Buchi automata

̈ General approach:

̊Rewrite formula in normal form

̊Translate formula into generalized Buchi
automata

̊Turn generalized Buchi automata into
ordinary Buchi automata

6/9/2008

27

PenC - Spring 2006

Slide 27

Normal form

̈ LTL formulas with the until operator U that may
contains also the next operators X

̈ Every formula can be converted into an equivalent
formula in normal form expressing an infinite
behavior using equivalences such as:

̊ T = T U T

̊ p = p XT

̊ F = T U G = R

̊ 1R 2= (1U 2)

6/9/2008

28

PenC - Spring 2006

Slide 28

Additional simplifications

̈ Use extra equivalences to reduce size of the
formula. For example:

̊ =

̊X 1 X 2 = X(1 2)

̊X 1 X 2 = X(1 2)

̊X 1U X 2 = X(1U 2)

6/9/2008

29

PenC - Spring 2006

Slide 29

Example:

̈ G(Fp q) = G(Fp q)

= R (Fp q)

= (U ((T U p) q))

̈ p q = (p q) T

= (p q) XT

= (p q) XGT

= (p q) X(T U T)

6/9/2008

30

PenC - Spring 2006

Slide 30

Generalized Buchi Automata

̈ They differ from (normal) Buchi automata only in the

ceegrvcpeg"eqpfkvkqp."yjkej"ku"c"Òugv"qh"ceegrvcpeg"ugvuÓ."
i.e. = 2S

̈ The language of a generalized Buchi automaton

A = < ,S, , I, = > is

L(A) = ̆ { L(AF) | F = and AF = < ,S, , I,F> }

that is, a path has to visit for each set of final states F =
infinitely many times states from F.

6/9/2008

31

PenC - Spring 2006

Slide 31

Example

̈ A generalized Buchi automaton:

ca

̈ Gxgt{"rcvj"qh"eÓu"ykvj"gkvjgt"gxgpvwcnn{"qpg"
a or eventually one b is accepted

1
c

b

2

1,2

c

c
c

6/9/2008

32

PenC - Spring 2006

Slide 32

Generalized Buchi Automata

̈ A generalised Buchi automaton A = < ,S, , I, = >

can be translated back into an ordinary Buchi

automata by taking the intersection of the automata

AF = < ,S, , I,F> for each F =.

̈ If = = then every infinite path is accepted.

̈ The ordinary Buchi automata of < ,S, , I, > is

< ,S, , I, S >

6/9/2008

33

PenC - Spring 2006

Slide 33

Gzcorng"*eqpvÓf+
̈ The translation of the previous automaton into

an ordinary Buchi automaton is

ac

b cc

c

c

6/9/2008

34

PenC - Spring 2006

Slide 34

Closure of a formula

̈ Given an LTL formula define its closure
Cl() to be the set of subformulas of and
of their complement.

̊ Cl()

̊ Cl() implies Cl()

̊ 1 2 Cl() implies 1, 2 Cl()

̊ X Cl() implies Cl()

̊ 1U 2 Cl() implies 1, 2 Cl()

6/9/2008

35

PenC - Spring 2006

Slide 35

Constructing the automata A :states

̈ The states Sub() of the automata are the maximal subsets
S of Cl() that have no propositional inconsitency

1. For all Cl(), S iff ¬ S
2. If T Cl() then T S

3. 1 2 S iff 1 S or 2 S, whenever 1 2 Cl()

4. (1 2) S iff ¬ 1 S and ¬ 2 S, whenever (1 2) Cl()

5. If 1U 2 S then 1 S or 2 S

6. If ¬(1U 2) S then ¬ 2 S

Intuition: S implies that holds in S

̊ The initial states are those states containing

6/9/2008

36

PenC - Spring 2006

Slide 36

Example

̈ Cl(pUq) = {p,q,¬p,¬q, pUq, ¬(pUq) }

̈ Sub(pUq) = { { p, q,pUq},

{p,¬q,pUq},

{p,¬q,¬(pUq)}

{¬p,q, pUq}

{¬p,¬q, ¬(pUq)}}

6/9/2008

37

PenC - Spring 2006

Slide 37

Constructing the automata: transitions

Define the transition relation by setting s uÓ iff
1. X s implies uÓ
2. ¬X s implies ¬ uÓ
3. 1U 2 s and 2 s implies 1U 2 uÓ
4. ¬(1U 2) s and 1 s implies ¬(1U 2) uÓ"
5. a = set of all atomic propositions that hold in s

N.B.: Conditions 3. and 4. are there because

1U 2 2 (1 X(1U 2))

1R 2 2 (1 X(1R 2))

a

6/9/2008

38

PenC - Spring 2006

Slide 38

Constructing the automata: acceptance

̈ For each iU i Cl() define the set of accepting states Fi by
̊ s Fi iff ¬(i U i) s or i s

̊ The above means that we only accept executions for which infinitely
many time ¬(i U i) i holds

̈ Intuition:
For each iU i Cl() we have to guarantee that eventually i holds.

