Requirements Engineering }

Software Engineering
Leiden University 2007-2008
Michel Chaudron

Requirements Engineering

Based on Selections from

- Chapter 4 from Object-Oriented Software Engineering
by Lethbridge & Laganiere

- Requirements Engineering.: A Good Practice Guide
by lan Sommerville & Pete Sawyer

- Generative Programming by Czarnecki

What, Why, Who, When, Where, How?

Requirements engineering

The process of establishing the services
that the customer requires from a
system and the constraints under which
it operates and is developed.

The requirements themselves are the
descriptions of the system services and
constraints that are generated during
the requirements engineering process.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6

"The hardest single part of building a software system is
deciding precisely what to build. No other part of the
conceptual work is as difficult as establishing the
detailed technical requirements, including all the
interfaces to people, to machines, and to other
software systems. No other part of the work so
cripples the resulting system if done wrong.

No other part is more difficult to rectify later".

1}

Fred Brooks, "No Silver Bullet",
IEEE Computer,1987
Author of The Mythical Man-month

Understanding the problem

What the customer What the project

What the analyst

What the What the

explained leader understood designed consultant defined programmer made
How it was What was What was What was What she
maintained documented charged installed client needed

Developers’ View of Users

Users’ View of Developers

Users don't know what they want.
Users can't articulate what they want.
Users have too many needs that are
politically motivated.

Users want everything right now.
Users can't prioritize needs.

Users refuse to take responsibility for the
system.

Users are unable to provide a usable
statement of needs.

Users are not committed to system
development projects.

Users are unwilling to compromise.
Users can’'t remain on schedule.

Developers don’'t understand operational needs.
Developers place too much emphasis on
technicalities.

Developers try to tell us how to do our jobs.
Developers can't translate clearly stated needs
into a successful system.

Developers say no all the time.

Developers are always over budget.
Developers are always late.

Developers ask users for time and effort, even
to the detriment of the users’ important
primary duties.

Developers set unrealistic standards for
requirements definition.

Developers are unable to respond quickly to
legitimately changing needs.

Learning from each other

Users, customers,

managers, domain

experts, and

developers share
different skills,

| backgrounds, and

expectations.

Developing a shared vision

Requirements emerge
from a process of
co-operative learning in
which they are explored,
prioritized, negotiated,
evaluated, and
documented.

The 10 top reasons for not doing
requirements

10. We don’t need requirements, we’re using objects/java/web/....

. The users don’t know what they want

. We already know what the users want

. Who cares what the users want?

. We don’t have time to do requirements

. It’s too hard to do requirements

. My boss frowns when | write requirements

. The problem is too complex to write requirements

. It’s easier the change the system later than to do the
requirements up front

. We have already started writing code, and we don’t want to
spoil it

N W A~ U1 OO NN 0 ©

—_—

Volere Requirements Resources http:/www.volere.co.uk

“I held my entire program up for 4+ weeks due to
unclear, unwritten requirements. Took some heat for
that in the beginning, but the deep dive
requirements effort is highlighting a Silicon spin we
didn't know about, standards that we don't support,
other postlaunch requirements nobody
considered...all of this causing us and mgmt to
question the viability of the product. BTW, this is all
stuff we wouldn't have realized until it smacked us in
the face 6 months from now. Spending a month now
prevented us from spending millions before a
conscious decision.”

From : Reflections on a Successful Corporate Requirements Engineering Training
Curriculum, Erik Simmons, Intel Corporation, 2005

Stakeholder issues

Steve McConnell, in his book Rapid Development, details a number
of ways users can inhibit requirements gathering:

- Users don't understand what they want or users don't have a
clear idea of their requirements

- Users won't commit to a set of written requirements

- Users insist on new requirements after the cost and schedule
have been fixed.

- Communication with users is slow

- Users often do not participate in reviews or are incapable of
doing so.

- Users are technically unsophisticated
- Users don't understand the development process.
- Users don't know about present technology.

