
1

Design Heuristics and Design Heuristics and Design Heuristics and Design Heuristics and
Architectural StylesArchitectural StylesArchitectural StylesArchitectural Styles

(LL (LL (LL (LL Chapter 9)Chapter 9)Chapter 9)Chapter 9)

Michel Chaudron

Many slides based on Lethbridge and Laganiere
2

Software Engineering 2008

MRV Chaudron

Sheet 2

Agenda

� Recap Design heuristics & guidelines

� Architectural Styles

� This afternoon: werkcollege use UML
tools; location: PC zaal

� hand in assignments electronically

chaudron@liacs.nlchaudron@liacs.nlchaudron@liacs.nlchaudron@liacs.nl

3

Software Engineering 2008

MRV Chaudron

Sheet 3

� Separation of Concerns

� Information hiding

� Layering

� Modularity & Coupling

Design Heuristics

4

Software Engineering 2008

MRV Chaudron

Sheet 4

Types of CouplingTypes of CouplingTypes of CouplingTypes of Coupling

c
o
n
s
id

e
re

d
w

o
rs

e

• Data coupling
• data from one module is used in another

• Data type coupling

• two modules use the same data type

• Control coupling

•actions one module are controlled
by another module (switch)

• Content coupling
• a module refers to the internals

of another module

5

Software Engineering 2008

MRV Chaudron

Sheet 5

Content coupling:

� Occurs when one component modifies data
that is internal to another component

� Reduce content coupling by encapsulating data

� Information hiding

� declare them private

� and provide get and set methods

6

Software Engineering 2008

MRV Chaudron

Sheet 6

Example of content coupling
public class Line
{
private Point start, end;

...
public Point getStart() { return start; }
public Point getEnd() { return end; }

}

public class Arch
{
private Line baseline;

...
void slant(int newY)
{

Point theEnd = baseline.getEnd();
theEnd.setLocation(theEnd.getX(),newY);

}

}

2

7

Software Engineering 2008

MRV Chaudron

Sheet 7

Information Hiding

� Usage of a module depends only on the

information at the interface

� An interface should reveal as little as possible

about the inner workings of the component

� An interface hides design decisions

D. L. Parnas, On the criteria to be used in decomposing systems into modules,

Communications of the ACM, vol. 15, pp. 1053-1058, December 1972.

8

Software Engineering 2008

MRV Chaudron

Sheet 8

Common coupling

� Occurs whenever you use a global variable
� All the components using the global variable

become coupled to each other

� A weaker form of common coupling is when a
variable can be accessed by a subset of the
system’s classes

� e.g. a Java package

global variable

module

module

module

module

module

module

9

Software Engineering 2008

MRV Chaudron

Sheet 9

Control coupling

� Occurs when one procedure calls another
using a ‘flag’ or ‘command’ that explicitly
controls what the second procedure does

� To make a change you have to change both the
calling and called method

� One way to reduce the control coupling could be to
have a look-up table

� commands are then mapped to a method that should be
called when that command is issued

10

Software Engineering 2008

MRV Chaudron

Sheet 10

Example of control coupling

public routineX(String command)
{

if (command.equals("drawCircle")
{

drawCircle();

}
else

{

drawRectangle();
}

}

Caller needs to know:

Not drawCircle => draw Rectangle

11

Software Engineering 2008

MRV Chaudron

Sheet 11

Control Coupling Example

The behaviour of
component B is controlled
by component A through

the parameter flag

Example from David Stotts

Dept. of Computer Science

University of North Carolina
12

Software Engineering 2008

MRV Chaudron

Sheet 12

Stamp coupling:

� Occurs whenever one of your application
classes is declared as the type of a method
argument

� Since one class now uses the other, changing the
system becomes harder

� Reusing one class requires reusing the other

� Two ways to reduce stamp coupling,

� using an interface as the argument type

� passing simple variables

3

13

Software Engineering 2008

MRV Chaudron

Sheet 13

Example of stamp coupling

public class Emailer
{

public void sendEmail(Employee e, String message)
{

send(e.address, e.name, message)

}
...

