Guidelines for Requirements Analysis version 2.11 —01.08.2006

Guidelines for Requirements Analysis in Students’ Projects

Information Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente

Introduction

This document provides guidelines about how to do a requirements analysis and how to write a
requirements specification. It gives hints about what you could do and warns you about things that
you should not do. It is not a method that you can follow step by step. Problems are different, and
what works well in one case would not be the best approach in another case. The available time can
take from a few weeks to several months. And your skills and experience also determine what are
good techniques to use. If a particular specification technique is treated in a course you haven’t taken,
then it might not be a good idea to try it out on an important job. So you have to decide for yourself
what is the best to do in your project.

These guidelines are written primarily for master and bachelor students of Business Information
Technology, but could be used by others. The document is self-contained, but refers to other sources
for detailed descriptions of techniques. Many references are given to the book used in the bachelor
course Requirements Engineering (232081), S. Lauesen: Software Requirements [Lau02]. The UT
library has a copy that is permanently available (it may not leave the library).

Outline of the Guidelines

After an introductory chapter
0. What you should know before you start

the remainder or these guidelines is structured as a series of steps that comprise an idealized life
cycle of a requirements specification:

1. Analysing the problem and the problem context
After this step, you have an understanding of the problem context and you have learnt what
should be improved and why.

2. Defining the ideal solution
After this step, you know what, in principle, the best solution to the identified problem(s) would be.

3. Defining a realistic solution
After this step, it has been defined what the system, for which you are going to do a requirements
analysis, should achieve. Moreover, relevant stakeholders agree about its mission.

4. Gathering requirements
After this step, you know what people would like the system to do and which requirements and
constraints there are.

5. Writing a requirements specification
After this step, you have a readable first version of the requirements specification that can be
discussed with involved persons. We distinguish four separate concerns
5.1. The contents of a requirements specification
5.2. Specification techniques
5.3. Readability and linguistic issues
5.4. Quality check

6. Validating the requirements specification
After this step, you have made sure that the requirements reflect what the relevant stakeholders
want from this project. This is the requirements specification that you deliver.

7. Maintaining the requirements specification
The world goes on, and new requirements may come up. This is outside the scope of most
students’ projects, but for the sake of completeness we discuss it briefly.

University of Twente, Information Systems group 1

Guidelines for Requirements Analysis version 2.11 —01.08.2006

The ideal requirements process would follow these steps in consecutive order. As you may have
guessed, the ideal requirements process does not occur in practice. But for the purpose of organising
the material, it makes sense to discuss the steps one by one.

Each chapter treats a single step in the requirements specification life cycle. An outline gives
essential questions that you should ask yourself (and others) and what to do about these. The
remainder of the chapters treat specific topics in more detail. Appendices at the end of the document
give yet more detail and references to further literature.

Not every topic is applicable in every context. Read all the outlines and study other topics as
appropriate.

About this document

These Guidelines have been compiled and are maintained by the Information Systems group at the
University of Twente.

Feedback is welcome! It helps us to improve future versions of the Guidelines.
Please contact Klaas Sikkel, room ZI 3102, email: k.sikkel@utwente.nl.

University of Twente, Information Systems group 2

Guidelines for Requirements Analysis version 2.11 —01.08.2006

Contents
0 What you should know before you start.........ccccvriirmmmnismmmmnismsnmnesssmsss s s ssssssssssssssens 4
0.1 THhe reqUIrEMENTS PrOCESSciiueeeiiiitiiee ettt e ettt e e e e e e e e e e e e e s abe e e e eanreeeeannes 4
0.2 The requirements specification life CYCIE ..o 4
0.3 From business problem to system Specification............oocoeeiiiiiiieiiiee e 5
0.4 Whyisn’tthere a proper Method? ..o 5
1 Analysing the problem and the problem contextccccvircminiinssmnn s ——— 7
1.1 What isS the ProbIEM ...t rae e s 7
1.2 Organisational CONTEXEii i st e e rae e e sbe e 8
1.3 SHAKENOIAGIS ... et e e rae e sae e e 8
L 101 (=Y V= g Vo PSP 9
2 Defining the ideal SOIULIONcciiiiiir i s 10
2.1 One essential Problem e 10
2.2 The client’s goal vs. the project goalcuii i 10
2.3 Business solution vs. SOftware SOIUTIONcooviiiiiiiiiee e 10
3 Defining a realistic SOIULIONcceiiiiiir s s s e 11
3.1 MISSION STAIEMENT ... e e e ennee s 11
4 Gathering reqUIFEMENTESccccviiiremriiiienriiisesrisssms s rsssas s s smn s sassms s s saan s e samn s ea s amn s sa s amn s en s amnnensanns 13
4.1 Requirements at different [EVEIScoo i 13
4.2 Modeling the system vs. modeling the system’s environmentcccceivieee e, 14
4.3 TYPES Of rEQUINEIMENTS ...t s s e e s nee e e e e 14
O @ T =1 14T - To3 (o) £ PP 15
N e 1] 11T USRI 15
4.6 The RequiremMents Shelloo i e ae e saee e 15
A | o 11 =Y - USSR 15
4.8 Requirements elicitation vs. requirements Creation...........cccoocveveiriiee e 16
4.9 Techniques for requirements gatheringocueee i 16
4.10 Requirements elicitation for custom-tailored or COTS SyStems.......cccevceeiieiiiieninieeiieee 17
5 Writing a requirements specifiCation.........ccccvcccciiiiisniinnssr s s s s 18
5.1 Contents of a requirements specification ... ——— 18
5.1.1 Free form or temPIate?ooo oot sne e 18
5.2 Specification teChNIQUES.......cccciiiireiiiiirr s s s e 19
5.3 Readability and linQUIStiC iSSUEScccuirecmriiismriiissnniissens s s s sssssss s s ssss s sssssssssnssanns 19
B5.3.1 KEEP I SN0 ... e e 19
5.3.2 KEEP It SIMPIE ...t et e e e e e e e ne e e e anes 20
5.3.3 SHUCIUINNG 1EXE. e e s e e e s nee e e e eanes 20
5.3.4 Presenting information..........oouiiii i e 21
L @ T T 111 o £ 1Y o G, 21
5.4.1 Quality criteria for individual reqUIremMEentscciiiiiiiiii e 21
5.4.2 ConsistenCy aCrOSSIEQUIFEMENTSciiiiiiiiiiiiiiie e et e e tee ettt rbee e st e e be e saee e s neeesaneaens 22
5.4.3 Have you finalized the dOCUMENT?c..eiiiiii e 22
6 Validating a reqUIremMents SPEC......cccvcriiirssmiiiirssrinsn s s s s amn s e amn s s nanns 23
6.1 Requirements vValidationooii i 23
6.2 Requirements PrioritiZationcoooiiieiiiiiie e 24
7 Maintaining the requirements specification.........cccccciiiirccniinncsr s ———— 25
7.1 Requirements EVOIUTIONoooiiiii e 25
A2 U - o= o 11 2 SRR 25
L] oL T 26
= (=T =Y T 27
Appendix A. Context-free qUESHIONScccvcccciiiiirsr i ———— 28
Appendix B. Requirements elicitation teChNiqUEesccceciiriiemiinirsms s 29
Appendix C. Volere Requirements Shell ... s s s sssssnns 31
Appendix D. Volere Requirements Specification Template...........cccceciiiirecniniicsnininssnnnssninaens 32

University of Twente, Information Systems group 3

Guidelines for Requirements Analysis

0. What you should know before you start

version 2.11 —01.08.2006

The purpose of this chapter is to give you some general words of advice. You should read this before

you start your requirements analysis.

Way of thinking — What are the essential questions?

O What is a requirements specification?

0 How do you obtain a requirements specification?

0.1 The requirements process

Requirements analysis is for a large part a social
activity. The requirements analyst’s job is to find
what relevant stakeholders want and lay that down
in a suitable specification (and not to invent the
requirements himself). Gause and Weinberg
[GW89] define a requirements process as

the part of [system] development in which people
attempt to discover what is desired.

In the early days of computing, it was thought that
the requirements analyst’s job is to find out what is
needed. This presupposes that there is some
objective need, and analysis will reveal what that
need is. In many projects, this is not the case.
There are various things that could be desired for
various reasons. Moreover, many relevant persons
do not have a clear picture of their own desires —
the process of requirements discovery helps them
to find out what they really want.

To make things more complicated, any project has
a number of different stakeholders with different
interests, and it is usually not feasible to incorporate
all desires of all stakeholders. Choices have to be
made and somebody has to put some effort into
making the stakeholders accept the resulting
requirements specification.

0.2 The requirements specification life
cycle

In this section we elaborate a requirements
specification life cycle of seven steps. In the next
section we will argue that it doesn’t work that way,
and in practice you won’t be able to strictly separate
these steps.

What, then, is the point of introducing this model?
It's a reference model, describing the ideal case.
Even though you will never meet the ideal case, it
helps to keep structure and put things in the right
place. For example, if you return from a chaotic

University of Twente, Information Systems group

focus group meeting which has done bits of steps 1,
2, 4, and 6 in random order, you can get some
structure in your equally chaotic notes by ordering
them according to these steps.

It's like the waterfall model in Software Engineering
— the first thing you learn in an SE course, despite
the fact that nobody ever could make it work that
way. It's the lucid enumeration of steps that makes
it worth knowing it.

In the generic requirements process described here
we distinguish different phases

¢ Finding out what the problem is, and what kind of
solution is desired (steps 1-3)

e Drawing up a requirements specification for the
desired solution (steps 4-6)

e Maintaining the requirements specification when
requirements change later on in the project (step
7)

In each phase we can distinguish four different
kinds of activities:

® Preparation: getting organized before you start,
finding out what you are going to do and whom
you may want to talk to, etc.

e FElicitation: going out and finding requirements,
by asking people, observing, reading documents,
etc.

e FEngineering: putting things together: specifying
what elicited and observed, organizing and
combining things. There is always an element of
design involved.

e Negotiation and decision making. This is politics,
rather than engineering, but is an inevitable part
of getting a requirements specification accepted.