1. Suppose we accept an execution for which only finitely many time
¬(iU i) i holds.

2. Then we can find a suffix such that ¬(i U i) i will never hold, that
is (i U i) ¬ i will always hold.

3. Thus we have an execution for which our goal is not guaranteed

6/9/2008

Slide 39

Complexity

̈ A has size O(2| |) in the worst case

̈ The product A B has size O(|A|x|B|)

̈ We can determine if there no acceptable
path in A B in O(|A B|) time

̈ Thus, model checking M,s a can be done

in O(|M|x 2| |) time

6/9/2008

40

PenC - Spring 2006

Slide 40

Example: pUq

̈ Cl(pUq) = { p, ¬p, q, ¬q, pUq, ¬(pUq) }

pUq
p,q

¬(pUq)
p,¬q

pUq

¬p,q
pUq
p,¬q

¬(pUq)
¬p,¬q

p,¬q

p,¬q

p,¬q

p,¬q

p,¬q

6/9/2008

41

PenC - Spring 2006

Slide 41

Example: pUq

̈ The previous automata is equivalent to

p,¬q
p,q

¬p,q

p,q
p,¬q
¬p,q

¬p,¬q

6/9/2008

42

PenC - Spring 2006

Slide 42

Example II

̈ Buchi automaton for atomic proposition p

̊ p = p X(T U T) =

̊ Cl() = { p,¬p, T,¬T,TUT, ¬(T U T), X(TUT),¬X(TUT), ,¬ }

̊ Sub() = {1,2,3} with

̈ 1 ={p,T,TUT, X(TUT), },

̈ 2 = {¬p, T,TUT, X(TUT), ¬ }

̈ 3 = {p, T,TUT, ¬X(TUT), ¬ }}

6/9/2008

43

PenC - Spring 2006

Slide 43

Example II

̈ Buchi automaton for atomic proposition p

2

1

p

p

3

p

¬p

¬p
¬p

Program correctness

Program verification and
operational semantics

Marcello Bonsangue

Spring 2008

r

6/9/2008

Slide 2

System verification
̈ Model checking verification is
̊model based M,s a f
̊ fully automatic

̊ intended for hardware or software systems with
finitely many states

̈ control is the main issue

̈ no complex data

̈ mainly reactive
̊ reaction-> computation -> reaction -> È
̊ not intended to terminated

6/9/2008

Slide 3

System verification

̈ Program verification:

̊Proof based `
̈ It is impossible to check infinite states !

̊Semi-automatic

̊ intended for software systems with possibly
infinite states

̈ mainly sequential

̈ transformational
̊ input -> computation -> output

̊ like methods of an object

6/9/2008

Slide 4

Program verification
The verification framework:

1. Convert an informal specification S in an
ÒequivalentÓ formula of some logic

2. Write a program P realizing (or S)

3. Prove that P satisfies the formula

6/9/2008

Slide 5

A simple language

̈ Syntactic sets associated to the language:

̊ positive and negative integers n,...

̊ truth values true,false

̊Var program variables x,È
̊Aexp arithmetic expressions a,...

̊Bexp boolean expressions b,...

̊Com commands c, ...

6/9/2008

Slide 6

Arithmetic expressions

̈ A ::= n | x | (A+A) | (A-A) | (A*A)

where n N and x Var

̈ Here * binds more tightly than - and +

̈ Examples:
2 + 3 * 4 - 5 is (2 + 3) * (4 - 5)

- 3 is (0 - 3)

- -5 is (0 - -5)

2 + x + 5 is (2 + x) + 5

6/9/2008

Slide 7

Boolean expressions

̈ B ::= true | false | B | B B | B B | A A

̈ Examples:
A1 = A2 is (A1 A2) (A2 A1)

A1 A2 is (A1 = A2)

̈ Boolean expression are built on top of arithmetic
expressions

̈ 3+5 9

̈ 4 = 5 is a correct boolean expression !!!

̈ true 10 is not a boolean expression

6/9/2008

Slide 8

Commands

̈ C ::= skip |

x := A |

C;C |

if B then C else C fi |

while B do C od

̈ Example (Fact1)
y := 1;
z := 0;
while z 0 do

z := z + 1;
y := y*z
od

6/9/2008

Slide 9

The behaviour

̈ We need a formal model to understand
correctly the behavior of a program

̈ State : Var N

̈ An arithmetic expression a in a state
evaluates to an integer n

<a, > n

configuration

6/9/2008

Slide 10

Evaluating arithmetic expressions

̊ <n, > n

̊ <x, > (x)

̊ If n is the sum of n1 and n2

<a1, > n1 <a2, > n2
--

<a1+ a2, > n

̊ If n is the subtraction of n2 from n1

<a1, > n1 <a2, > n2

<a1-a2, > n

̊ If n is the product of n1 and n2

<a1, > n1 <a2, > n2

<a1*a2, > n

6/9/2008

11

PenC - Spring 2006

Slide 11

An Example Derivation

̈ What is the n such that

<(3+4)-(x*2), > n ?

6/9/2008

Slide 12

Semantics of arithmetic expressions

̈ Two arithmetic expressions are equivalent if they
evaluate to the same value in all states

a1 a2

iff

(n N. . <a1, > n <a2, > n)

̈ Examples:

̊ <2+3, > 5 and <3+2, > 5 thus (2+3) (3+2)

̊ 2+x is not equivalent to 2+3 because there are states in
which x evaluates to an integer different from 3

6/9/2008

Slide 13

Evaluating Boolean expressions

̊ <true, > T

̊ <false, > F

<b, > T <b, > F
̊ ---------------------- ----------------------

< b, > F < b, > T

<b1, > t1 <b2, > t2
̊ --

<b1 b2, > t

where t = T if both t1 = T and t2 =T, otherwise t = F

6/9/2008

Slide 14

Evaluating boolean expressions

<b1, > t1 <b2, > t2
̊ ---

<b1 b2, > t

where t = T if t1 = T or t2 =T, and t = F otherwise

̊ If n1 is less than n2 then
<a1, > n1 <a2, > n2 --

<a1 a2, > T

̊ If n1 is greater than or equal to n2 then
<a1, > n1 <a2, > n2
--

<a1 a2, > F

6/9/2008

Slide 15

Semantics of Boolean expressions

̈ Two Boolean expressions are equivalent if they
evaluate to the same truth value in all states

b1 b2

iff

(. <b1, > T <b2, > T)

̈ We could improve the evaluation of Boolean
expressions using

̊ a left-first sequential strategy

̊ a parallel strategy

6/9/2008

Slide 16

The command behaviour

̈ A program may

̊ terminate in a final state or

̊ diverge and never yield a final state

̈ We denote by

<c, > Ó"
the execution of a command c in an initial state

and terminating in a final state Ó

̈ Recall: [n/x] (y) = {
n if x = y

(y) if x y

6/9/2008

Slide 17

Executing commands I

̊ <skip, >

<a, > n
̊ ---------------------------------

<x := a, > [n/x]

<c1, > ÓÓ <c2, ÓÓ@" Ó
̊ ---

<c1; c2, > Ó

<b, > T <c1, > Ó
̊ ---

<if b then c1 else c2 fi, > Ó

<b, > F <c2, > Ó
̊ ---

<if b then c1 else c2 fi, > Ó

6/9/2008

18

PenC - Spring 2006

Slide 18

Example: MAX

̈ What is the final state Ó of

<if x < y then z:=y else z:= x fi, > Ó

for (x) = 2, (y) = 1 and (z) = 0 ?