}

name: string

address: string
date-of-birth: date
salary: number

class Employee

14

Software Engineering 2008

MRV Chaudron

Sheet 14

Example of stamp coupling

public interface Addressee
{

public abstract String getName();
public abstract String getEmail();

}

public class Employee implements Addressee {…}

public class Emailer
{

public void sendEmail(Addressee e, String text)
{...}
...

}

Using an interface to avoid stamp coupling

15

Software Engineering 2008

MRV Chaudron

Sheet 15

Stamp coupling Example

Example from David Stotts

Dept. of Computer Science

University of North Carolina

16

Software Engineering 2008

MRV Chaudron

Sheet 16

Data coupling
� Occurs whenever the types of method

arguments are either primitive
� The more arguments a method has, the higher

the coupling
� All methods that use the method must pass all the

arguments

� You should reduce coupling by not giving
methods unnecessary arguments

� There is a trade-off between data coupling and
stamp coupling

� Increasing one often decreases the other

17

Software Engineering 2008

MRV Chaudron

Sheet 17

Routine call coupling

� Occurs when one routine calls another

�The routines are coupled because they
depend on each other’s behaviour

�Routine call coupling is always present in
any system.

18

Software Engineering 2008

MRV Chaudron

Sheet 18

Reduce Routine call coupling

� If you repetitively use the same sequence of
methods to compute something

� then you can reduce routine call coupling by
writing a single routine that encapsulates the
sequence....

method foo
{

b();
c();

d();
…
b();

c();
d();

}

method foo’()
{

bcd();

…
bcd();

}

method bcd()
{

b();
c();

d();
}

4

19

Software Engineering 2008

MRV Chaudron

Sheet 19

Type use coupling

� Occurs when a module uses a data type
defined in another module

� It occurs any time a class declares an instance
variable or a local variable as having another class
for its type.

� The consequence of type use coupling is that if the
type definition changes, then the users of the type
may have to change

� Always declare the type of a variable to be the
most general possible class or interface that
contains the required operations

20

Software Engineering 2008

MRV Chaudron

Sheet 20

Inclusion or import coupling
� Occurs when one component imports a package

� (as in Java)

� or when one component includes another
� (as in C++).

� The including or importing component is now exposed to
everything in the included or imported component.

� If the included/imported component changes something or
adds something.

� This may raises a conflict with something in the includer, forcing
the includer to change.

� An item in an imported component might have the same
name as something you have already defined.

21

Software Engineering 2008

MRV Chaudron

Sheet 21

External coupling

� When a module has a dependency on
such things as the operating system,
shared libraries or the hardware

� It is best to reduce the number of places in
the code where such dependencies exist.

�The Façade design pattern can reduce
external coupling

22

Software Engineering 2008

MRV Chaudron

Sheet 22

Temporal Coupling
Program A

…

{

…

openfile(data)

do_long_processing(data);

closefile(data)

…

}

Program B

…

{

…

openfile(data)

closefile(data)

do_long_processing(data);

…

}

open close open close

processingprocessingprocessingprocessingprocessingprocessingprocessingprocessing

23

Software Engineering 2008

MRV Chaudron

Sheet 23

Temporal Coupling
A component XXXX expects an input from component YYYY

every secondevery secondevery secondevery second.

A component should handle all cases where attempts are

made to use it inappropriately (be in intentionally or not).

A RT-component should have a fall-back scenario:

If I don’t receive an input, then I do ‘plan B’.
So that other components that depend on XXXX will not also
have to deal with this problem.

This is a way of ‘fault containment’ – prevent domino-effect.

24Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Design of Control Styles

aDhfjkl

aDhfjkl aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

Centralized

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

aDhfjklaDhfjkl

aDhfjklaDhfjkl

Delegated

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

Overly Distributed

5

25Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Characteristics of Centralized Control

Centralized controllers can have extremely

complex control logic

Controllers surrounded by simple

information holders and service providers

These simple objects tend to have low-level,

non-abstract interfaces

Drawback:

Changes can ripple among controlling

and controlled objects

aDhfjkl

aDhfjkl aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

26Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Characteristics of Overly Distributed Control

Long message chains to dig information

out of information holders

Little or no value-added by those

receiving a message and merely

“delegating” request to next in chain

Drawback:

Hardwired dependencies between objects in call chain

May break encapsulation

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

27Wirfs-Brock Associates www.wirfs-brock.com Copyright 2000

Characteristics of Delegated Control

Coordinators know about fewer

objects than dominating controllers

Higher level communications

between objects

Benefits:

Changes typically localized and simpler

Easier to divide detailed design work

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

aDhfjklaDhfjkl

aDhfjklaDhfjkl

28

Software Engineering 2008

MRV Chaudron

Sheet 28

Interface Design

� An interface should reveal as little as possible
about the inner workings of the component

� Users (callers) should depend only on the
interface, not on the implementation

Recommended References:
•Effective Java: Programming Language Guide by Josh Bloch,

Prentice Hall, 2001

Check out video: http://www.infoq.com/presentations/effective-api-design

•Effective C++ by Scott Meyers, Addison-Wesley, 2005 (3rd ed).

29

Software Engineering 2008

MRV Chaudron

Sheet 29

Guidelines for Interface Design (1)Guidelines for Interface Design (1)Guidelines for Interface Design (1)Guidelines for Interface Design (1)
� Completeness:

� include all functions

� Essential/Minimal:

� omit needless features.

� General:

� do not limit the applicability of an interface to its initial purpose as
modules may be used in unexpected ways.

� Consistency

� applies to many aspects of interface design such as naming
conventions, parameter passing and exception handling.

� Orthogonality:

� Keep independent features separately

� Avoid offering the same service in multiple ways.

� Open-ended:

� leave room for future expansion.

� Opaqueness/Information-hiding:

� an interface should hide the details of the implementation.
Based on Hoffman [Hof90] based on o.a. Parnas.

30

Software Engineering 2008

MRV Chaudron

Sheet 30

Guidelines for Interface Design (2)

1. Keep interfaces cohesive and small (in that order)

2. Use different interfaces for users of the interface

that play different roles with respect to the

functionality

3. Don’t combine generic and specific functionality in

the same interface

4. Group optional functionality in separate interfaces

5. Avoid the introduction of convenience functions

6. Use strongly typed interfaces

7. Use systematic naming conventions

From Henk Jonkers c.s., Philips Research 2002

6

31

Software Engineering 2008

MRV Chaudron

Sheet 31

Guidelines for Naming Inventions
“…the relation of thought to word is not a thing but a process, a
continual movement back and forth from thought to word and from word
to thought. … Thought is not merely expressed in words; It comes into
existence through them.”

—Lev Vygotsky, thought and language

� Fit a name into some naming schemeFit a name into some naming schemeFit a name into some naming schemeFit a name into some naming scheme

� Java example: Calendar� GregorianCalendar�JulianCalendar?
ChineseCalendar?

� Give service providers Give service providers Give service providers Give service providers ““““workerworkerworkerworker”””” namesnamesnamesnames

� Service providers are “workers”, “doers”, “movers” and “shakers “

� Java example: StringTokenizer, ClassLoader, and Authenticator

� Choose a name that suits a roleChoose a name that suits a roleChoose a name that suits a roleChoose a name that suits a role

� Objects named “Manager” organize and pool collections of similar
objects

� AccountManager organizes Account objects

32

Software Engineering 2008

MRV Chaudron

Sheet 32

Guidelines for Naming Inventions
� Choose names that donChoose names that donChoose names that donChoose names that don’’’’t limit behavior optionst limit behavior optionst limit behavior optionst limit behavior options

� Account or AccountRecord?

� Record—information or facts set down in writing—an

informational object

� Account—sounds livelier—an object that makes informed

decisions on the information it represents

� Choose a name that suits a lifetimeChoose a name that suits a lifetimeChoose a name that suits a lifetimeChoose a name that suits a lifetime

� A ninety-year old named “Junior”?

� ApplicationInitializer or ApplicationCoordinator?