The complete life cycle model is shown in Figure 1.
The phases cycle through the different activities,
yielding our seven steps:

Guidelines for Requirements Analysis

Elicitation
___ Requirements gathering

Preparation

~T

Politics Engineering
Negotiating, Decision making Design, Specification

Figure 1: The requirements life cycle

1. Analysing the problem and the problem
context

2. Defining the ideal solution

3. Defining a realistic solution

4. Gathering requirements

5. Writing a requirements specification

6. Validating the requirements specification
7. Maintaining the requirements specification

The maintenance phase is never finished and can

cycle on forever. (But we can anticipate this).

0.3 From business problem to system
specification

Another way to look at the relation between problem
and solution is shown in Figure 2.

/
1

Business 2,3 Business
Business Problem Solution

2,3

Supporting System 4,56 System
System Product — Solution
Idea Specification

Problem Solution

Figure 2: The Z model

We distinguish between problem and solution, and
between business and supporting (software)
system. In a perfectly rational world, a requirements

University of Twente, Information Systems group

version 2.11 —01.08.2006

analysis process would follow the arrows in the
diagram.

In a narrow sense, requirements analysis is only
concerned with the last arrow. Somebody has
suggested that a system for a particular purpose
can be developed (or bought) and your task as a
requirements analyst is to find the requirements for
that system. However, in order to find these
requirements, it is important to know why this
system is needed, what problem it will solve —
otherwise it's not possible to determine the
requirements.

A problem always arises in the real world. Even
when it’s clear that the system is to blame. E.g. “our
system is too slow.” It would not be a problem if
people would not depend on that system for doing
the particular job they do. In other circumstances
(e.g. the same company 5 years ago) the same
system might not be experienced as being to slow.
The idea to design, replace, or upgrade a system
doesn’t arise because having the system is a goal
in itself, the system is needed for some purpose.

It is called “business problem” because most
requirements engineering is done for systems that
have some business purpose, but it doesn’'t have to
be related to commercial business.

The solution to a business problem is always a
business solution. It is possible that this solution
involves a computer system. It is tempting to think
that acquiring a new system may solve a business
problem (this is a mistake that is often made). Using
a new system can be the solution to a problem.
Acquiring the system isn’t suffficient, the system

has to fit into the way the work is done — or perhaps
the work has to be reorganised, so as to exploit the
capabilities of the new system.

In perfectly rational top-down design process, one
would first define a business solution to address the
business problem, then consider what kind of
system is needed to support the business solution
and finally draw up a requirements specification.
After the arrows in Figure 2, this is called the Z
model.

To make sure that we do requirements analysis for
a system that helps addressing the right problem,

we start with step 1 — identifying the problem. Steps
2 and 3 yield an idea of the solution and the system
needed to realize that solution. After that we can do
a more detailed requirements analysis in steps 4-6.

At least, that’s the theory...

0.4 Why isn’t there a proper method?

Life would be a lot easier with a method that you
could follow step by step. Unfortunately, our life
cycle model doesn’t pretend to be that kind of
method. In fact no such method exists for
requirements analysis.

Guidelines for Requirements Analysis

There is no method that addresses all cases

For each project you have to decide which issues
are important and need a lot of care, and which
issues are trivial or do not apply. These guidelines
are no substitute for thinking for yourself, and you
have to judge what is needed in your project.

Requirements analysis projects differ a lot in scope
and nature. Some examples from projects carried
out by M.Sc. students:

1. A commercial bank has a problem with customer
loyalty. Obtaining new customers by means of
marketing actions seems to work, but the bank
isn’t able to retain these customers for a long
time. Can appropriate CRM software help them
to increase the loyalty of their customer base?

The focus in this project is more on organizational
practices than on the technical support system. In
this project something was implemented in the end,
but initially it was not at all clear what the solution
should look like. But it was evident that a system
won't help if the bank’s employees are unable or
unwilling to use it properly. Steps 1—6 were carried
out, but the emphasis was on steps 1, 4, and 6.

2. A telecom company wants to find out how it
could rent telephone services to corporate
clients, making use of VolP (Voice over IP)
technology.

This is primarily a technical project. Not much study
has to be done about how people would use a VolP
telephone, because it should work as a regular
telephone, and possibly clients shouldn’t even be
aware of the difference. Steps 3—6 were carried out
in this case (the result of step 2, the ideal solution,
was given as a starting point for the project) but the
emphasis was on steps 4 and 5.

3. The Police department in a region in the north of
the Netherlands has difficulties in providing
statistical material to the Ministry of Justice.
Sometimes when the Ministry asks for statistics
about a particular type of crime, they have to go
through all the database records to find the
requested numbers by hand.

The stated problem is clear, but it is a symptom of
an underlying problem that was hard to find and
harder to solve. In this project only steps 1-3 were
carried out.

University of Twente, Information Systems group

version 2.11 —01.08.2006

The steps in a requirements analysis process
do not take place in consecutive order

Only in the ideal situation, you do step 1 first, then
step 2, and so on, without retracing your steps. In
practice you will find it hard to separate analysing
the problem (step 1) from eliciting the requirements
(step 4). Also, it makes sense to combine
requirements elicitation (step 4) with writing down
the elicited requirements (step 5).

Many projects, and some excellent requirements
analysis methods, start with step 3. If the project
goals are straightforward and you are asked to draw
up a requirements specification for a system with a
clear purpose, step 3 is a natural starting point. This
implies that somebody else has already performed
steps 1 and 2, found out what the problem and the
ideal solution was, decided to set up a project and
engage you as a requirements engineer. If this is
the case, you can — and should — find the results of
the problem analysis. If these don’t exist, e.g. if the
project is driven by a solution, rather than a
problem, you should consider doing some problem
analysis after all.

However, in many cases, including most cases in
which our students do a requirements analysis,
there is some idea about the problem, but it is not
immediately obvious what the best solution is —
otherwise they wouldn’t have asked the university.

Many systems fail, despite the fact that they fulfil
the requirements, because the problem is poorly
understood and a solution is built that doesn’t
address the real problem. For this reason we insist
that step 1 is part of the requirements analysis.

Problem-solution co-refinement

It's a very good idea to define the problem first, and
then the solution. If it’s a difficult problem with no
easy solution, there is a complex relationshop
between problem and solution. The nature of a
possible solution determines what problems you
can solve, and if we don’t know the solution yet we
might not know exactly which problem we can
solve. Empirical studies have shown that refining
the solution and refining the problem go hand in
hand [Cro89]. That's why you always have to do
some rework on previous steps, no matter which
method you follow.

The method does not work

You do the work. The method is just a set of
guidelines. The method is not responsible for your
work products, nor are the authors of the method.
You are responsible yourself.

Guidelines for Requirements Analysis

version 2.11 —01.08.2006

Step 1. Analysing the problem and the problem context

The purpose of this step is to find out what the problem is and, equally important, to understand the
situation in which the problem occurs. It is not the purpose of this step to think about possible
solutions. That comes later, after we have learnt enough about the problem.

Way of thinking — What are the essential questions?

0 What are the problems (goals, desires) and what are the causes for these problems?

O Is the stated problem the real problem or it is a symptom of an underlying problem?

O Who are the stakeholders?

0 What will be the impact if the problems are resolved / the goals are accomplished?

Approach — How to find answers to these questions?

It makes sense to learn something about what is going on, what are the causes for the problems and
which parties have an interest in (not) solving the problem. To that end you have to do two things:

e identify (groups of) stakeholders
¢ interview relevant persons

Your supervisor or the client can help you drawing up an initial list of persons you might want to speak
to (and talking to these you may become aware of other stakeholders to be considered). If there are
relevant documents about the current system, it could be worthwhile to read those first. If you know

what you're talking about, you'll get better results.

The list of “context-free questions” in Appendix A could be a good starting point. Some other points

are elaborated below.

Product — What do you write down?

Lay down your problem analysis in a short paper. Target audience for this paper are the stakeholders.
They should be able to find out, as easily as possible, whether you have captured their problem
appropriately. Hence it is important that the analysis is easily readable and to the point. Making it
short and readable is a lot more work than just summing up what you've found. But it's well worth the
effort if you want to get feedback and gain credibility with the client and other stakeholders.

Follow-up — What do you do with this document?

If needed: adapt it, based on the feedback

Make sure that you have a good enough version (if possible, consult your supervisors)
Circulate it to relevant persons and ask for their feedback

Include the adapted version as a chapter or an appendix to your final report.

1.1 What is the problem?

How much time, effort and skill it takes to identify
the problem varies from case to case.

There are (few) projects in which the problem is
clear. Consider a project to develop a prototype for
some technologically innovative gadget. You may
find it interesting to know what people eventually
will do with it, but the prime challenge in this project
is in getting the technology working.

In some projects, finding the problem is very hard.
For example in a situation where key persons have
hidden agendas, it needs skill and tact to find out
what is going on.

University of Twente, Information Systems group

In some projects, the problem appears to be clear.
But the problem that people experience is a
symptom of a deeper, underlying problem, and it
makes a lot more sense to solve the real problem
than to address the symptom.

Problems at which level?

If you ask people which problems they experience,
they often will tell you that properties of the current
system (or their absence) are a problem. This is
experienced as a problem, it directly bothers
people. The real problem, however, is that they
cannot perform some task effectively or efficiently.
Adapting the system functions they complain about
can be, but need not be the best solution. Perhaps

Guidelines for Requirements Analysis

is it better to reorganize the work, or to replace the
whole system rather than to repair some functions.
Do not just ask what the problems are, always ask
why this is experienced as a problem. Sometimes
you have to ask “why” several times to find the real
reason behind the reason behind the reason behind
the problem.

Problem vs. solution

When you ask for problems, many people (including
most students not trained in requirements
engineering) will come up with solutions.

® A problem is a difference between what is
experienced and what is desired.

e A solution is a way to reduce a problem

These two are related, but different. It is possible
that there are different solutions for the same
problem.

If you inquire about problems you may be told, e.g.
“we need an ERP system.” What is stated here is
the absence of a solution. Again, we need to go up
one level, and ask “why”. There could be various
reasons. Perhaps implementing an ERP system is
indeed the best solution, perhaps there are also
other solutions worth considering.

How important is a problem?