6/9/2008

Slide 19

Executing commands II

<b, > F
̊ --------------------------------------

<while b do c od, >

<b, > T <c, > ÓÓ <while b do c od, ÓÓ@" Ó
̊ ---

<while b do c od, > Ó

6/9/2008

Slide 20

Semantics of commands

̈ Two commands are equivalent if when executed from
the same initial state they terminate in the same final
state

c1 c2

iff

(, Ó0"<c1, > Ó"" <c2, > Ó+

̈ Examples
̊ x := x skip

̊ while b do c of if b then c; while b do c od

else skip

fi

6/9/2008

21

PenC - Spring 2006

Slide 21

Execution of Commands

̈ The order of evaluation is important and explicit.
̊ c1 is evaluated before c2 in c1; c2

̊ c2 is not evaluated in if true then c1 else c2 fi

̊ b is evaluated first in if b then c1 else c2 fi

̊ e"ku"pqv"gxcnwcvgf"kp"Ðwhile false do c od

̈ The execution rules suggest an interpreter but abstract
from a concrete one

̈ Execution is deterministic: only one rule can be applied
at time.

Program correctness

Axiomatic semantics

Marcello Bonsangue

Spring 2008

r

6/9/2008

Slide 2

Axiomatic Semantics

̈ We have introduced

̊a syntax for sequential programs

̊An operational semantics (transition system) for
ÐtwppkpiÑ those programs from a starting state. A
computation may terminate in a state or run forever.

̈ We would also like to have a semantics for
reasoning about program correctness

6/9/2008

Slide 3

Axiomatic semantics

̈ We need

̊A logical language for making assertions about
programs
̈ The program terminates

̈ If x = 0 then y = z+1 throughout the rest of the execution of
the program

̈ If the program terminates, then x = y + z

̊A proof system for establishing those assertions

6/9/2008

Slide 4

Why axiomatic semantics

̈ Documentation of programs and interfaces
*Og{gtÓu"Fgukip"d{"Eqpvtcev+

̈ Guidance in language design and coding

̈ Proving the correctness of algorithms

̈ Extended static checking
̊ checking array bounds

̈ Proof-carrying code

̈ Why not testing?

̊ Dijkstra: Program testing can be used to show the
presence of bugs, but never to show their absence!

6/9/2008

Slide 5

The idea

ÐCompute a number y whose square is less than
the input xÑ

We have to write a program P such that

y*y < x

But what if x = -4?

There is no program computing y!!

6/9/2008

Slide 6

The idea (continued)

ÐIf the input x is a positive number then compute a

number y whose square is less than the input xÑ

We need to talk about the states before and after
the execution of the program P

{ x>0 } P { y*y < x }

6/9/2008

Slide 7

The idea (continued)

̈ Hoare triple for partial correctness

apar { } c { }

If the command c terminates when it is executed in
a state that satisfies , then the resulting state will
satisfy

program termination is not required

postcondition
precondition

command

6/9/2008

Slide 8

Examples

̈ apar{ y ‘ x } z := x; z := z +1 { y < z } is valid

̈ apar{ true } while true do skip od { false } is valid

̈ Let Fact = y := 1; z := 0;
while z x do

z := z + 1;
y := y*z

od

Is apar { x 0 } Fact { y = x! } valid?

6/9/2008

Slide 9

̈ Hoare triple for total correctness

atot { } c { }

If the command c is executed in a state that satisfies
then c is guaranteed to terminate and the resulting

state will satisfy

program termination is required

postcondition
precondition

command

Total correctness

6/9/2008

Slide 10

Example

̈ atot { y ‘ x } z := x; z := z +1 { y < z } is valid

̈ atot{ true } while true do skip od { false } is not valid

̈ atot { false } while true do skip od { true } is valid

̈ Let Fact = y := 1; z := 0;
while z x do

z := z + 1;
y := y*z

od

Is atot { x 0 } Fact { y = x! } valid?

6/9/2008

Slide 11

Partial and total correctness: meaning

̈ Hoare triple for partial correctness apar { } c { }
If holds in a state and <c, > Ó"vjgp"

holds in Ó

̈ Hoare triple for total correctness atot { } c { }
If holds in a state then

there exists a Ó"uwej"vjcv">e. > Ó""cpf" holds in Ó

̈ To be more precise, we need to:
̊ Formalize the language of assertions for and

̊ Say when an assertion holds in a state.
̊Give rules for deriving Hoare triples

6/9/2008

Slide 12

The assertion language

̈ Extended arithmetic expressions

a ::= n | x | i |(a+a) | (a-a) | (a*a)

n N, x Var, i LVar

̈ Assertions (or extended Boolean expressions)

::= true | | | a a | i.

i LVar

6/9/2008

Slide 13

Program variables

̈ We need program variables Var in our assertion
language

̊ To express properties of a state of a program as basic
assertion such as

x = n i.e. ÐThe value of x is pÑ

that can be used in more complex formulas such as

x = n y+1 = x*(y-x) k0g0"ÐIf the value of x is n then

that of y + 1 is x times y - xÑ

6/9/2008

Slide 14

Logical variables

̈ We need a set of logical variables LVar
̊ To express mathematical properties such as

i. n = i * m i.e. Ðan integer n is multiple of another oÑ

̊ To remember the value of a program variable destroyed
by a computation

Fact2 y := 1;
while x 0 do

y := y*x;
x := x Î 1

od

apar{ x 0 } Fact2 { y = x! } is not valid but

apar{ x = x0 x 0 } Fact2 { y = x0! } is.