Why Software Projects Fail

Example of empirical research

25.0%

Related to
Requirements
Engineering

352 companies - 8 000 software projects. Source: The Standish Group, 19495 12

Contribution of Requirements Defects
Defect Source

6% 7%

6 % 6%

5%
5%
5%,
Bt Requirements
28% —— = translation

O Environment B Logic design

H Interface -
O Documentation

O Data
Incomplete

H Other requirements

13

Why Requirements Engineering?

- Scope the problem

- Understand the problem
- for the client as well as the architect
- Basis for design

- Contract between client/user and builders
- agreement on what has to be built

Understand the Domain

What is important?
Which things are stable and which change?
How does the project add to an organizations' success

Initial Steps in RE process

- What are the drivers?

- Stakeholders & concerns
- What are the constraints?

- Economical/technical/organisational
- What is the scope of the system?

Twin Peaks Process

Separate but concurrent development of
requirements & architecture

General

Specification

WHAT:
problem peral

structuring

Architecture

Requirements

Detailed

Independent

Implementation
Dependence

Depe nient
>

HOW:
solution

structuring

Progressing understanding of architecture & design
provides a basis for discovering further system

requirements and vice versa

There is interaction between available solutions and

requirements

What

|

What

|

What is required by the customer?

What are we going to realize?

How How are we going to realize the product?

What What What
Vool

How How Hoyv

4R .
WhatWhatWhat
oo
How How How
o
P .
What What What
vor oy
How How How

What are the subsystems we will realize?

How will the subsystems be realized?

up to "atomic" components

Slide by Gerrit Muller, ESI, 2007 18

What is a Requirement ?

- A statement about the proposed system that all
stakeholders agree must be made true in order
for the customer’s problem to be adequately
solved.

Short and concise piece of information

Says something about the system

All the stakeholders have agreed that it is valid
It helps solve the customer’s problem

Contract between customer and builder

Example Requirement Template

Requirement #: Requirement Type: Event/use case #:

Description:

Rationale:

Solrce:
Fit Criteria:

Customer Satisfaction: Customer Disatisfaction:
Dependencies: Conflicts:
Supporting Materials:

History: Volere

Copyright & Atlsntic Systans Guld

20

10

Errors

Up to 30-50% of the errors found further downstream
the development process are due to errors in the
requirements.

Requirements errors are typically non-clerical.

incorrect facts 49%
omissions 31%
inconsistencies 13%
ambiguities 5%

Requirements errors can be detected.
Review by authors 23%
Review by others 10%

21
Specify the requirements and
| read them to check that they
‘ meet their needs. T hey
e specify changes to the
requirements
- [g Use the reqluiremggt?
ocument to plan a bid for
the system and to plan the
system development process
| Use the requirements to
‘ understand what system is to
——e e be developed
System test | Use the requirements to
engineers ‘ develop validation tests for
- the system
Use the requirements to hel
maﬁ{féﬁfme understand the system an
engineers the relationships between its
22

11

Types of requirements

- User requirements:

The description of the functions that the system
has to fulfil for its environment in terms of the

users interacting with the system, e.g. in the form
of use cases.

- Software requirements:

The software requirements are a translation and a
more precise description of the user requirements,
in terms for software engineers.

Functional and extra-functional requirements
23

Types of Requirements

- Functional requirements
- Describe what the system should do

- Extra-functional requirements
- *jlities: Availability, Security, Reliability, Timeliness,
- Capacity

Constraints that must be adhered to during execution

24

12

Tvpes of extra-functional rea’rements

Non-functional
requirements
L

Poduct Organisational External
requirements requirements requirements
Efficiency Reliability Portability Interoperability Ethical
requirements requirements requirements requirements requirements
pemmsl EEaasee—— E— e E—

Usability Delivery Implementation Standads Legsldive
requirements requirements requirements requirements requirements
Performance Space Privacy Safety

requirements requirements requirements requirements
0
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6

Functional requirements

- What /nputs the system should accept
- What outputs the system should produce

- What data the system should store that other
systems might use

- What computations the system should
perform

26

13

Examples

The system shall allow users to search for an item by
title, author, or ISBN.

Defines system functionality.
If an item is not returned within the period of load,
then the person who loans the item will be fined Euro

1 per week.