Not all problems are equally important. One way to
get an indication is to ask the following questions
(costs and benefits are not only financial).

e What are the costs when this problem is solved?
e What are the benefits if this problem is solved?
e What are the costs if the problem is not solved?

e What are the benefits if the problem is not
solved?

If you want to get an idea about the urgency of a
problem, you could add

e What are the costs if the problem is solved after
one year?

e What are the benefits if the problem is solved
after one year?
More about problem analysis

A course Problem Analysis and Software
Requirements (232080) is part of the BIT master
programme.

1.2 Organisational context

How is the project positioned in the organisation?

e How does the project fit in the organisation’s
strategy?

* What does management think about this project?

® Who is responsible for the project’s funding (the
client) and who is responsible for managing the
project?

Goals

A problem is a problem because it prevents some
goal from being realized. In perfectly logical world,

University of Twente, Information Systems group

version 2.11 —01.08.2006

you would first write down the goals and then look
for problems obstructing these goals. Eliciting goals
is a lot more difficult than making a list of problems.
Many people are not willing or able to state their
goals. Try to get some idea about the following
issues:

e What are the goals of the organisation?

® Which personal goals (which are usually hidden)
also play a role?

* What are the goals of the organisational unit?
Are these different from the goals of the
organisation as a whole?

The official goals of the organisation (typically:
running the primary process effectively and
efficiently) give some hold, and can be used in your
problem analysis to motivate why a solution is
needed. But keep an open mind for what is going
on around you.

1.3 Stakeholders

A stakeholder to a project is someone who gains or
loses something (could be functionality, revenue,
status, compliance with rules, and so on) as a result
of that project [AR04].

Stakeholders include

e the client (who pays for the system
development),

e customers,

e system developers,

e direct users (who will work with the system),

® indirect users (e.g. who will get information from
the system),

® system operators.

And there could be others, e.g.

e government bodies, having an interest that the
law is not violated.

Alexander [Ale03] gives a simple but powerful
model of stakeholder roles that can help you

discover the stakeholders for your project.

In some cases you may consider an organisation or
company to be a stakeholder. It is always better to
think of concrete persons, rather than abstract
bodies. (“Mr. Smith in the procurement department”,
rather than “company A&B”). A stakeholder group is
homogeneous if all persons in that group want the
same thing. This is not always the case.

If you want to involve stakeholders in the
requirements process, you have to determine who
represents a stakeholder group. There are several
forms of representation:

e exhaustive (everybody in the group)

® representation by sample (choose the sample
carefully of the group is not homogeneous)

e representation by surrogate (somebody who
knows a group of stakeholders quite well).

Guidelines for Requirements Analysis

Representation by surrogate (“our marketing
department knows what our customers want”) is
always risky. If you don’t have access to real users,
you must read The Inmates are Running the
Asylum [Co099] before you attempt to write down
other people’s estimate of what the users would
desire.

Stakeholders have different problems. Even in the
unlikely event that there is only a single problem,
stakeholders will experience this problem
differently.

If you want to get clear which stakeholder has which
problem, you could make a schema as follows:

Stakeholder A B
Problem

Problem 1
Problem 2

1.4 Interviewing’

Interviewing is the most often used technique to
learn about problems. It works fine, if you are aware
of its limitations.

When you ask people about their daily tasks, they
have difficulties explaining what they do and why

they do things the way they do. Some people have
hidden agendas and will not give honest answers.

Make sure you have the right interview partner, and
not a surrogate. If you want to know the problems
on the shop floor, you should talk to the people who
do the work there, not to their managers.

Prepare yourself for the interview. If you know what
you're talking about you will get a better response.
Make a list of questions. The context-free questions
in Appendix A can serve as inspiration. If you can
make these questions more specific for the
situation, that’s better.

Despite this, an interview is not a question-and-
answer session. Start with one issue, and most
likely the interviewees will cover a number of
questions when you let them talk. If they bring up
issues that are relevant, but not on your list, even
better. Use your list to check whether the issues are
covered. If something hasn’t been touched upon,
you may bring it up.

When you discuss day-to-day problems with an
unsatisfactory system, ask about critical tasks.
When does the user work under stress? When is it
important that nothing goes wrong?

As a general rule you should be polite and sensitive
to the interview partner. Some people don't like to
admit that they have problems. There is whole

" largely based on [Lau02], section 8.8.2.

University of Twente, Information Systems group

version 2.11 —01.08.2006

range of euphemism that roughly mean the same
thing: challenges, things you find hard to deal with,
concerns, issues, things that could be improved, ...

Some managers get offended if you ask “why”, as
they are not used to be questioned about their
motives. If asking “why do you do this” doesn'’t
work, you may ask “when do you do this” as a
substitute.

Guidelines for Requirements Analysis

Step 2. Defining the ideal solution

version 2.11 —01.08.2006

Armed with sufficient knowledge of what the problems are, we can start to think about a solution.
Usually it makes sense to do that in two steps. A realistic goal — the subject of step 3 —is constrained
by practical limitations. The purpose of this step is to find out what the client would /ike to achieve.

Way of thinking — What are the essential questions?

0 What is the essential problem?

0 What would be an ideal solution to this problem?

Approach — How to find answers to these questions?

If there is a single problem and everybody agrees that this is the problem that needs to be solved,
step 2 is easy. If, however, there are various issues and different stakeholders experience different
problems, this is not trivial. It has to be decided, somehow, what the essential problem is. In that case
you have to discuss it with the client or perhaps organise a focus group with different stakeholders

(see 4.5).

Product — What do you write down?

A brief text (maximum one page, preferably half a page) describing

e the essential problem,
e the proposed solution,

e a brief explanation about the motivation of the essential problem and the choices you made.

If there was a group session, you probably have a list of other problems and possible solutions. The
explanation should make clear why this problem was chosen as the essential problem.

Follow-up — What do you do with this document?

This is not an official document (achieving the ideal solution is not an objective of the project), but it
could be the most important page in the whole project. Check informally whether relevant
stakeholders can agree with it. If they can, there is agreement about the focus of the project.

If, on the other hand, it turns out that some stakeholders have serious troubles with the choice of the
essential problem or solution, you have achieved your first success! You have shown that the matter
is more complicated and delicate than the client thought, and identified a potentially fatal risk for the

project.

2.1 One essential problem

The goal of the project is to solve, in the best
possible way, the essential problem. The solution
may partially solve other problems as well, but the
priorities must be clear. If you have multiple goals,
all equally important, then sooner or later you will
face design decisions that cannot fully satisfy these
goals simultaneously and you'll have to favour one
goal at the expense of another.

2.2 The client’s goal vs. the project goal

There is a difference between the external goal or
client’s goal (what the client wants to achieve, e.g.
increased sales) and the project goal (what the

project intends to deliver, e.g. a system to support

University of Twente, Information Systems group

the sales process). The external goal provides a
motivation for the project goal.

2.3 Business solution vs. software solution

The external goal is always to find a solution to a
business problem (see the Z model in 0.3). The
project goal could be on the software level
(otherwise you weren'’t asked for a requirements
analysis).

If the project goal is to come up with a software
solution specfication, you should spend some words
on the business solution to which your software
solution will contribute.

10

Guidelines for Requirements Analysis version 2.11 —01.08.2006

Step 3. Defining a realistic solution

The purpose of this step is to define a realistic solution and to gain acceptance for it.

Way of thinking — What are the essential questions?

0 Whatis a realistic solution?
O What needs to be done to get support for this solution?
0 How can the migration to an improved situation be accomplished?

Approach — How to find answers to these questions?

There could be all kinds of reasons why the ideal solution is not achievable. Budget limitations are a
mundane but common example.

It is not always clear whether a solution is acceptable for various parties. If an important stakeholder
strongly objects to the solution, it is not a good solution (even though you may find his reasons
irrelevant). Acceptance can be increased by involving the right persons in the right way.

If difficult choices have to be made, they are for the client, not for you to make. But you can support
the client in making the right choice by providing clear alternatives with their consequences.

Issues to think about:

Which factors determine the success of the project?

Which resources are available for the project?

What is the attitude (motivation, acceptance) of the intended users?
Which resources (funds, courses, etc.,) are available for migration?

Product — What do you write down?

Write a realistic mission statement. Desired properties that will not be realized are to be listed as
exclusions.

If you think there could be problems with the migration to a new solution, it makes sense to make an
outline of a migration plan.

Follow-up — What do you do with this document?

The mission statement is a formal document, to be incorporated in the requirements specification.
Show it to all stakeholders (which can lead to minor changes) and make sure that it is approved by
the client.

3.1 Mission statement ¢ How the problem will be solved

There are various definitions of a mission An explanation can be added as to why certain
statement. Wieringa [Wie03, Ch. 5] describes the issues are (not) treated. This explanation is not part
mission statement according to Yourdon. We use a of the mission statement proper.

slightly different format; the suggested solution

=t If different stakeholders have different interests, you
need not be limited to a computer system. The

could formulate alternative mission statements, and

system can contain people and procedures, and ask the client to make a choice. As stated in 2.1 a
need not even involve a computer system. project should pursue one prime goal. Having a
A mission statement describes the following points mission statement that is a compromise between
e A short motivation different goals is asking for trouble later in the
e System boundary (is it a computer system, or a project.
system that includes people around the The final version of the mission statement should be
hardware/software) known, understood, and accepted by all important

stakeholders. That doesn’t mean that stakeholders

e Th | of th hich I ill
e goal of the system (which problem will be agree about what they desire and what would be

solved)
e Exclusions (which problems will not be solved)

University of Twente, Information Systems group 11

Guidelines for Requirements Analysis

ideal. It means that they agree that this is the
mission for this project.

Example of a mission statement

The following mission statement is taken from a
recent M.Sc. project. It has five paragraphs which
could be labelled: introduction / type of system /
goal / exclusions / solution. The external goal is
given in the first paragraph as a motivation for the
project goal in the third paragraph. The system
boundary is not stated explicitly, evidently(?) it is a
software system.

The purpose of each paragraph is clear, so there is
no need to include headers.