6/9/2008

15

PenC - Spring 2006

Slide 15

Meaning of assertions

̈ Next we assign meaning to assertions

̊ Problem<"Ð holds in a state Ñ may depends on
the value of the logical variables in

̊ Solution: use interpretations of logical variables

̊ Examples

̈ z x holds in a state :Var N with (x) = 3 for all
interpretations I:LVar N of the logical variables
such that I(i) 3

̈ i i+1 holds in a state for all interpretations

6/9/2008

Slide 16

Meaning of expressions

̈ Given a state :Var N and an interpretation
I:LVar N we define the meaning of an expression e
as [[e]]I , inductively given by

̊ [[n]]I = n

̊ [[x]]I = (x)

̊ [[i]]I = I(i)

̊ [[a1+a2]]I = [[a1]]I +[[a2]]I

̊ [[a1-a2]]I = [[a1]]I - [[a2]]I

̊ [[a1*a2]]I = [[a1]]I *[[a2]]I

6/9/2008

Slide 17

Meaning of assertions

̈ Given a state : Var N and an interpretation
I:LVar N we define

,I a
inductively by

̊ ,I a true
̊ ,I a iff not ,I a
̊ ,I a iff ,I a and ,I a
̊ ,I a a1 a2 iff [[a1]]I [[a2]]I

̊ ,I a i. iff ,I[n/i] a for all n N

6/9/2008

Slide 18

Partial and total correctness

̈ Partial correctness: I apar { } c { }

(,I a and <c, > Ó"+" Ó.K"a

̈ Total correctness: I atot { } c { }

. ,I a Ó0*>e." > Ó"cpf" Ó.K"a)

where and are assertions and c is a command

6/9/2008

Slide 19

Validity

̈ To give an absolute meaning to
{i x} x := x+3 {i x}

we have to quantify over all interpretations I

̈ Partial correctness:

apar { } c { } I. I apar { } c { }

̈ Total correctness:

atot { } c { } I. I atot { } c { }

6/9/2008

Slide 20

Deriving assertions

̈ We have the meaning of both

apar{ } c { } and atot { } c { }

but it depends on the operational semantics and it
cannot be effectively used

̈ Thus we want to define a proof system to derive
symbolically valid assertions from valid assertions.
̊ `par { }c{ } means that the Hoare triple { }c{ } can be

derived by some axioms and rules

̊ Similarly for `tot { }c{ }

6/9/2008

Slide 21

Free and bound variables

̈ A logical variable is bound in an assertion if it
occurs in the scope of a quantifier

i. n = i * m

̈ A logical variable is free if it is not bound

i + 100 < 77 i. j+i = 3

free
bound

6/9/2008

Slide 22

Substitution (I)

̈ For an assertion , logical variable i and
arithmetic expression e we define

[e/i]

as the assertion resulting by substituting in the
free occurrence of i by e.

̈ Definition for extended arithmetic expressions

n[e/i] = n (a1+a2)[e/i]=(a1[e/i]+a2[e/i])

x[e/i] = x (a1-a2)[e/i]=(a1[e/i]-a2[e/i])

i[e/i] = e (a1*a2)[e/i]=(a1[e/i]*a2[e/i])

j[e/i] = j

6/9/2008

Slide 23

Substitution (II)

̈ Definition for assertions

true[e/i] = true

()[e/i] = ([e/i])

(1 2)[e/i] = (1[e/i] 2[e/i])

(a1 a2)[e/i] = (a1[e/i] a2[e/i])

(i.)[e/i] = i.

(j.)[e/i] = j. [e/i] j i

̈ Pictorially, if = ---i--i--i- with i free, then

[e/i] = ---e--e--e-

6/9/2008

Slide 24

Proof rules partial correctness (I)

̈ There is one derivation rule for each
command in the language.

̊ { } skip { } skip

̊ { [a/x]} x := a { } ass

{ } c1 { } { } c2 { }
̊ ------------------------------- seq

{ } c1; c2 { }

6/9/2008

Slide 25

Proof rules partial correctness (II)

{ b} c1 { } { b} c2 { }
̊ -- if

{ } if b then c1 else c2 fi { }

{ b} c { }
̊ -------------------------------------- while

{ } while b do c od { b}

` Ó""""""{ Ó} c { Ó} ` Ó"
̊ --- cons

{ } c { }

6/9/2008

26

PenC - Spring 2006

Slide 26

A first example: assignment

̈ NgvÓu"rtqxg"vjcv

`par {true} x:=1 {x=1}

---------------------- ass
` true 1=1 {1=1} x:=1 {x=1}

--- cons
{true} x:=1 {x=1}

6/9/2008

Slide 27

Another example: assignment

̈ Prove that {true} x:= e {x=e} when x does not appear
in e

1. Because x does ot appear in e we have
(x=e)[e/x] (x[e/x]=e[e/x]) (e=e)

2. Use assignment + consequence to obtain the proof

---------------------- ass

` true e=e {e=e} x:=e {x=e}

--- cons
{true} x:=e {x=e}

6/9/2008

Slide 28

Another example: conditional

̈ Prove `par {true} if y‘1 then x:=1 else x:=y fi {x>0}

---------------------- ass ass ---------------------
`true y‘1 1>0 {1>0} x:=1 {x>0} `true y>1 y>0 {y>0} x:=y