� Include facts most relevant to the users of a classInclude facts most relevant to the users of a classInclude facts most relevant to the users of a classInclude facts most relevant to the users of a class

� MillisecondTimerAccurateWithinPlusOrMinusTwoMilleseconds

or Timer?

� Eliminate naming conflicts by adding descriptionEliminate naming conflicts by adding descriptionEliminate naming conflicts by adding descriptionEliminate naming conflicts by adding description

� Rename a Properties candidate to TransactionHistoryProperties

33

Software Engineering 2008

MRV Chaudron

Sheet 33

Abstraction and classes

� Classes are data abstractions that contain procedural

abstractions

� Abstraction is increased by defining all variables as private.

� The fewer public methods in a class, the better the

abstraction

� Superclasses and interfaces increase the level of abstraction

� Attributes and associations are also data abstractions.

� Methods are procedural abstractions

� Better abstractions are achieved by giving methods fewer

parameters

34

Software Engineering 2008

MRV Chaudron

Sheet 34

Design Principle 5:
Increase reusability where possible

� Design the various aspects of your system so
that they can be used again in other contexts

� Generalize your design as much as possible

� Follow the preceding three design principles

� Design your system to contain hooks

� Simplify your design as much as possible

35

Software Engineering 2008

MRV Chaudron

Sheet 35

Design Principle 6: Reuse existing
designs and code where possible

� Design with reuse is complementary to design
for reusability

� Actively reusing designs or code allows you to take
advantage of the investment you or others have
made in reusable components

� Cloning should not be seen as a form of reuse

36

Software Engineering 2008

MRV Chaudron

Sheet 36

Design Principle 7: Design for flexibility

� Actively anticipate changes that a design may
have to undergo in the future, and prepare for
them

� Reduce coupling and increase cohesion

� Create abstractions

� Do not hard-code anything

� Leave all options open

� Do not restrict the options of people who have to modify
the system later

� Use reusable code and make code reusable

7

37

Software Engineering 2008

MRV Chaudron

Sheet 37

Design Principle 8: Anticipate obsolescence

� Plan for changes in the technology or environment so
the software will continue to run or can be easily
changed

� Avoid using early releases of technology

� Avoid using software libraries that are specific to particular

environments

� Avoid using undocumented features or little-used features of

software libraries

� Avoid using software or special hardware from companies

that are less likely to provide long-term support

� Use standard languages and technologies that are supported

by multiple vendors

38

Software Engineering 2008

MRV Chaudron

Sheet 38

Design Principle 9: Design for Portability

� Have the software run on as many platforms as
possible

� Avoid the use of facilities that are specific to one particular
environment

� E.g. a library only available in Microsoft Windows

39

Software Engineering 2008

MRV Chaudron

Sheet 39

Design Principle 10: Design for Testability

� Take steps to make testing easier

� Design a program to automatically test the software

� Discussed more in Chapter 10

� Ensure that all the functionality of the code can by driven by an

external program, bypassing a graphical user interface

� In Java, you can create a main() method in each class in order

to exercise the other methods

40

Software Engineering 2008

MRV Chaudron

Sheet 40

Design Principle 11: Design defensively

� Never trust how others will try to use a component

you are designing

� Handle all cases where other code might attempt to use your

component inappropriately

� Check that all of the inputs to your component are valid: the

preconditions

� Unfortunately, over-zealous defensive design can result in

unnecessarily repetitive checking

41

Software Engineering 2008

MRV Chaudron

Sheet 41

Design Heuristics

Design defensivelyDesign defensivelyDesign defensivelyDesign defensively:

Do not trust that others will use your component as

specified – each component should ensure its own

integrity

(from Lethbridge & Laganiere, p. 318)

A component should handle all cases where attempts

are made to use it inappropriately:

- check whether all inputs are valid

- check preconditions

42

Software Engineering 2008

MRV Chaudron

Sheet 42

Using cost-benefit analysis to choose
among alternatives

� To estimate the costs, add up:

� The incremental cost of doing the software engineering work,

including ongoing maintenance

� The incremental costs of any development technology

required

� The incremental costs that end-users and product support

personnel will experience

� To estimate the benefits, add up:

� The incremental software engineering time saved

� The incremental benefits measured in terms of either

increased sales or else financial benefit to users

8

Architectural StylesArchitectural StylesArchitectural StylesArchitectural StylesArchitectural StylesArchitectural StylesArchitectural StylesArchitectural Styles

44

Software Engineering 2008

MRV Chaudron

Sheet 44

Theme/Objective of this lecture

• Build vocabulary of architectural styles

• a set of ‘archetypes’ that are often used

• know their relative strengths and weaknesses

• Know when to apply or not to apply a particular style

The task of the architect is to come up
with a good metaphor for the system

Alexander Ran (Nokia)

45

Software Engineering 2008

MRV Chaudron

Sheet 45

Architectural styles

• Client/Server

• Pipe and Filter style

• Blackboard style

• Publish Subscribe

• Peer-to-Peer

CONTENTSCONTENTSCONTENTSCONTENTS

46

Software Engineering 2008

MRV Chaudron

Sheet 46

Nomenclature inspired by building architecture;

Architectural style

bridges: suspension, arc, … (check your Euro-notes)

Cathedral Amiens

http://en.wikipedia.org/wiki/Architectural_style

Hagia Sofia, Istanbul

Buildings: Gothic, Byzantian, ….

47

Software Engineering 2008

MRV Chaudron

Sheet 47

An architectural style is defined by:

• A set of rules and constraints that prescribe

­ Which types of components, interfaces & connectors

must/may be used in a system (vocabulary/metaphor)

Possibly introducing domain-specific types

­ How components and connectors may be combined

(structure)

­ How the system behaves (behaviour)
The pattern of dependencies (control-flow and data-flow)

• A set of guidelines that support the application

of the style (how to achieve certain system properties)

Architectural style 1/2

48

Software Engineering 2008

MRV Chaudron

Sheet 48

• Architectural styles are design paradigms for
a set of design dimensions

Some architectural styles emphasize different aspects
such as: Subdivision of functionality, Topology or
Interaction style

• Styles are open-ended; new styles will emerge

• Architectural styles are not disjoint

• An architecture can use several architectural styles

Architectural style

9

49

Software Engineering 2008

MRV Chaudron

Sheet 49

ClientClientClientClient----Server ArchitecturesServer ArchitecturesServer ArchitecturesServer Architectures

Nice source:
IT Architectures and Middleware:
Strategies for building Large Integrated Systems,
Chris Britton and Peter Bye, Addison Wesley, 2004

50

Software Engineering 2008

MRV Chaudron

Sheet 50

C/S Example: Thin Client

presentation
logic

application
logic

data
management

WWW Browser

database

application

Thin Client C/S:
largest part of processing at the server-side

Network load: low
Config. Mngmnt: simple (only server)
Security: concentrated at server
Robustness: stateless clients => easy fault recovery

51

Software Engineering 2008

MRV Chaudron

Sheet 51

C/S Example: ThickThickThickThick Client
Thick Client:
significant processing
at the client-side

WWW Browser

database

application
(specific)

presentation
logic

application
logic

data
management

application
logic

application
(generic)

Network load: high
Config. Mngmnt: complex (both client & server)
Security: complex (both client & server)
Robustness: clients have state => complex fault recovery

52

Software Engineering 2008

MRV Chaudron

Sheet 52

C/S Benefits

Scalable
Interoperable

53

Software Engineering 2008

MRV Chaudron

Sheet 53

ConceptConceptConceptConcept: Series of filters / transformation
where each component is consumer and producer

Pipe and Filter Style (1)Pipe and Filter Style (1)Pipe and Filter Style (1)Pipe and Filter Style (1)

ComponentsComponentsComponentsComponents: filters / transformations
possibly also: sources and sinks

ConnectorsConnectorsConnectorsConnectors: pipes;
interaction style: streaming of data

Topology:Topology:Topology:Topology: linear; possible variations:
feedback-loops, splitting pipes

Filter 1 Filter 2 Filter 3 Filter 4

computational
component

data flow

54

Software Engineering 2008

MRV Chaudron

Sheet 54

Special types of filters

� Pump (Producer)Pump (Producer)Pump (Producer)Pump (Producer)
Produces data and puts it to an output
port that is connected to the input end
of a pipe.