A problem to be solved in electronic commerce is
the specification of terms of delivery in such a
way that can it can be established beyond doubt
— if necessary, in court — what these terms were
at the time the contract was made. The E-Terms
consortium wishes to address this problem by
establishing an E-Terms repository. When a
business party submits terms to the repository,
the consortium guarantees that the applicable
terms can be retrieved unaltered by any
interested party at any future moment.

University of Twente, Information Systems group

version 2.11 —01.08.2006

In this project [student] will develop a prototype
of an E-Terms repository.

The purpose of the prototype is to serve as a
proof of concept, aimed at showing the possibility
of creating a repository and functioning as a
guide for the development towards a final
version. Furthermore, the prototype will be used
in the external promotion of the concept to
potential users, submitters and developers. It
should serve both to increase the interest in the
E-Terms service and to gather relevant feedback
from interested parties.

Efficiency and reliability requirements envisaged
for the final product need not be met by the
prototype repository.

[Some words about the different functions to be
supported by the E-terms die door de
repository.]

12

Guidelines for Requirements Analysis version 2.11 —01.08.2006

Step 4. Gathering requirements

The purpose of this step is to find out what people would desire the system to do, which demands
they have, and which constraints there are.

Way of thinking — What are the essential questions?

0 Which kind of requirements are needed?

O How and where can | find these requirements?

0 Which questions do | ask?

0 Could I have missed any important requirements?

Approach — How to find answers to these questions?

A common way to find requirements is to interview people. If you did that in step 1, you may already
have collected some requirements. With a clear project goal and mission, it could happen that you
want more specific requirements from persons you talked to earlier.

A number of other techniques are listed below. Obviously, it depends on the context and the kind of
system which technique is most suitable, and which stakeholders to involve.

We make a distinction between business-level requirements and system-level requirements
(elaborated below in Section 4.1) System-level requirements describe what the system should do.
Business-level requirements describe which tasks should be supported by the system. Traditional
software engineering has a focus on system-level requirements. However, if the main challenge is to
find out how the efficiency of a task or an organisation can be improved, it could be worthwhile to
focus on the business-level requirements.

Product — What do you write down?

You have written notes of all the requirements you gathered and other relevant information that
people gave you.

Follow-up — What do you do with this document?

Writing an easily readable requirements specification, based on your notes, is still a lot of work. That
will be the subject of step 5.

4.1 Requirements at different levels
Consider an information system for the reception Goal-level Business-level
desk at a hotel. It could have the following Business requirements requirements
requirements: business goal business process
R1. The system shall allow the hotel to increase its
bookings with 15 % without adding reception Supporting System-level Design-level
staff. System requirements requirements
R2. The system will support the receptionist to . .
. . system requirements system design
prepare for the arrival of a tourist bus.
R3. The system shall be able to record that a room Problem Solution

is occupied for repair in a specified period. Figure 3 — requirements levels?

R4. The system shall record the data specified in
the Class diagram in appendix X.

We can make a distinction between business and 2 Astute readers will have noticed a difference between
system and between problem and solution, as figures 2 and 3. In the Z model in Figure 2, it was
illustrated in Figure 3. The requirements R1-R4 suggested that the requirements specification, produced in
describe a business qoal. business process. svstem steps 4, 5, 6, provides a solution (bottom left corner). In

\ goal,) p JU Yy Figure 3, system requirements are stated as a problem
requirement and system design, respectively. (bottom left corner). This paradox is caused by a

University of Twente, Information Systems group 13

Guidelines for Requirements Analysis

Most relevant are the business process and system
requirements — assuming that the focus of your
requirements specification is to make clear how a
proposed system can support an envisaged
business process. But we discuss each of them and
give them a name for easy reference.

® Goal-level requirements describe a business
problem, i.e., a goal that the client intends to
achieve. This is an external goal (see 2.2); the
supplier of the system can never guarantee that
goal will be achieved, hence it is not a project
goal. It could be useful to know the business
goals of the client (you want the client to be
happy with the delivered system), but goal-level
requirements are not usually part of a
requirement specification.

e Business-level requirements3 describe
business process: they deal with tasks to be
supported by the system — without being specific
about which system functions are needed to do
s0. The normal check-in procedure in a hotel has
been designed for guests who come alone or in
small groups. If a bus with several dozens of
guests arrives, the reception will follow a different
procedure in which the administration is done in
advance, perhaps printing a list of guest names
and room numbers. Which particular solution is
to be chosen isn’t important at this stage. The
requirement in this example is that the system
allows the staff to handle the exceptional
situation in an appropriate manner.

e System-level requirements* specify a software
problem, i.e. the desired behaviour of the
system: individual functions of the system
(functional requirements) and overall quality
properties of the system (quality requirements).

¢ Design-level requirements specify a software
solution, i.e., details about how a particular
function of the system is to be implemented.
These should be used sparingly in a
requirements specification, it is not meant to give
a detailed design of the system. But sometimes
problem and solution are hard to separate. A
class diagram is a good example: by specifying
the object classes and their relations, it becomes

difference in level of abstraction. Figure 2 takes the
perspective of the first iteration in the requirements life
cycle, steps 1, 2, 3. Defining how the system will behave
is, at that stage, a solution to the real-world problem that
needs to be solved. Figure 3 is takes the perspective of
later iterations of the life cycle: the requirements are
regarded as a problem statement, the solution is realizing
a system that meets these requirements. Problem and
solution are not absolute categories: some person’s
solution is another person’s problem. A solution at a
higher level is a problem at a lower level.

® Lauesen [Lau02] calls these “domain-level
requirements,” another term often found in the literature is
“user requirements.”

* Lauesen [Lau02] calls these “product-level
requirements.”

University of Twente, Information Systems group

version 2.11 —01.08.2006

clearer which information can be stored in and
retrieved from the system.

In Software Engineering, the focus is on
technologically challenging projects, rather than
embedding the technology in an organizational
context. In that tradition, software requirements are
system-level requirements. In Software Engineering
handbooks, finding business-level requirements is
done in a separate, first phase of the software life
cycle, which they call system analysis or information
analysis.

In Information Systems, the biggest challenge in a
project is often to make sure that a system fits the
context in which it is to be deployed, rather than the
technical development of the system itself.
Therefore we have a broader view of requirements
analysis and explicitly include the business level.

System-level requirements tell us what the desired
properties of a system are. Business-level
requirements tell us why a system must have
certain properties.

4.2 Modeling the system vs.
modeling the system’s environment

Typically business-level requirements are about the
system’s environment, and system-level
requirements about the system itself. But the
system environment is not limited to the business
level. Systems usually have to exchange data with
other systems, which may cause requirements at
the system level and even at the design level.

A requirements specification should contain a
model of the environment, including other systems it
has to interface with. A context diagram (see, e.g.,
Lauesen [Lau02, section 3.2], Wieringa [Wie03]) is
a good high-level description of a system’s
environment.

4.3 Types of requirements

Requirements come in different types. In a
requirements specification you may find the
following categories:

e Constraints. These are global requirements that
restrict the way you produce the product. Budget
and delivery deadline are constraints. There can
also be technical constraints, e.g. that the
system should run on particular hardware or
interface with an existing legacy system.

Usually you are not at liberty to negotiate
changes to constraints.

¢ Data requirements. A requirements
specification could have a data model, specifying
the kind of data that have to be stored in the
system, e.g. in the form of a UML class diagram.

¢ Functional requirements. These describe the
functions of the system. This can be on the
system level or on the business level. In the latter
case, functional requirements describe the tasks
to be supported by the system.

14

Guidelines for Requirements Analysis

* Quality requirements, also called non-
functional requirements. These describe
quality properties of the system as a whole, see
4.4 below. Not all properties are relevant for
each system.

Many examples of these types of requirements are
given by Lauesen [Lau02].

4.4 Quality factors

Different sources give different classications for

quality factors, but they usually overlap. ISO 9126

distinguishes

e Functionality (accuracy, security, interoperability,
suitability, compliance)

* Reliability (maturity, fault tolerance,
recoverability)

e Usability
e Efficiency

e Maintainability (testability, changeability,
analyzability, stability)

e Portability (adaptability, installability,
conformance, replaceability)

For large, safety-critical systems there could be
requirments for all the second-level quality factors
mentioned in parentheses. Probably you need to
address only the main categories.

Usually there are trade-offs between quality factors.
Increasing the security may decrease the usability
of the system, and reversed.

In the initial stages of requirements elicitation, it is
very difficult to get measurable quality
requirements. What you really want to know,
initially, is the relative importance of various quality
factors for the project you’re working for. Is security
a really big issue, or is it only marginally relevant? If
the system would be down for half a day, what
would be the consequences for the customer?

For quality factors that really matter, you should try,
later on, to get measurable requirements — see 4.7:
fit criteria — otherwise there is no way of knowing
whether the system, when it is delivered, meets the
requirements.

4.5 Priorities

In the process of requirements gathering, you want
to get an idea how important the various
requirements are. It is possible that not all the
demands and desires can be fulfilled, so it useful to
know what could eventually be dropped. At a later
stage (step 6), when there is a complete list of
requirements, priorities can be ranked and
negotiated, if necessary. At this stage, you want a
first indication.

MoSCoW

For a rough indication you can use the so-called
MoSCoW classification:

University of Twente, Information Systems group

version 2.11 —01.08.2006

e Must: essential requirements, the system must
meet these

e Should: requirements that the system should
meet, if possible

e Could: nice features, that could be included if it
doesn’t take too much time and effort

e Won’t: exclusions, i.e., features that some
stakeholders would consider reasonable
requirements, but, for some reason or other, will
not be included in the system

Customer satisfaction and dissatisfaction

The Volere method [RR99] suggests estimating, on
a scale of 1 to 5, customer satisfaction and
dissatisfaction.

® Customer satisfaction is a measure of how
happy the client will be if you successfully deliver
an implementation of the requirement.

e Customer dissatisfaction is a measure of how
unhappy the client will be if you do not
successfully deliver this requirement.

Customer satisfaction and dissatisfaction need not
be each other’s inverse. For example: a very nice
feature in the “could” category could make the client
really happy (satisfaction = 5), but, since it's not
necessary for solving the essential problem, he is
not going to be deeply disappointed if it doesn'’t
materialize (dissatisfaction = 3). Another example: If
a system is supposed to be online 24/7, availability
is taken for granted (satisfaction = 3), but poor
availability is problematic (dissatisfaction 5).