{x>0}
-- cons ---

{true y ‘1} x:=1 {x>0} {true y >} x:=y {x>0}
-- if

{true} if y‘1 then x:=1 else x:=y fi {x>0}

6/9/2008

Slide 29

An example: while

̈ Prove `par {0 x} while x>0 do x:=x-1 od {x=0}

We take as invariant 0 ‘ x in the while-rule

------------------------------ ass

` 0 ‘ x x>0 0 ‘ x-1 {0 ‘ x-1} x:=x-1 {0 ‘ x}

--- cons

{0 ‘ x x>0 } x:=x-1 {0 ‘ x}

---while

{0 ‘ x} while x >0 do x:=x-1 od {0 ‘ x x ‘ 0} ` 0 ‘ x x ‘ 0 x=0

-- cons

{x ‘ 0} x >0 do x:=x-1 od {x=0}

6/9/2008

Slide 30

An example: while, again

Prove that {x ‘ 0} while x ‘ 5 do x:=x+1 od {x=6}

1. We start with the invariant x ‘ 6 in the while-rule

-------------------------------- ass
` x ‘ 6 x ‘ 5 x+1 ‘ 6 {x+1 ‘ 6}x:=x+1 {x ‘ 6}

-- cons
{x ‘ 6 x ‘ 5} x:=x+1 {x ‘ 6}

---while
{x ‘ 6} while x ‘ 5 do x:=x+1 od {x ‘ 6 x>5}

2. We finish with the consequence rule

` x‘0 x‘6 {x ‘ 6} while x ‘ 5 do x:=x+1 od {x ‘ 6 x>5} ` x‘6 x>5 x=6

{x ‘ 0} while x ‘ 5 do x:=x+1 od {x=6}

6/9/2008

Slide 31

Auxiliary rules

̈ They can be derived from the previous ones

̊ { } c { } if the program variables in do not appear in c

̊ { } x := a { x0.([x0 /x] x = a[x0/x])}

{ 1} c1 { } { 2} c2 { }
̊ --

{(b 1) (b 2)} if b then c1 else c2 fi { }

{ 1} c { } { 2} c { }
̊ ---------------------------------------

{ 1 2} c { }

{ 1} c { 1} { 2} c { 2}
̊ ---------------------------------------

{ 1 2} c { 1 2 }

6/9/2008

32

PenC - Spring 2006

Slide 32

Comments on Hoare logic

̈ The rules are syntax directed

̊Three problems:

̈ When to apply the consequence rule

̈ How to prove the implication in the consequence rule

̈ What invariant to use in the while rule

̈ The last is the real hard one

̊Should it be given by the programmer?

6/9/2008

Slide 33

An extensive example: a program

DIV k
q := 0;

r := x;

while r y do

r := r-y;

q := q+1

od

We wish to prove

{x 0 y > 0 } DIV { q*y+r=x 0 r y }

Program correctness

Weakest preconditions

Marcello Bonsangue

Spring 2006

r

6/9/2008

Slide 2

Axiomatic semantics

̈ We have a language for asserting properties of
programs (syntax).

̈ We know when an assertion is true (validity).

̈ We have a symbolic way for deriving assertions
(proof system).

̈ What is the relation between validity and
provability?

6/9/2008

Slide 3

Hoare Logic
soundness and completeness

̈ Soundness (what can be proved is valid):

`par { } c { } implies apar { } c { }

̈ Completeness (what is valid can be proved):

apar { } c { } implies `par { } c { }

6/9/2008

Slide 4

Soundness

̈ Theorem: The proof system for partial correctness
is sound

equivalently, if `par { } c { } then

,I (,I apar and <c, > Ó"+" Ó.K apar

Proof by induction on the length of the derivation of
the Hoare triples, reasoning about each axiom and
rule separately. (why?)

6/9/2008

Slide 5

Soundness of skip

Case: last rule used in the derivation is

{ } skip { }.

We have to prove

,I (,I apar and <skip, > Ó+" Ó.K"apar

Which follows because Ó"?" .

6/9/2008

Slide 6

Soundness of assignment

Case last rule in the derivation is { [a/x]} x := a { }

Take and I such that ,I a [a/x]. Then

< x := a, > [a/x]

We need to prove [a/x],I a , which follows from the
substitution lemma

LEMMA: ,I a [a/x] implies [a/x],I a

Proof: by induction on the structure of

6/9/2008

7

PenC - Spring 2006

Slide 7

Soundness of consequence rule

̈ Case last rule in the derivation is

` Ó""""{ Ó} c { Ó} ` Ó"
--

{ } c { }

̈ From soundness of first order logic we have

,I a Ó0"
Hence ,I a Ó0

̈ From induction hypothesis we get Ó.K"a Ó0

̈ From soundness of first order logic we finally obtain

Ó.K"a Ó" .

Therefore Ó.K"a

6/9/2008

8

PenC - Spring 2006

Slide 8

Soundness of while

̈ Case last rule in the derivation is

{ b} c { }
--
{ } while b do c od { b}

̈ Assume ,I a . We proceed by induction on the derivation of
<while b do c od, > Ó
̊ There are two cases (we treat only one):

<b, > T <c, > Ó""">while b do c od, Ó@" ÓÓ
--

<while b do c od, > ÓÓ

̊ We need to prove ÓÓ.K"a b

6/9/2008

9

PenC - Spring 2006

Slide 9

Soundness of while (II)

̈ By definition of derivation of <b, > T we obtain

,I a b

Hence ,I a b

̈ By induction hypothesis on derivation of { b} c { } we have

Ó.K"a

̈ By induction hyp. on derivation of <while b do c od, Ó@" ÓÓ"
we finally obtain

ÓÓ.K"a b

6/9/2008

Slide 10

Hoare Logic

̈ We have seen that if we can derive an
assertion in the Hoare logic then this
assertion is true (soundness).

̈ Next we concentrate on the opposite
direction (completeness).

6/9/2008

Slide 11

Completeness of Hoare Logic

̈ Can we prove that if an assertion is true then it is
derivable?