Defines (causal) relations between system functions.

27

Examples of XFR: Reliability

Typically expressed in terms of
for repairable systems
Mean Time Between Failures (MTBF)
Number of hours that pass before a component fails
E.g. 2 failures per million hours:
MTBF = 10%/ 2 = 0,5 * 10° hr

For non-repairable systems
Mean Time To Failure (MTTF)
Mean time expected until the first failure of a system
Is a statistical value over a long period of time

Mean Time To Repair (MTTR) Availability 8

14

Examples XFR: Maintainability

Maintainability

The average person time required to fix a category
3 defect (including testing and documentation
upgrade) shall not exceed two person days.

29

System Quality Attributes

- Time To Market
- Cost and Benefits

Projected life time

- Targeted Market

Integration with
Legacy System
Roll back Schedule

Performance

- Availability End User's . Portability Developer’s

Business
Community
view

- Maintainability

- Usability view - Reusability view

- Security

- Testability

30

15

Constraints

Constraints are not negotiable

Constraints concerning the environment and
technology of the system.
- Platform
- Technology to be used

Constraints concerning the project plan and
development methods
- Development process (methodology) to be used
- Cost and delivery date
- Often put in contract or project plan instead

31

Constraints

Constraint restrict how the requirements are to be implemented.

Interface Requirements.
How external interfaces with other systems must be done.

Communication Interfaces.
The networks and protocols to be used.

Hardware Interfaces.
The computer hardware the software is to execute on.

Software Interfaces.

How the software should be compatible with other software:

applications, compilers, operating systems, programming
languages, database management systems.

User Interfaces.
Style, format, messages

32

16

Requirements on Requirements (1)

Each individual requirement should be
Important/necessary for the solution of the current problem
Unique
Unambiguous
Logically consistent
Not over-constrain the design of the system

- Atomic: not consist of multiple separate requirements

33

Requirements on Requirements (2)

The set of requirements together should be:
- Complete

Expressed using a clear and consistent notation

- at the same level of detail
- Without duplication

34

17

Requirements on Requirements (3)

S Specific
To-the-point, precise
M Measurable
Quantifiable and verifiable
A Acceptable (to the stakeholders)
Accessible, understandable (for the user)
Achievable (technically/planning/economically)
R Realistic
Deducible to the real business drivers
T Testable

35

Let’s consider

- “All communication between client and server is

secure” not
- “It is easy to extend” measurab/eJ

- “The system should respond Qurcrry

- “The user should not have to.wait m a few
second ...”
- “Determine solution within 0.3 sec

[{}

18

Requirements Prioritization

37

The Cost of Traditional BRUF

Big Requirements Up Front
Source: Jim Johnson of the Standish Group, Keynote Speech XP 2002

Pie chart shows percentage of functionality used by stakeholders

“Successful” Projects Still Have Significant Waste

Pareto-rule applies: 20% of functionality delivers 80% of value

Always
7%

Often
13%

Never
45%

Sometimes
16%

38

Rarely
19%

19

Prioritizing Requirements

- MIL STD:
- Must have, will have, may have

- RUP: MoSCoW
Must have
Should have

Could have
Won'’t have

Criteria: indicate importance

Alternative criteria: volitility, cost to realize, risk, ..

39

Cost-Value Prioritization of Requirements

Motivation for Prioritization:
- Focus development effort
- Allocate resources based on importance

- Make trade-offs between conflicting
goals, such as quality, cost and time-to-
market

40

20

Cost-Value Prioritization of Requirements

Process:

1. Review requirements for clarity and completeness (by
Requirements Engineers)

2. Assess relative value of requirements in pair wise
manner (Customers and users)

3. Assess relative cost of realizing requirements in pair
wise manner (by experienced SW Engineers)

4. Calculate (value, cost)-pairs (using AHP¥)
Plot requirements as (value, cost)-pairs
6. Prioritize

(92

* Analytic Hierarchy Process

41
- 14 Requirements
) 2%
2
‘qé,; 16% 25
SRR R Lo medium value °'3
o & 5 o 5 e =5 h
3 noopy M S medium cost
E 0 s Il s il I s s L ml 41 Il — 15 Q \° 06
= 1234567 80900112131 z
Requirement 2
% 10] ®! 5
< L
>
e
RN LY \ﬂ\!a\ug\
- 2 - o \o? “(;0
g 0 . 2 8 10 wo
§ 15 - T ez . ‘ ‘
2 i 102 0 5 10 15 20 25
g 10 “ 4) s 7 P Cost (percent)
s g & i &
o 2
8 0! Lwl L LA | U | |
12 3 4 5 6 7 8 9 1011 1213 14
Requirement 42