It is generally a good idea to ask customers for
(dis)satisfaction rates.

4.6 The Requirements Shell

In the Volere method [RR99], Suzanne and James
Robertson give a template to be filled in for each
requirement. They call it the Requirements Shell. It
is suggested that you carry cardboard copies of the
template with you when go around gathering
requirements. See Appendix C.

4.7 Fit criteria

The Volere Requirements Shell template makes a
distinction between the description of a requirement
(what you want) and the fit criterion (how to
determine whether what you want has been
achieved). A requirement with a fit criterion is
measurable: there is a way to determine objectively
whether the requirement is satisfied by a given
product.

For data and functional requirements this is not too
difficult; if the requirement is complete and
unambiguous there is no room for discussion
whether a particular solution does or does not
satisfy the requirement.

Quality requirements are usually harder in this
respect. You may have gathered some
requirements that have a description but as yet no
fit criterion. E.g.

15

Guidelines for Requirements Analysis

The system must respond [...] fast.

This is a clear desire, but not measurable. A fit
criterion should tell precisely how fast.

The system must respond [...] within 2 seconds

is clear enough. However, is it necessary to
guarantee that all responses are within 2 seconds
and, say, 2.2 seconds during peak load is not
acceptable, even if this would greatly increase the
cost of the system?

A typical form for such a requirement is

The system must respond [...] within 2 seconds
in 90 % of the cases and always within 5
seconds.

This is a usual form for such requirements and the
fit criterion is okay. Yet, you could ask yourself
wether these values are arbitrary (in which case
other values can be negotiated if these would cause
problems) or derived from some specific purpose.
Rationale is another slot in the requirements shell. If
you get to know why response time is an issue, but
the proper values cannot be estimated right now,
you should at least capture the rationale, e.g.

The system must respond [...] not slower than
comparable systems.

This has no proper fit criterion yet, because it isn’t
defined what comparable systems are, but for the
time being it expresses approprately what is
desired.

Another possibility is to give a template for a fit
criterion and leave it to the system
provider/designer to suggest a reasonable value:

The system must respond [...] within __ seconds
in__% of the cases and always within __
seconds.

For a response time requirement we know at least
that time is the dimension in which a fit criterion has
to be specified. For some other quality requirements
there is not even an obvious choice for the
dimension in which quality can be measured.

Usability

Usability is one of the hardest things to quantify.
Lauesen [Lau02, Chapter 6.7] gives 9 different
ways to specify measurable usability requirements.
Some examples:

U1. Novice users shall perform tasks Q and R in 15
minutes. Experienced users complete tasks Q,
R, and S in 2 minutes.

U2. 80 % of the users shall find the system easy to
learn. 60 % shall recomment it to others.

U3. Three prototype versions shall be made and
usability tested during design.

4.8 Requirements elicitation vs.
requirements creation

Finding requirements is traditionally called
“elicitation”, which means “uncovering”. Implicitly it

University of Twente, Information Systems group

version 2.11 —01.08.2006

is assumed that there are some objective needs,
and it is the task of the requirements engineer to
find out what those needs are. Gause and
Weinberg [GW89] made clear that in most cases
requirements are not elicited but created. The
customer usually hasn'’t thought about the details,
and the requirements analysis process may help
him to explore possibilities and/or force him to
decide what he wants.

In requirements elicitation, you are like a scientist
studying the behaviour of planets: you observe what
happens but you do not influence it. Requirements
elicitation is simply writing down the requirements
as they are told to you by stakeholders. In
requirements creation, on the other hand, you work
with the customer to identify the requirements. You
join the customer in the search for goals to achieve
and problems to solve. In the first case, the
customer knows what the requirements are and you
help him or her to write these down. In the second
case, the customer does not know what the
requirements are and you work with him or her to
determine what they are. Requirements elicitation in
its pure form does not exist.

4.9 Techniques for requirements gathering

Common techniques include (but are not limited to)
the following. Lauesen [Lau02] gives some more
details. Appendix B gives a longer list with further
references.

¢ Interviewing. (See step 1)

e Documents. If the purpose of a project is to
replace an existing system, the documentation of
that system can give useful information, e.g. data
models. Also, if you studied documents in step 1,
for finding the goals and background of the
project, these may hint to requirements. It is
always useful to cross-check what you read in
documents with what you hear in interviews.

In an IT-intensive organisation there could be
architecture documents with guidelines and
constraints for individual applications.

® Observation. The way people work is not
necessarily the same as the way people think
they work or the way they describe how they
work. To be a good observer, you need some
skills (not taught in our courses). See Beyer &
Holtzblatt [BH98].

e Brainstorming. You should have experience
with brainstorms if you want to moderate one.

* Focus groups. In a focus group, representatives
of different stakeholder groups come together to
identify problems, needs and possible solutions.
Lauesen [Lau02, section 8.4] describes how to
organize focus groups.

If you get people to attend a focus group, they
are motivated to discuss problems, requirements,
and solutions, and you should allow for that. You
cannot limit a focus group to a single step of our
life cycle, but you can emphasise one step of our

16

Guidelines for Requirements Analysis

life cycle. There is always some overlap with
other steps.

® Prototyping. Prototypes can help to imagine
what the system could be like and thus to be
more concrete about what they (don’t) want. A
prototype is typically a mock-up, in which the
functionality is faked or absent. For a very first
impression, a sketch on paper will do as well.

¢ Study similar companies.

4.10 Requirements elicitation for custom-
tailored or COTS systems

Most requirements analysis methods deal with the
case that a new system has to be developed, for
which requirements need to be drawn up. In many
cases, however, there is no need to develop a new
system — you can buy one. Software that you can
readily buy is called common off-the-shelf (COTS)
software.

When a COTS solution is sought, some steps in the
requirements process differ from our general
outline.

Another possibility is that a commercial system is
bought, but more work (fine-tuning, interfacing with
other systems) needs to be done in the operation
environment. This is typically the case with ERP

University of Twente, Information Systems group

version 2.11 —01.08.2006

systems. If there is a choice of different suppliers,
this would call for a tender process.

After the project goals and mission are clear, some
alternatives to are

* Tender process. You draw up a requirements
specification of what is needed, and ask different
vendors whether they can supply this, and at
what price.

e COTS selection. If different companies sell
software packages with the same kind of service,
you have to select which one is the most
suitable. Chances are that the functionality of
these packages is rather similar (if they wouldn’t
satisfy the market requirements, i.e. the functions
that such a package ought to have, they wouldn'’t
be in business). There is usually more difference
in quality issues (e.g. how good is their service?).
Hence the selection should pay due attention to
these.

If your client is a vendor of COTS software, some of
the items in these guidelines have to be
reinterpreted accordingly. It is important as ever that
the product satisfies the customer. The client will be
satisfied if the customer wants to buy it, but he is
not the most authoritative source for the customer’s
desires. See Cooper [Co099] for learning the user’s
desires in COTS software production.

17

Guidelines for Requirements Analysis version 2.11 —01.08.2006

Step 5. Writing a requirements specification

The purpose of this step is to write a draft version of the requirements specification. Some
requirements may change, as a result of discussing the draft with relevant persons — but in order to
engage in such discussions, you need a good document.

There are a number of different things to consider when you write the first full version of your
requirements specification. This section is split into four subsections, treating separate concerns:

5.1 What should be the contents of a requirements specification,
5.2 Specification techniques,

5.3 Readability and linguistic issues,

5.4 Quality check.

Product — What do you write down?
A complete, well-structured, readable requirements specification.
Follow-up — What do you do with this document?

Send this document to relevant stakeholders. You may ask them for written comments or discuss the
document with them. The latter is more work but yields better results.

5.1. Contents of a requirements specification

Way of thinking — What are the essential questions?

O Which subjects should be covered in the requirements specification?
0 How to structure the requirements specification?

Approach — How to find answers to these questions?

In addition to a list of requirements, a requirements specification gives some information about the
reasons for the project, the context of the system, and any other issue for which you find it relevant to
provide written details. Examples of real requirements specifications are given by Lauesen’s [Lau02],
Chapters 11-15. A detailed, generic table of contents for a requirements specification from the Volere
method [RR99] is given in Appendix D. You can use it as a checklist of things you’d like to discuss in
your requirements specification. You don’t want to cover all of these (unless you’re doing
requirements for a multi-million Euro project), so you should think about what is relevant for your
project.

standard). The disadvantage is that the prescribed
table of contents is probably not the most suitable

5.1.1 Free form or template?

Some organizations that do a lot of software
projects have their own template for requirements
specifications, with a fixed table of contents. Using
such a standardized format has the advantage that
it is easier to find particular pieces of information (if
both the writer and the reader are familiar with the

University of Twente, Information Systems group

for the particular project you're working on. Kovitz
[Kov98] advocates the principle “form follows
content.” If you know what you want to say, then
choose the structure that is best suited to express
what you want to say.

18

Guidelines for Requirements Analysis version 2.11 —01.08.2006

5.2. Specification techniques

Way of thinking — What are the essential questions?

O Which parts/aspects of the environment and the desired solution need to be specified in some
detail?

0 What is the most appropriate specification technique in this context?

Approach — How to find answers to these questions?

Diagrams are more precise and less ambiguous than words. It is not uncommon to include use case
diagrams in the functional requirements and to use a class diagram for specifying data requirements
for a system. It could make sense to use an entity-relationship diagram to specify the environment of
the system and a context-diagram to specify the interaction of the system with its environment.

What is useful depends on the project — and to a certain extent on the requirements analyst.
Techniques you are familiar with work better (if they are appropriate) than techniques you have never
used before. The courses Information Systems (212010) and Requirements Engineering (232081)
provide enough technical background for bachelor students. Master students Business Information
Technology could also apply techniques from Specification of Information Systems (233030).

5.3. Readability and linguistic issues

Way of thinking — What are the essential questions?

0 Who is my target audience? Can they understand it?
0 Can the presentation be improved?
0 Can the text be shortened?

Approach — How to find answers to these questions?