̈ More formally, can we prove

apar{ } c { } implies `par{ } c { }?

̈ The answer is yes, but only if the underlying logic is
complete (a implies `) and expressive enough

̊ This is called relative completeness.

6/9/2008

Slide 12

Idea for proving completeness

̈ To prove atot{ } c { } implies `tot{ } c { }

1. Assume we can compute wp(c,) such that

¸ wp(c,) is a precondition of , i.e.

`tot {wp(c,)} c { }

¸ wp(c,) is the weakest precondition of , i.e.

atot{ } c { } implies a wp(c,)

2. By completeness of the underlying logic and the
consequence rule we obtain

` wp(c,) `tot {wp(c,)} c { }

`tot { } c { }

6/9/2008

Slide 13

Weakest precondition (Dijkstra)

̈ Assertions can be ordered

Precondition of c implying that
holds after its execution

false true

wp(c,)

strong weak

̈ Thus to verify { } c { } we compute
wp(c,) and prove wp(c,)

6/9/2008

Slide 14

Weakest precondition

̈ The definition of the weakest precondition
follows the rules of the Hoare logic

̈ SKIP

{ } skip { }

wp(skip,) =

6/9/2008

Slide 15

Weakest precondition

̈ ASSIGNMENT

{ [a/x]} x := a { }

wp(x:=a,) = [a/x]

̈ SEQUENTIAL COMPOSITION

{ } c1 { } { } c2 { }

{ } c1; c2 { }

wp(c1; c2,) = wp(c1,wp(c2,))

6/9/2008

Slide 16

Weakest precondition

̈ CONDITIONAL

{ 1} c1 { } { 2} c2 { }

{b 1 b 2} if b then c1 else c2 fi { }

wp(if b then c1 else c2 fi,) = b wp(c1,) b wp(c2,)

6/9/2008

Slide 17

Weakest precondition

̈ LOOP
1. We already know that

while b do c od if b then (c;while b do c od) else skip fi

2. Let w = while b do c od and W = wp(w,). We have

W = b wp(c,W) b

3. This is a recursive equation
̈ We know how to solve it

̈ We need a complete partial order (cpo) of assertions

6/9/2008

18

PenC - Spring 2006

Slide 18

A CPO of assertions

̈ Refinement order:

‘ iff a
True is the bottom: it does not says much about a
state.

̈ It forms a complete partial order: the least upper
bound of every chain 1‘ 2‘È"‘ n‘ is the
infinite conjunction /\ i

where ,I a /\ i iff ,I a i for all i

6/9/2008

19

PenC - Spring 2006

Slide 19

Weakest precondition (LOOP)

̈ Let F(X) = b wp(c, X) b .

̈ Then F is monotone and continuous. Thus it has
a least fixed point (the weakest fixed point) and

wp(while b do c od,) = /\ Fi(true)

̈ We need an assertion language expressive
enough to be able to write /\ Fi(true).

6/9/2008

Slide 20

Weakest precondition (LOOP)

̈ Define a family of preconditions wp(while b do c od,)k as
follows:

wp(while b do c od,)0 = b

wp(while b do c od,)n+1 =

b wp(c, wp(while b do c od,)n) b

Then wp(while b do c od,) = /\ wp(while b do c od,)k

̈ Here wp(while b do c od,)k is the weakest precondition on
which the loop - if terminated in k or less iterations -
terminates in .

6/9/2008

21

PenC - Spring 2006

Slide 21

Weakest precondition: properties

̈ For each command c in our language we have

̊ wp(c,true) = true

̊ if Ó"vjgp"wp(c,) wp(c, Ó)

̊ wp(c, Ó) = wp(c,) wp(c, Ó)

̊ wp(c, Ó) = wp(c,) wp(c, Ó)

̈ wp(c,false) characterizes all states in which c does

not terminate

Program correctness

Proof Outlines

Marcello Bonsangue

Spring 2008

r

6/9/2008

Slide 2

Proof outlines

̈ Formal proofs are long and tedious to follow.

̈ It is better to organize the proof in small local
isolated steps

̈ We can use the structure of the program to
structure our proof!

6/9/2008

Slide 3

The idea
̈ For the program P = c1; c2; c3; È cn we want

to show

`par{ 0} P { n}

̈ We can split the problem into smaller ones if
we find formulas iÓs such that

`par{ i} ci{ i+1}

6/9/2008

Slide 4

The idea (cont.d)

̈ Thus we have to find a calculus for presenting a proof
`par{ 0} P { n} by interleaving formulas with code

{ 0}

c1;
{ 1} justification (i.e. skip, ass, if, while, implied)
c2;
{ 2} justification
c3;...
{ n-1} justification
cn

{ n}

Composition is implicit !

6/9/2008

Slide 5

Verification condition
Problem: How can we find the iÓs ?

Solution: Use Hoare rules and calculate
verification conditions, i.e. conditions needed
to establish the validity of certain assertions.

Precondition of c implying that
holds after its execution

false true

wp(c,)

strong weak

vc

6/9/2008

Slide 6

Skip, assignment, implied

̈ --------------- skip
{ } skip { }

̈ ---------------------- assignment
{ [a/x]} x := a { }

`
̈ ------------- implied

{ } { }

6/9/2008

Slide 7

Example

̈ To prove `par{y = 5 } x := y + 1 { x = 6 }

{y = 5}

{y+1 = 6} implied

x := y + 1

{x = 6} assignment

we only need to prove the verification
condition y = 5 y+1 = 6

6/9/2008

Slide 8

Composition, conditional

{ } c1 { } { } c2 { }
̈ ------------------------------ seq

{ } c1; { } c2 { }

{ 1} c1 { } { 2} c2 { }
̈ --- if

{b 1 b 2 }if b then{ 1}c1{ }else{ 2}c2{ } fi{ }

6/9/2008

Slide 9

Example
̈ To prove `par{true} z:=x; z:=z+y; u:=z {u = x+y}

{true}

{ x+y = x+y } implied
z:=x;
{ z+y = x+y } assignment
z:=z+y;
{ z = x+y } assignment
u:=z
{ u = x+y } assignment