21

THE ANALYTIC HIERARCHY PROCESS

To make decisions, you identify, analyze, and make trade-
offs between different alternatives to achieve an objective.
The more efficient the means for analyzing and evaluating
the alternatives, the more likely you’ll be satisfied with the
outcome. To help you make decisions, the Analytic Hierachy
Process compares alternatives in a stepwise fashion and mea-
sures their contribution to your objective. !

AHP in action. Using AHP for decision making involves
four steps. We'll assume here that you want to evaluate can-
didate requirements using the criterion of value.

Step 1. Ser up the n requirements in the rows and colummns of an
n % naatriv. We'll assume here that you have four candidate
requirements: Reql, Req2, Req3, and Req4, and you want to
know their relative value. Insert the # requirements into the
rows and columns of a matrix of order # (in this case we have
a4 4 matrix).

Step 2. Perform pairwise comparisons of all the requirements
according to the criterion. The fundamental scale used for this
purpose is shown in Table A.! For each pair of requirements
{starting with Reql and Req2, for example) insert their
determined relative intensity of value in the position (Reql,
Req2) where the row of Reql meets the column of Req2. In
position (Req2, Reql) insert the reciprocal value, and in all
positions in the main diagonal insert a *1.” Continue to per-
form pairwise comparisons of Reql-Req3, Reql-Req4,
Req2-Req3, and so on. For a matrix of order n, #-(n —1)/2
comparisons are required. Thus, in this example, six pairwise
comparisons are required; they might look like this:

Reql Req2 Req3 Reqd
Reql 1 173 2 4
Req2 3 1 a 3
Req3 1/2 1/5 1 173
Reqd 174 173 3 1

Step 3. Use averaging over normalized columns m estimate the
eigenvalues of the mamix (which represent the criterion distri-
bution). Thomas Saaty proposes a simple method for this,
known as averaging over normalized columns.! First, caleu-
late the sum of the » columns in the comparison matrix.
Neat, divide each element in the matrix by the sum of the
column the element is a member of, and caleulate the sums
of each row:

Reql Req? Reqd Reqd Sum
Reql 0.21 0.18 0.18 048 105
Req2 0.63 0.54 045 036 1.98
Req3 0.11 0.11 0.09 0.04 034
Reqd 0.05 0.18 0. 012 0.62

Then normalize the sum of the rows (divide each row
sum with the number of requirements). The result of this
computation is referred to as the priarity mamiz and is an esti-
mation of the eigenvalues of the matrix.

1.05) (026
1 |1os| |os0
10347 0.00
0.62) lo.16

Step 4. Assign each requirement its velative value based on the
estimated eigenvalues. From the resulting eigenvalues of the
comparison matrix, the following information can be
extracted:

+ Reql contains 26 percent of the requirements’ total
value,

Req2 conrains 50 percent,

+ Req3 contains 9 percent, and

+ Req# conrains 16 percent.

43

AHP consistencv

Result consistency. If we were able to determine precisely
the relative value of all requirements, the eigenvalues would
be perfectly consistent. For instance, if we determine that
Req1 is much more valuable than Req2, Req2 is somewhat
more valuable than Req3, and Req3 isslightly more valuable
than Reql, an inconsistency has occurred and the result’s
accuracy is decreased. The redundancy of the pairwise com-
parisons makes the AHP much less sensitive to judgment
errors; it also lets you measure judgment errors by caleu-
lating the consistency index of the comparison matrix, and
then calculating the consistency ratio.