The purpose of the document you are writing is to communicate its contents to other interested
parties. In order to achieve that purpose, it pays off to make an effort to make the document well-
written and well-structured. Unfortunately, the form that is easiest accessible for the target audience is
not the easiest one to write. Some tips are given below.

5.3.1 Keep it short’

Repetition
Many requirements specifications are longer than A prime way to make a text longer than needed is to
necessary. This has several disadvantages. Firstly, repeat information. Occasionally it is useful, to
the readers may not read the whole document. If it's repeat text, e.g. when you give an overview or an
long, people are inclined to browse through the example. Most other repetitions are not needed and
document, rather than read it. Secondly, it is more can be discarded.
difficult to find back some piece of text. This makes
it harder to use it as a reference. Thirdly, a longer Metatext
text is more difficult to comprehend than a short Metatext is text about the text. Again, in some
one. Unfortunately, writing a short text is more cases this is useful. It makes sense, for example, to
difficult than writing a long text. explain the structure of the document in the

introduction. A typical example of superfluous
metatext: “In this chapter the user interface

* Sections 5.3.1-3 are primarily based on Kovitz [Kov98] requirements are given” as introductory statement
g?ilg%f:\jfsi from a version in Dutch compiled by in a chapter “User interface requirements”.

University of Twente, Information Systems group 19

Guidelines for Requirements Analysis

Generalities

Generalities are pieces of text that are not specific
for the requirements that you are writing, but are
more generally applicable. Consider, for example, a
requirement

Each input screen shall fit entirely within the
window and shall use as little scrolling as
possible to display and/or retrieve information.

A good user interface designers knows this and will
try to apply it. A requirements specification is not a
proper place to teach others about good user
interface design.

Useless additions

Sometimes authors add extra text that carries no
additional information. They do so, apparently, for
fear of short texts — perhaps they are afraid that
somebody will judge these texts as insufficient
because they are short. For example:

The system should be user-friendly and have a
simple user interface

The second part is redundant.

Another useless addition is upgrading a short piece
of text to a separate section. E.g.

3.3 Performance
Downtime should be limited to one day per year.

If this is all there is in Section 3.3, it could have
been merged with another section.

The use of a template with a standard table of
contents leads to sections like 3.3 above or, even
worse,

3.4 Hardware constraints
There are no hardware constraints

5.3.2 Keep it simple

Requirements specifications often are hard to
understand. Usually this is not because the
requirements are inherently complicated, they are
just specified in a complicated way. We discuss
some causes for this.

Use short sentences

Many authors write too long sentences. This is often
caused by the desire to provide complete and
precise information. It is good to be aware,
however, that all this information does not have to
be captured in a single sentence. Long sentences
can be made more understandable by dividing them
into smaller sentences. For example

In this document the requirements are given for a
system that Wertor will design for Myriad.

This not a really complicated sentence. But it could
be replaced by

Wertor will design a system for Myriad. This
document gives the requirements for this system.

University of Twente, Information Systems group

version 2.11 —01.08.2006

Use clear and consistent terminology

When you elicit requirements, different persons may
use different terms to describe the same concept.
This can easily be carried over into the
requirements specification, but it is confusing for the
reader. It pays to make the extra effort to ensure
consistent terminology. Make a glossary and make
sure that the text is consistent with your glossary.

Also, the author may use a term that is known to his
professional colleagues (or even worse, invent a
new term) but not understood by the readers of the
document. If you must use an unfamiliar term, make
sure that you define it.

Avoid overspecification

Requirements should be complete and
unambiguous. This is generally true, but it can be
carried too far. Consider the following requirement
for an inventory system

Every object in the store that is meant for sale
has a unique identification code

The store contains objects that are not for sale:
shelves, fork-lift trucks, etc. These do not need a
unique ID in the inventory system, but in the domain
of inventory systems that is quite obvious. Hence
the following, easier requirement will do

Every object in the store has a unique
identification code

5.3.3 Structuring text

The structure of a document can contribute a lot to

its readability. Structure tells the reader what to

expect where, and helps him understanding the

text. In a well-structured document it is easy to find

back pieces of information. This makes it suitable

as a reference document.

Structuring a document is done in three steps

1. Make a list of all subjects to be treated

2. Group these into coherent groups

3. Decide upon an order in which to present them.

Most difficult is step 2. There are different ways to

group subjects, and usually each of them poses

some problem for presenting them in a linear order.

Choose the grouping that seems most suitable and

solve the ordering problems by appropriate cross-

references. Make sure that you always treat one

subject at the time.

Examples of different structuring principles:

e Group requirements by type of requirement

e Group requirements by stakeholder

e Group requirements by subsystem.

e Group requirements by priority, first state the
“must”, then the “should”

e QOrder the subjects from general to specific

e Order the subjects from important to unimportant

20

Guidelines for Requirements Analysis

e Order the subjects from easy to difficult, so that
the reader can increase his understanding along
the way.

e andsoon...

Whatever structure you choose, it is important that
you support it in text and lay-out.

5.3.4 Presenting information

Whatever specification techniques you have used,
there will be a lot of natural language in the

5.4. Quality check

version 2.11 —01.08.2006

document. If this contains factual information, it is
advisable to present this in the form of lists and
tables. Lists offer more structure, and people can
use them as checklists.

A table is in fact a two-dimensional list. Information
suitable for a table is hard to present in flat text.
Tables are easier to read, but also easier to write.

Way of thinking — What are the essential questions?

Are all requirements unambiguous and complete?
Is there a fit criterion for each requirement?

Are there conflicting requirements?

Q
Q
0 Do we know for each requirement why it is in the specification?
Q
Q

Is the document as a whole properly finished?

Approach — How to find answers to these questions?

Below you find some quality criteria that should be applied to each requirement to determine whether

it is a good requirement.

Finally, before you deliver the document, make sure that there are no loose ends, that cross-
references are correct and that spelling errors, typos, and word processing errors have been

eliminated.

5.4.1 Quality criteria for individual
requirements

Robertson and Robertson [RR99] say that any
requirement that does not satisfy all the quality
criteria is, at best, a potential requirement. In the
final version of the specification there should not be
a single requirement of insufficient quality. But what
we are working on here is still a draft version. For a
draft version, it could make sense to include
potential requirements — with an annotation of the
defects yet to be solved — if these requirements
were raised and should not be forgotten.

Complete?

In step 4.6 we introduced Volere’s Requirements
Shell [RR99], a template to be filled in for each
requirement, see Appendix C. Are any components
for the template not filled in? Perhaps there is
nothing to fill in. For example, if there are no
supporting materials, then the Shell should say
“Supporting materials: None” (rather than leaving it
blank). Other things might not have been clear at
the time the requirement was elicited. For example,
at the moment you don’t know about dependencies

University of Twente, Information Systems group

or conflicts. Or perhaps you would need the
customer to assess (dis)satisfaction values but you
didn’'t have a chance to talk to him after the
requirement was raised. It is likely that you do not
yet have a fit criterion for each requirement.

If some of the questions cannot be answered right
now, we have to live with that for the time being.
You could indicate in the document specifically to
which questions you still need answers. What you
should never do is guessing the answers in order to
complete the specification.

Precise, unambiguous and meaningful to all
stakeholders?

Check whether the requirements can be
misunderstood and interpreted differently from what
you wanted to say.

Could possible ambiguity be reduced by stating
more precisely what you mean? For example

“Supporting Material: Information plan of
company X”

is unambiguous only if there is a single version of
this information plan. Therefore

21

Guidelines for Requirements Analysis

“Supporting Material: Information plan of
company X d.d. 22 December 2005”

is better.

Consistent terminology (see 5.3.2) is a precondition
for precise, unambiguous and meaningful
requirements.

Fit criterion?

Does each requirement has a fit criterion (see 4.7),
i.e. it is possible, when the system will be delivered,
to establish objectively whether the requirement has
been satisfied?

Relevant to the system’s purpose?

Sometimes people get great ideas about what a
system could also do. In the mission statement we
have clearly laid down the purpose of the system. If
a requirement does not contribute to the purpose, it
is in the nice-to-have (“could”) category. If it is
included in the requirements specification, it must
be made clear that it is not an essential
requirement.

Unnecessary requirements are typically those with
high customer satisfaction rating and low customer
dissatisfaction rating.

Viable within constraints?

Does the project have the time and budget to satisfy
the requirement? If not, it's not a good requirement,
and should be discarded. (Or the time and budget
should be adapted. If neither is acceptable the
project should probably be abandoned!)

5.4.2 Consistency across requirements

In 5.4.1 and 5.4.2 we have scrutinized each
requirement individually. Similar questions can be
asked about the whole set of requirements. There
could be

® redundant requirements;

® incompatible requirements (i.e. it is not possible
to satisfy all at the same time);

® missing requirements.

Obviously there is no fail-safe way to discover
missing requirements. An important way to get
these is to get feedback from relevant stakeholders
on the draft requirements specfication (see 6.1,
validation). However, there are some consistency

University of Twente, Information Systems group

version 2.11 —01.08.2006

checks that you can do before the draft specification
is finalized.

All tasks / use cases covered?

If there are task descriptions or use cases for the
system, check that all actions have been covered.

System administration and support covered?

Most computer systems offer two kinds of functions:
primary functions that serve the purpose of the
system (users can do something useful) and
secondary functions to allow the system to be
operated (e.g. adding new users, maintaining the
system’s data). Are these secondary functions
covered?

CRUD check

If there is a data model, check whether each
attribute is Created and Read, and, if applicable,
can be Updated and Deleted.

5.4.3 Have you finalized the document?

There are various natural roles that people can
have when they work in a team (called Belbin roles,
after the person who discovered them). Experience
shows that the role completer/finisher is poorly
represented among our students. Before submitting
a document, such a person would scrutinize every
detail to make sure that

e everything is numbered correctly,

e cross-references are correct,

e figures and tables appear in the right place,

e citations and references are marked
appropriately in the text

e literature references in the reference section are
complete,

e the lay-out is consistent,

e the names of the author(s) and other contributors
are mentioned appropriately, and

e the document carries the right date and version
number

If you have no such person on your team, or if you
are working alone, you should force yourself to do
this. This gives the document a professional
appearance.