� SinkSinkSinkSink ((((ConsumerConsumerConsumerConsumer))))
Gets data from the input port that is
connected to the output end of a pipe
and consumes the data.

10

55

Software Engineering 2008

MRV Chaudron

Sheet 55

ConstraintsConstraintsConstraintsConstraints about the way filters and pipes can be joined:

• Unidirectional flow

• Control flow derived from data flow

BehaviourBehaviourBehaviourBehaviour TypesTypesTypesTypes:

a. Batch sequentialBatch sequentialBatch sequentialBatch sequential
Run to completion per transformation

b. ContinuousContinuousContinuousContinuous
Incremental transformation

variants: push, pull, asynchronous

Pipe and Filter Style (2)Pipe and Filter Style (2)Pipe and Filter Style (2)Pipe and Filter Style (2)

Filter 1 Filter 2 Filter 3 Filter 4

56

Software Engineering 2008

MRV Chaudron

Sheet 56

Semantic ConstraintsSemantic ConstraintsSemantic ConstraintsSemantic Constraints

Filters are independent entities

- they do not share state

- they do not know their predecessor/successor

Pipe and Filter Style (3)Pipe and Filter Style (3)Pipe and Filter Style (3)Pipe and Filter Style (3)

Filter 1 Filter 2 Filter 3 Filter 4

What are the dependencies between filters?
Compare this with Client Server?

57

Software Engineering 2008

MRV Chaudron

Sheet 57 58

Software Engineering 2008

MRV Chaudron

Sheet 58

Example P&F Architecture

59

Software Engineering 2008

MRV Chaudron

Sheet 59

AdvantagesAdvantagesAdvantagesAdvantages:

• Simplicity:

• no complex component interactions

• easy to analyze (deadlock, throughput, …)

• Easy to maintain and to reuse

• Filters are easy to compose (also hierarchically?)

• Can be easily made parallel or distributed

Pipe and Filter Style (4a)Pipe and Filter Style (4a)Pipe and Filter Style (4a)Pipe and Filter Style (4a)

60

Software Engineering 2008

MRV Chaudron

Sheet 60

DisadvantagesDisadvantagesDisadvantagesDisadvantages:

• Interactive applications are difficult to create

• Filter ordering can be difficult

• Performance:

- Enforcement of lowest common data representation,

ASCII stream, may lead to (un)parse overhead

- If output can only be produced after all input is

received,an infinite input buffer is required

(e.g. sort filter)

• If bounded buffers are used, deadlocks may occur

Pipe and Filter Style (4b)Pipe and Filter Style (4b)Pipe and Filter Style (4b)Pipe and Filter Style (4b)

11

61

Software Engineering 2008

MRV Chaudron

Sheet 61

Extendibility: extends easily with new filters

Flexibility: - functionality of filters can be easily

redefined,

- control can be re-routed

(both at design-time, run-time is difficult)

Robustness: ‘weakest link’ is limitation

Security: -

Performance: allows straightforward parallelisation

Pipe and Filter Style Pipe and Filter Style Pipe and Filter Style Pipe and Filter Style (5) Quality (5) Quality (5) Quality (5) Quality
FactorsFactorsFactorsFactors

62

Software Engineering 2008

MRV Chaudron

Sheet 62

Rules of thumb for choosing pipe-and-filter (o.a. from Shaw/Buschman):

- if a system can be described by a regular interaction patternregular interaction patternregular interaction patternregular interaction pattern of a

collection of processing units at the same level of abstraction;

e.g. a series of incremental stages

(horizontal composition of functionality);

- if the computation involves the transformation of streams of datatransformation of streams of datatransformation of streams of datatransformation of streams of data

(processes with limited fan-in/fan-out)

Pipe and Filter Style (6)Pipe and Filter Style (6)Pipe and Filter Style (6)Pipe and Filter Style (6)
Application Context Application Context Application Context Application Context

Hint: use a looped-pipe-and-filter if the system does continuous

controlling of a physical system

Typical application domain: signal processing