Consistency index. The consistency index (CI) is a first indi-
cator of result accuracy of the pairwise comparisons. You cal-
culate itas CJ = (lmax— ﬂ) Hn— l). Amax denores the
maximum principal eigenvalue of the comparison matrix.
The closer the value of Amax is to # (the number of
requirements), the smaller the judgmental errors and thus
the more consistent the result. T'o estimate A max you first
multiply the comparison matrix by the priority vector:

1 173 2 4)(026) (1.22
3 TEN 0,50 {218
172 1/5 1 1/3[]0.09|7] 037
s 0.16) |0.64

Then you divide the first element of the resulting vector by
the first element in the priority vector, the second element of
the resulting vector by the second element in the priority
vector, and so on:

122/0.26) (4.66
2187050 |440
037 /0.09 |7| 429
0.64/0.16) |4.13

44

22

Prioritization

- Estimation of relative weights
- ratio-scale

- 100 $ approach

- ratio-scale

- Ranking by comparing
- (bubble)sorting - ordinal scale

45

Managing Changing Requirements

- Requirements change because:
- Business process changes
- Technology changes
- The problem becomes better understood

- Requirements analysis never stops
- Continue to interact with the clients and users

- The benefits of changes must outweigh the costs.
- Certain small changes (e.g. look and feel of the Ul) are
usually quick and easy to make at relatively little cost.

- Larger-scale changes have to be carefully assessed

- Forcing unexpected changes into a partially built system will
probably result in a poor design and late delivery

- Some changes are enhancements in disguise
- Avoid making the system bigger, only make it better 46

23

Requirement Changes

Requirements Changes - Business Systems

Requirements Growth %

-5-0 0-5 510 1015 1520 20-25 25-30 30-35 3540 4045 4550 50-55
Requirements Growth %

B — Business Systems Avg. Line Style ==========-== 1 Sigma Line Style

Traceability

- From req to arch choices/features
- From features to req’s

- Check

- Completeness of system
- Analyze impact of changing requirements

48

24

Forward Traceability

................... How is this requirement realized?
""""""""""" To help in understanding...

49

Backward Traceability

To which requirements does this
part of the system contribute?
-------- | Whyam I here?

...................

50

25

Why Traceability?

Accountability: where did this requirement come from?

- The source of a requirements may be needed for clarification,
negotiation, conflict resolution

Matching solution to problem
- For monitoring completeness of system:

- Acceptance test: are all requirements addressed?
- are there unnecessary requirements/features?

Analyze impact of changes (in req’mt’s / design decions)

- Change request: What parts of the design need to change, if a
requirement changes?

Reuse of requirements

51

How Traceability: Hyperlinks

design document and requirements document
contains hyperlinks to each other

Requirements document

Typical use: .
interactive exploring / 1.2YYYY
1.3727777

browsing req.docs

Design document

Using .html documents
1.1 Design Decision: use tactic XYZ

& browsersdue to / supports requirement 1.2
.... because rationale

2

26

But also
- Trace the source of requirements

Stakeholders

1.1 Customerl
1.2 Developer

Requirements document

1.1 XXXX
1.2YYYY

1.3 Maintainer

== ... Supports stakeholder 1.2
.... because rationale

mTrace the history/evolution of requirements

Requirements document
Version 0.5

1.1 XXXX
1.2YYYYy

Requirements document

=F2ZFFFF= cancelled

1.1 VVVVV modified because

53

How Traceability: Matrix

A matrix links requirement to design decisions

requirements =)<

1

2

314(|5(6(..[.]-

design

decisions q

Uses: database

or spread-sheet

54

27

Req. Management Guidelines

Basic Guidelines:

1. Define policies for requirement management
2. Define traceability policies

3. Maintain a traceability manual

Intermediate Guidelines:
4. Use (automated) requirements management tool
5. Define change management policies
- Maintain a change history
6. ldentify global system requirements

Advanced Guidelines:
7. Measure requirements stability
- Identify volatile requirements

8. Record rejected requirements 55
From: Sommerville & Sawyer

Traceability Research Questions

- How much traceability should one do?

- Can we automate traceability?
- Matching keywords between design and req’s?