22

Guidelines for Requirements Analysis version 2.11 —01.08.2006

Step 6. Validating a requirements spec

The purpose of this step it to ensure that a solution that satisfies the requirement specification
achieves the goals laid down in the mission statement.

Way of thinking — What are the essential questions?

0 Does the specification reflect the desires and needs of the stakeholders?

0 Do the stakeholders agree on the priorities, when there are conflicting requirements or when not
all requirements can be met?

O s it technically possible to meet the requirements?
0 Which requirements have not passed the quality test?

Approach — How to find answers to these questions?

Validation means that you make sure that you have specified the right solution, i.e. that a product
satisfying these requirements will meet the goal that was laid down in the mission statement. The
persons who can decide that are the stakeholders, not the requirements analyst. (And In order to
decide that, they have to be able to understand the draft specification — that is why we spent so much
effort on step 5).

In situations where a complex and technically challenging system is proposed, it is wise to consult the
software architects who will be involved in the design. The can warn you about requirements that are
hard or impossible to realize.

If there are conflicting requirements, or if not all the requirements can be met, tough decisions have to

be made. There are two things you can do: engage some stakeholders in ranking essential
requirements according to importance, or ask the client to decide (or one after the other).

At the same time, when you are going back to the stakeholders with the draft requirements
specification, this could be an opportunity to elicit missing elements of the requirements shell, e.g. fit
criteria. You can put gentle pressure on them by explaining that, ultimately, an incomplete
requirement cannot be included in the final specification.

Product —What do you write down?

The final version of the requirements specification.

Follow-up — what do you do with this document?

Deliver the specification. The requirements analysis has been completed.

6.1 Requirements validation

There are several way in which you can get
feetback on the draft requirements specification.
You can circulate the specification to the
stakeholders and discuss it with each stakeholder
individually, or you can organise a validation
meeting.

If you want to know what people really think about
the requirements specification, you must make sure
that they understand it. That is why it is worthwhile
to make the draft spec a complete, legible,
accessible document, rather than circulating a
premature version.

If a prototype was made for requirements gathering,
you could show (an updated version of) the
prototype in addition to the specification document.

University of Twente, Information Systems group

Validation meeting

At a validation meeting, a selection of relevant
stakeholders is present. The participants at this
meeting must have enough knowledge of the
application domain and the context in which the
system is going to be used (the organisation for
which the system is developed). Also at least one
end user must be present.

The purpose of a validation meeting is to draw up a
list of problems with the requirements specification,
and possibly an agreed list of actions to address
these problems. (It is not the purpose of the
meeting to solve the problems here and now).

See Kotonya and Sommerville [KS89, Chapter 4]
for a more elaborate description of validation
meetings.

23

Guidelines for Requirements Analysis

6.2 Requirements prioritization

Sometimes it’s impossible to satisfy all the
requirements. A finite budget is the most mundane
and the most frequent reason to scale down your
desires. But it could be the case that requirements
are at odds with each other. Higher security may
imply lower user-friendliness, and reversed. Also, if
you buy an existing system or a COTS product, you
have to choose from what is available, which may
not be exactly what you want.

Section 4.5 discussed the MoSCoW classification
and customer (dis)satisfaction values. These are
absolute values, to give a first indication of what is
important. When it comes to making tough
decisions — what to discard, or to postpone to a
future release — absolute values aren’t good enough
(usually too many things are important).

What is needed, then, is to assign priorities. These
are relative values: is a requirement A more
important or less important than requirement B?

In order to reach an optimal decision, one should
e establish relative values for all requirements

University of Twente, Information Systems group

version 2.11 —01.08.2006

e estimate the cost of implementing the
requirement

A formal method for this, based on the Analytic
Hierarchy Process (AHP), is presented by Karlsson
and Ryan [KR97].

Such a method yields an optimal decision, if the
costs estimates are accurate and if there is no
disagreement among the stakeholders (or if only the
prime stakeholder, the client, matters).

When different stakeholders with different desires
are important to a project, there is a political
element in prioritizing requirements. When some
get all their priorities granted, and others get none,
the project is in for trouble.

Informal ways to assign priorities include

® Ask persons to assign a total of 100 points to
different requirements in any way they want.
(could be done by different stakeholder
representatives as a starting point for a meeting
to decide the priorities)

® Get a meeting of stakeholder representatives to
agree on the 10 most important requirements. (If
politics are really troublesome this could be done
without further ranking among the top 10).

24

Guidelines for Requirements Analysis

version 2.11 —01.08.2006

Step 7. Maintaining the requirements specification

The purpose of this step is to ensure that in all steps of the system’s life cycle there is an accurate
requirements specification for the current version of the system.

Way of thinking — what are the essential questions?

0 How do you manage new requirements that arise during system development?

0 How do you maintain requirements traceability and keep the requirements specification consistent

when requirements change?

Approach — How to find answers to these questions?

In nearly all cases where students do a requirements analysis, the students are no longer involved in
the later stages of project development. Chances are that you will not be asked to maintain the
requirements specification that you delivered. Nevertheless we briefly mention some issues,

completing the requirements specification life cycle.

7.1 Requirements evolution

In the ideal case, all stakeholders agree that your
final requirements specification accurately descibes
their requirements for the new system — at this
moment. There are many reasons why
requirements may change in the future:

e Testing and operation of the system may reveal
defects. That is, some essential requirements
were missed after all.

e Stakeholders may come up with new desires for
additional features.

e The world changes, which my lead to new
business requirements, or may require the
system to interact with new (versions of) systems
in its environment

While the system is still under development, some
care should be taken in allowing new requirements
to come up. Goldplating is a well-known software
engineering risk: additional requirements continue
to be added, where each requirement in itself may
seem harmless, but the overall result is that it
becomes impossible to build the system on time
and within budget. A related risk is feature creep: at
little extra effort (so it seems) a function can be
added that would be nice to have. This may lead to
a system with more capabilities than required — but
at a later date and with a higher cost.

On the other hand, errors will be found and
unforeseen circumstances may demand new
requirements. In order to balance these concerns,
any large project will have an explicit procedure for
handling change requests.

7.2 Traceability

Traceability supports the maintenance of a system.
The (evolving) requirements specification should on
the one hand reflect the business needs and
stakeholders’ demands, and on the other hand

University of Twente, Information Systems group

specify the system’s behaviour. This leads to 4
traceability relations:

® From business/stakeholders to requirements: It
should be verified that the business goals of the
system are covered. Essentially, the
requirements should enable the mission
statement (see 3.1) to be fulfilled.

e From requirements to business/stakeholders: For
each requirement, there should be a business
reason why the requirement is included in the
specification (otherwise the requirement should
be deleted).

® From requirements to system: For each
requirement it should be known which pieces of
code / parts of the system make sure that the
requirement is satisfied

® from system to requirements: For each piece of
code / part of the system it should be clear which
requirements depend on it. (otherwise, it serves
no purpose).

Hence, if a change is proposed, it can be easily
determined which parts of the system are affected
and what the effort will be to implement the change.

For any sizeable project, a specialzed tool, e.g.
DOORS?®, is needed for implementing traceability.
Currently, traceability is not used a lot in practice,
because it brings additional cost in the development
phase, whereas most of the savings take place in
the maintenance phase. (Note that on average
maintenance accounts for 70 % of the total software
life cycle costs). However, in future it may become a
standard practice in software engineering, due to
new legislation. Quality standards like the higher
CMM levels enforce traceability.

® http://www.telelogic.com/corp/products/doors/

25

Guidelines for Requirements Analysis version 2.11 —01.08.2006

Glossary’

Client. The person who pays for the development of the system. (see also customer)

Constraint. A global requirement that restricts the way the system can be produced. The project
budget is an example of a constraint. Usually constraint are not subject to negotiation.

Customer. The person who buys the system. This could be the same as the client. If the product is to
be sold, the customer and client are different.

Data requirement. A specification of the kind of data and the relation between data elements to be
stored in the system.

Business-level requirement. A description of a task to be supported by the system, without
specifying what exactly the system will do.

External goal or Client’s goal. Something the client hopes to achieve as a result of the project. The
project carries no responsibility for an external goal. Nevertheless, if the external goal will not be
achieved, the client may consider the project a failure. (see also project goal)

Fit criterion. A quantification or measurement of a requirement such that it is possible to determine
whether a system satisfies this requirement.

Functional requirement. Something that the system must do, a description of the behaviour of a
system

Goal. See external goal and project goal.

Migration. The path of change leading from the current situation to a new situation, in which a new
system is deployed and effectively used.

Problem. A difference between what is experienced and what is desired.

Project. Throughout the text it is assumed that there is a project to deliver some system, and you are
doing the requirements analysis for this project.

Project goal. Something that should be realized by the project (and for which the project manager
can be held responsible). (see also external goal)

System-level requirement. A desired property of the system. In previous times, requirements was
considered to be equivalent with system-level requirements.

Quality requirement. An overall property of the system, describing how well the system performs its
functions.

Requirement. See contraint, data requirement, functional requirement, quality requirement.

Requirements process. The part of system development in which people attempt to discover what is
desired.

Solution. A way to reduce a problem.

Stakeholder. Someone who gains or loses something (could be functionality,revenue, status,
compliance with rules, and so on) as a result of that project.

" Some definitions are taken directly from other sources ([AR04], [GW89], [Lau02], [RR99]). References are given where a term
is introduced in the text.

University of Twente, Information Systems group 26

Guidelines for Requirements Analysis version 2.11 —01.08.2006

References
[BCN92] C. Batini. S. Ceri and S.B. Navathe (1992). Database Design: An Entity-Relationship

[Ale03]
[ARO4]

[Cro89]
[Che81]
[BHI8]

[C0099]
[GW89]
[HC88]
[KK92]
[KR97]

[KS98]
[Kovos]

[Lau9s]
[Lau02]
[Lun81]

[Mac96]
[RE95]

[Ret94]
[RR99]

[Wie03]

Approach. Benjamin/Cummings.

I. Alexander. Stakeholders —Who is Your System For?
http://easyweb.easynet.co.uk/%7Eiany/consultancy/stakeholders/stakeholders.htm

I. Alexander, S. Robertson (2004). Understanding Project Sociology by Modeling
Stakeholders. IEEE Software, January/February 2004.