we only need to prove the verification condition
true x+y = x+y

6/9/2008

Slide 10

Example

Suppose we want to prove

{true}
a := x+1;
if a = 1 then y := 1 else y := a fi

{y = x+1}

6/9/2008

Slide 11

Example

{ true }

{x+1=1 1=x+1 x+1 1 x+1=x+1} implied
a := x+1;
{a=1 1=x+1 a 1 a=x+1} assignment
if a = 1

then {1 = x+1}
y := 1

{ y = x+1} assignment

else

{a = x+1}

y := a

{ y = x+1 } assignment

fi

{ y = x+1 } if-then-else

6/9/2008

Slide 12

While statement

{I b} c {I}
--- while
{I} while b do {I b} c {I} od {I b}

̈ We must discover an invariant I
̊ I need not hold during the execution of c

̊ if I holds before c is executed then it holds if and when
c terminates.

6/9/2008

Slide 13

Invariant

̈ For any while b do c od these are invariants

̊ true

̊ false

̊ b

because {I b } c { I } is valid. However they are
useless to prove

I or I b

when considering the while in a context.

̈ To find a useful invariant it may help to look at the
execution of the while and at the relationships among
the variables manipulated by the while-body

6/9/2008

Slide 14

Example

̈ Let W = while x 0 do y := x*y; x := x-1 od

̈ To prove {x = n n 0 y=1 } W { y = n! }

iteration x 0 ?x y

0

1

2

3

4

5

6

6

5

4

3

2

1

0

1

6

30

120

360

720

720

true

true

true

true

true

true

false

6/9/2008

Slide 15

Example I
̈ Invariant Hypothesis y*x! = n!

{y*x! = n! }
while x 0 do
{ y*x! = n! x 0} invariant and guard
{ x*y*(x-1)! = n! } implied
y := x*y;
{ y*(x-1)! = n! } assignment
x := x-1
{ y*x! = n! } assignment
od
{ y*x! = n! x 0 } while

correct !!!

6/9/2008

Slide 16

Example II

̈ Since y*x! = n! is an invariant we have

{x = n n 0 y=1 }

{y*x! = n! } implied

W

{ y*x! = n! x 0 } while

{ y*x! = n! x 0 } implied

{ y = n! } implied??

The invariant is too weak!

6/9/2008

Slide 17

Example III
̈ Another invariant hypothesis y*x! = n! x 0

{y*x! = n! x 0 }
while x 0 do
{y*x! = n! x 0 x 0 } Inv. Hyp. and guard

{x*y*(x-1)! = n! x 1 } implied
y := x*y;
{y*(x-1)! = n! x-1 0} assignment
x := x-1
{ y*x! = n! x 0 } assignment
od
{ y*x! = n! x 0 x 0 } while

correct !!!

6/9/2008

Slide 18

Example IV

̈ With the new invariant we have

{x = n n 0 y=1 }

{y*x! = n! x 0 } implied

W

{ y*x! = n! x 0 x 0 } while

{ y*x! = n! x = 0 } implied

{ y = n! } implied

Yes!

Program correctness

Arrays

Marcello Bonsangue

Spring 2008

r

6/9/2008

2

PenC - Spring 2006

Slide 2

Array Types and Array Syntax

̈ Let c]3"È"p_ denote an array with as index an
integer between 1 and n (included)

̈ Then a[e] denotes the element at position i in
the array a if the evaluation of the expression
e is the integer i with 1 i n

̈ And |a| denote the length of the array a,
̊ i.e. |a| = n

6/9/2008

3

PenC - Spring 2006

Slide 3

Meaning of array assignments

̈ Let a, b be two array variables. Then:

̊a:=b assigns the value of array a to the array
variable b

̊c]g_<?gÓ assigns the value of gÓ to position e in the
array a

̊but c]g_<?gÓ hcknu."qt"Òiqgu"ytqpiÓ."kh"e 0 or e<|a|

̈ In partial correctness, we do not need to take
array boundaries into account

̊For example, {true}a[|a|+1] {true} is valid

6/9/2008

4

PenC - Spring 2006

Slide 4

Array assignments and aliasing

̈ Simple assignments remain simple:
{ [b/a]} a:=b { }

is valid (partial correctness)

̈ But what about c]g_<?gÓ ?

̈ How can we substitute a[e] by gÓ ?

̈ Moreover, a[e] may have aliases:
a[3], a[1+2], a[5-2], etc. all denote the same
location

6/9/2008

Slide 5

Arrays as functions

̈ An array a[1È|a|] of values can be seen as a
function a from the index values to the element
values

update: c]g_"<?"gÓ is the same as c"<?c]gÓ1g_

reading: a[e] is the same as a(e)

gÓ" if e=i
̈ Recall that c]gÓ1g_*k+ =

a(i) otherwise

6/9/2008

Slide 6

The solution: function substitution

̈ Since an array is just a variable whose
type happens to be ÐhwpevkqpÑ. we can
simply replace the entire function

̈ a[i] := e is the same as a := a[e/i] thus
along the lines of the ordinary assignment
axiom we have

{]c]gÓ1g_1c_’"c]g_"<?"gÓ"} }

6/9/2008

7

PenC - Spring 2006

Slide 7

Weakest precondition of array updates

̈ The formula]c]gÓ1g_1c_"ku"not the weakest
precondition of y0t0v0"cp"cttc{"wrfcvg"c]g_<?gÓ

Why?