56

28

Concluding Remarks

There is a lot more to requirements that meets the eye.

A lot of errors in system development can be traced to
erroneous requirements. It pays to make an effort to
check your requirements

Requirements evolve in concert with architectural
decisions.

Domain Engineering helps developing system families

Lots of guidelines exist for doing requirements right!

Use them!
57

Questions?

See you this afternoon & next week

29

[Gacek et al 1995] present the results of a survey of
people who are somehow involved in software
development processes (developers, customers,
maintainers, aquisitioners, etc.).

There they found that, with respect to architects, the
three major concerns were

“1) requirements traceability;
2) support of tradeoff analyses; and
3) completeness, consistency of architecture.”

Gacek, C., Abd-Allah, A., Clark, B.K., and Boehm, B. (1995)

“On the Definition of Software System Architecture,” in
Proceedings of the First International Workshop on Architectures
for Software Systems - 17th ICSE, Seattle, 24-25 April 1995, pp.
85-95. 59

User Input '
FeatureModel 7
—Feature Graph \7 e “T Feature Selection I
—Constraints

\ -
DN
\ }‘ Component Selection I

g \ (Component Set
—

. P

\>‘<‘> Component Part Selection I
Component Part Set '
S

p
Component Family Model
—Feature to Component Map
—Component to Parts Map
~Constraints

/

/
/l Component Restructuring I
-

d Final Component Source'

l Compilation I

[Binary Components '

Component Parts

~C++ Classes
—Aspect Code
—Build Instructions
—Constraints

60

30

Requirements documents

- should be:
- agreed to by all the stakeholders
- sufficiently complete
- well organized

- Easy to read Requirements
- Easy to maintain / change document
- clear F—
LY ... because rationale
- 1.2 YYYY
- Traceability:
- use of hypertext may be usefull Design
- for exploring/browsing req.docs document
....due to
requirement 1.2

61

- Analysis anti-patterns

: The Functional/Technical specification is given
to the Development team on a napkin (i.e.,
informally, and with insufficient detail) which is
fundamentally equivalent to having no
specification at all.

. All requirements are communicated to the
development teams in a rapid succession of
netmeeting sessions or phone calls with no
Functional/Technical specification or other

supporting documentation.

: To write the Technical/Functional specification

after the project has already gone live.
62

31

Don Gause lists the five most important
sources of requirements failure as:
- failure to effectively manage conflict,

- lack of clear statement of the design problem
to be solved,

- too much unrecognized disambiguation,
- not knowing who is responsible for what
- lack of awareness of requirements risk.

63

Through Requirements you are meant to find
out and understand what users’ intentions
and need are.

This may be different from what they say it is!

64

32

Ezelsbruggetje

- Het woord is waarschijnlijk afkomstig van
het feit dat de ezel maar een heel klein
randje nodig heeft om snel op de plek
van bestemming te komen; een plank
over een sloot volstaat al. Het woord
ezelsbrug is al heel oud en bestond in
het Latijn al (pons asinorum).

- English translation welcome ...

65

Quality Characteristic Sub_.characteristics

Functionality

Suitability Accuracy Interoperability Security

Reliability

Maturity Faulttolerance Recoverability Compliance

Usability

Understand ability Lealrnahlllty Opelrahlllty Comlpllance

Efficiency

Time behavior Resource behavior Compliance

inability

Complli

Anal)lfsability ChanLeabiIity Stability Tesjabil'ﬂy Comp|iance

Portability

Ada;JtabiIity Instaltability Co-elxistence Replal:eability Comp|iance

ance

is refined into is refined into

iz measured b

[characteristic] — = [sub-characteristic] —— = .

[EEE

33

STIMULUS-ENVIRONMENT-RESPONSE

‘Formula’ for scenario’s
- Use case scenario
Remote user requests a database report via the Web
during peak period and receives it within 5 seconds

- Growth scenario
Add a new data server during peak hours within a
downtime of at most 8 hours.

- Exploratory scenario
Half of the servers go down during normal operation
without affecting overall system availability

A good scenario makes clear what the stimulus is and
what the measurable response of interest is &

34