Because the value e may fall outside that of the
array a, so update may also fail! For total
correctness we have to prove that assignment
fqgupÓv"hckn0

̈ yr*c]g_"<?"gÓ.)=]c]gÓ1g_1c_" 2>gø̃c̃

6/9/2008

Slide 8

Example I

̈ { true } a[3] := 5 { a[3] = 5 }

We get:

(a[3] = 5)[a[5/3]/a] a[5/3][3] =5

Clearly, true a[5/3][3]=5

6/9/2008

Slide 9

Example II

̈ {a[j] = 4} a[i] := a[j]+1 {a[i] = 5}

(a[i] = 5)[a[a[j]+1/i]/a]

a[a[j]+1/i][i] =5

a[j]+1 = 5

a[j] = 4

6/9/2008

10

PenC - Spring 2006

Slide 10

Example 3

̈ {|b|>2} a:=b; a[1]:=3; a[1]:= a[1]+1; b:=a {b[1]=4}

6/9/2008

11

PenC - Spring 2006

Slide 11

Example 4

{ a[i] = i } a[a[i]] := i { a[i] = i }

(a[i] = i)[(a[i/a[i]])/a]

a[i/a[i]](i) = i

(a[i] = i i = i) (a[i] i a[i] = i)

a[i] = i

Program correctness

Total correctness

Marcello Bonsangue

Spring 2008

r

6/9/2008

Slide 2

̈ Hoare triple for total correctness

atot { } c { }

If the command c is executed in a state that satisfies
then c is guaranteed to terminate and the resulting

state will satisfy

program termination is required

postcondition
precondition

command

Total correctness

6/9/2008

Slide 3

Example

̈ atot { y ‘ x } z := x; z := z +1 { y < z } is valid

̈ atot{ true } while true do skip od { false } is not valid

̈ atot { false } while true do skip od { true } is valid

̈ Let Fact = y := 1; z := 0;
while z x do

z := z + 1;
y := y*z

od

Is atot { x 0 } Fact { y = x! } valid?

6/9/2008

Slide 4

Total correctness

̈ Total correctness: I atot { } c { }

. ,I a Ó0*>e." > Ó"cpf" Ó.K"a)

where and are assertions and c is a
command

6/9/2008

Slide 5

Validity

̈ To give an absolute meaning to

{i x} x := x+3 {i x}

we have to quantify over all interpretations I

̈ Total correctness:

atot { } c { } I. I atot { } c { }

6/9/2008

Slide 6

Towards a calculus

̈ Partial correctness does not tell anything
about termination

̈ Only while b do c od introduces the
possibility of non-termination

a proof calculus for total correctness is the
same as that for partial correctness except
for the while-rule

6/9/2008

Slide 7

Intuition

̈ To prove total correctness we need

̊a proof of partial correctness

̊a proof that the while statement terminates

̈ Termination can be proved by finding an
integer expression E (the variant) that

̊ is always non-negative

̊decreases every time we execute the body of the
while statement

6/9/2008

Slide 8

Proof rules
total and partial correctness (I)

̈ { } skip { } skip

̈ { [a/x] def(a)} x := a { } ass

{ } c1 { } { } c2 { }
̈ ------------------------------- seq

{ } c1; c2 { }

6/9/2008

Slide 9

Proof rules
total and partial correctness (II)

{ b} c1 { } { b} c2 { }
̈ -- if

{ } if b then c1 else c2 fi { }

` Ó""""""{ Ó} c { Ó} ` Ó"
̈ --- cons

{ } c { }

6/9/2008

Slide 10

Proof rule total correctness (III)

{ b 0 E=E0 } c { 0 E E0 }

{ 0 E } while b do c od { b}

where E0 is a logical variable for retaining the initial
value of E

Finding E cannot be mechanized !!!

6/9/2008

Slide 11

Proof outline

̈ Proof outline for total correctness are similar

to those for partial correctness except for

̊ the precondition of the while which now writes

{ 0 E }

̊ the body of the while which now writes

{ b 0 E=E0 } c { 0 E E0 }

6/9/2008

Slide 12

An example

DIV

q := 0;

r := x;

while r y do

r := r-y;

q := q+1

od

We wish to prove

{x 0 y > 0 } DIV { q*y+r=x 0 r y }

6/9/2008

Slide 13

{x 0 y > 0 }

{ 0*y+x=x 0 x } implied
q := 0;
{q*y+x=x 0 x } ass.
r := x;
{ I } ass.
while r y do

{ I r y } Inv guard
{ (q+1)*y+ r-y =x 0 r-y } implied
r := r-y;
{ (q+1)*y+r=x 0 r } ass.
q := q+1
{ I } ass.

od
{ I r y } while
{ q*y+r=x 0 r y } implied

where I q*y+r=x 0 r is the invariant

An example (II)

6/9/2008

Slide 14

{x 0 y > 0 }
{ 0*y+x=x 0 x } implied
q := 0;
{q*y+x=x 0 x } ass.
r := x;
{ I 0 r } ass.
while r y do

{ I r y 0 r=z } Inv guard
{ (q+1)*y+ r-y =x 0 r-y z } implied?????
r := r-y;
{ (q+1)*y+r=x 0 r z } ass.
q := q+1
{ I 0 r z } ass.

od
{ I r y } while
{ q*y+r=x 0 r y } implied

where I q*y+r=x 0 r is the invariant and r is the variant

An example (III)

6/9/2008

Slide 15

{x 0 y > 0 }

{ 0*y+x=x 0 x y 0 } implied
q := 0;
{q*y+x=x 0 x y 0 } ass.
r := x;
{ I 0 r } ass.
while r y do

{ I r y 0 r=z } Inv guard
{ (q+1)*y+ r-y =x y 0 0 r-y z } implied
r := r-y;
{ (q+1)*y+r=x y 0 0 r z } ass.
q := q+1
{ I 0 r z } ass.

od
{ I r y } while
{ q*y+r=x 0 r y } implied

where I q*y+r=x 0 r y 0 is the invariant and r is the variant

An example (IV)