N. Cross. (1989). Engineering Design Methods. Wiley, Chichester, UK.
P.B. Checkland (1981). Systems Thinking, Systems Practice. Wiley.

H. Beyer and K. Holtzblatt (1998). Contextual design: Defining Customer-Centered
Systems. Morgan Kaufmann.

A. Cooper (1999). The inmates are running the asylum. Macmillan Computer Publishing,
Indianapolis, IN.

D.C. Gause, G.M. Weinberg (1989). Exploring Requirements: Quality Before Design. Dorset
House, New York, NY.

J.R. Hause, D. Clausing (1988). The house of quality. Harvard Business Review, 66(3), 63—
73.

K.E. Kendall and J.E. Kendall (1992). Systems Analysis and Design. Second
edition.Prentice-Hall.

J. Karlsson, K. Ryan. A Cost-Value Approach for Prioritizing Requirements. IEEE Software
14(5), 67—-74.

G .Kotonya and |I. Sommerville (1998). Requirements Engineering. Wiley, Chichester, UK.

B.L. Kovitz (1999). Practical Software Requirements: A Manual of Content and Style.
Manning Publications, Greenwich, CT.

S. Lauesen (1988).Software Requirements: Styles and Techniques. Samfundslitteratur,
Frederiksberg, Denemarken.

S. Lauesen (2002). Software Requirements: Styles and Techniques. Addison-Wesley,
Harlow, UK.

M. Lundeberg, G. Goldkuhl and A. Nilsson (1981). Information Systems Development: A
Systematic Approach. Prentice-Hall, Englewood Cliffs, NJ.

L. Macaulay (1996). Requirements Engineering. Springer Verlag, New York, NY.

N.F.M. Roozenburg and J. Eekels (1995) Product design: Fundamentals and Methods.
Wiley, Chichester, UK.

M. Rettig (1994). Prototyping for tiny fingers. Communications of the ACM, 37(4), 21-27.

S. Robertson, J. Robertson (1999). Mastering the Requirements Process. Addison-Wesley,
Harlow, UK.

R.J. Wieringa (2003). Design Methods for Reactive Systems: Youdon, Statemate, and the
UML. Morgan Kaufmann Publishers, San Francisco, CA.

University of Twente, Information Systems group 27

Guidelines for Requirements Analysis

Appendix A. Context-free questions

When you first enter an organization for which you
are to do requirements work you may be
overwhelmed by the number of potentially relevant
people, departments, systems, goals and problems.
This appendix lists some simple questions that you
can always start with. They are called “context-free”
because they apply to all kinds of problems,
independent of the particular problem context. The
following list is largely from Gause and Weinberg
[GW89]. The problem identification and analysis
questions are from ISAC [Lun81].

The business

e What kind of business is this?
e What is the structure of the business?

* Which departments of the business are involved
in the system?

e What are the mission and goals of the business
and its relevant departments?

® Are there any related projects?

Problems

e What are the problems?

e For each problem:

e What is the real reason for wanting to solve
this problem?

e (Can a solution to this problem be obtained
elsewhere?

e Which organizational goal is served by solving
this problem?

e How bad is the problem? (Quantify if possible)

e How urgent is it?

University of Twente, Information Systems group

version 2.11 —01.08.2006

Stakeholders

e Who are the stakeholders?

® For each stakeholder:
e What is his/her relation to the system?
e What are the responsibility relations between
the stakeholders?
e Who is responsible for improving the system?
Is management committed to improving the
system?

Problem analysis

® Which stakeholders have which problems?

e For each stakeholder/problem combination:

e How much is it worth to this stakeholder to
solve the problem?

e How bad is it for the stakeholder if the
problem is not solved?

e How urgently should this problem be solved?
How bad is it if this problem is solved one year
later?

e What is the trade-off between time and value?

The current system
e Who is using the current system and in support
of which business activity?

e What problems are solved by the current
system? For whom?

e What problems are introduced by the current
system? For whom?

e Does the system fit into the business strategy?

® |s the system mission-critical?
e How bad is it if the system breaks down?

® Does the system interface with legacy systems?

28

Guidelines for Requirements Analysis

version 2.11 —01.08.2006

Appendix B. Requirements elicitation techniques

During requirements work, you must find the goals,
desires and wishes of the stakeholders. This
appendix lists some techniques that you can use for
this.

It is important to distinguish requirements elicitation
from requirements creation.

Finding out about current environment and
its goals, and about the current system.

The following techniques are useful for fact-finding.
They are closer to elicitation than to creation.

¢ Interviews. Asking stakeholders what they
currently do and how they would like to change
this. Kendall and Kendall [KK92] give a useful
introduction to interview techniques for
information analysis.

e Observation of current work. Observing what
stakeholders actually do, as opposed to what
they say they do. Beyer and Holtzblatt [BH98]
give an excellent survey of models to make when
observing stakeholders at work (models of flow,
sequence, artifacts, culture and the physical
situation), how to make them and how to create
requirements from them.

e Participation in current work to actually
experience what the current environment does.
There is no literature on this: Just join the
stakeholders in doing their work. Take your time
doing this.

* Questionnaires. Sending out forms with
questions to stakeholders about the current
environment. Kendall and Kendall [KK92] give a
useful introduction to the construction of
questionnaires for information analysis.

e Study current system documentation. There is
no literature on this. Brace yourself to digest a
mountain of information.

e Study current forms (paper forms, screen
forms). Analyzing forms in use by the current
system to discover data structures and work
procedures hidden in them. Batini, Ceri and
Navathe [BCN92] give a useful introduction to
uncovering data structures from forms.

Problem Analysis

The following techniques help you to analyze
problems identified during fact-finding.

* Soft Systems Methodology (SSM). A method
defined by Checkland [Che81] to analyze
exceptionally vague problems (problems where
the problem is that the problem is not known).
Macaulay [Mac96] gives a handy introduction.

¢ Stakeholder analysis. Set off stakeholders
against problems and analyze each problem on
severity (quantify!) and urgency. Gause and
Weinberg [GW89] give useful hints.

University of Twente, Information Systems group

Creating requirements for new system

The following techniques can be used to create new
ideas about possible solutions to problems.

¢ Brainstorm. Generating wild ideas in a group
without criticizing any idea, followed by a
rationalization of the ideas. Roozenburg and J.
Eekels [RE95] give a very useful introduction to
brainstorming for product design, including its
variations, such as brainwriting (in which
participants anonymously submit their ideas in
writing).

* Focus groups. Let a group of users discuss
requirements with each other. Macaulay [Mac96]
gives a short introduction to the use of focus
groups for requirements engineering.

® JAD workshops. Bring stakeholders from the
customer and developer sides together and let
them jointly do the design. Macaulay [Mac96]
gives a short introduction to the use of JAD
workshops for requirements engineering.

¢ Visiting similar companies. Visit companies
with similar problems to get an idea about the
desirable properties of solutions to these
problems.

¢ Quality Function Deployment (QFD). Maintain
traceability tables that match user requirements
with system requirements. Attach weights to
indicate priorities, and indicate conflicts between
requirements that. Discuss with all stakeholders
and agree on choices based on this traceability
information. Hausaer and Clausing [HC88] give
a good introduction and Macaulay [Mac96]
provides a very short summary.

¢ Goal-means analysis. Make a goal tree.
Indicate for each requirement the goals that it
serves, and indicate for each goal the desired
system properties that would help reaching that
goal. Lauesen [Lau98] gives an example.

Techniques for refining system
requirements and corresponding
environment models

The following techniques all assume that you
alrerady have some idea about system
requirements and allow you to improve them.

e Collecting supplier information. Collect
documentation from suppliers, let them give
demos in order to get an idea of which system
requirements can actually be realized with
current commercially available technology.

¢ Throw-away prototypes. Constructing a
software system that implements a few of the
system requirements, and letting users
experiment with it to give them the occasion to
form more concrete ideas about what they really
want. After experimenting, the improved

29

Guidelines for Requirements Analysis

requirements are written down and the prototype

is thrown away. Any software engineering book

contains a section about throw-away prototyping.

Ince [Inc92] is one of the many overviews. Less
well-known is a description of low-tech
prototyping, involving pencil, paper, glue, and
role playing, described by Rettig [Ret94], that in

University of Twente, Information Systems group

version 2.11 —01.08.2006

many cases is more efficient and at least as
effective as high-tech prototyping.

Pilot project. Implement the system in a part of
the organization where it is not critical, in order to
get experience with real use of the system. This
should lead to improved requirements.

30

Guidelines for Requirements Analysis

Appendix C. Volere Requirements Shell

In the Volere method [RR99], Suzanne and James
Robertson give a template to be filled in for each
requirement — see Figure C1. They call it the
Requirements Shell. It is suggested that you carry
copies of the template with you when go around
gathering requirements.

Filling in the template for each requirement reminds

you of what you want to ask the person(s) you're o
talking with. The slots have the following purpose

e Requirement #: unique ID for each requirement

e Requirement type: constraint / data / functional

/ quality o
(or refer to section in requirements specification
template in Appendix C) o
e Event/use case # : If use cases or an event list o
has been specified, refer to its number
e Description: A one-sentence statement of the N

intention of this requirement
e Rationale: Why is this requirement considered
important or necessary?

Requirement #: Requirement Type:

Description:

Rationale:

Source:
Fit Criterion:

‘ Customer Satisfaction: Customer Dissatisfaction:

Dependencies:
Supporting Materials:
‘ History:

version 2.11 —01.08.2006

Source: Who raised this requirement?

Fit criterion: A quantification of the requirement
used to determine whether the solution meets
the requirement (not always easy to determine
up front. If no sensible criterion can be found
when the requirement is raised, we suggest to
leave it open for the time being.)

Customer (dis)satisfaction: Measures for the
(un)happiness of the customer if this
requirement is (not) implemented. See section
4.5

Dependencies: Dependencies between this
requirement and others.

Conflicts: Requirements that contradict this one
Supporting Materials: Pointer to supporting
information

History: Changes to this requirement (and
reasons why)

Event/use case #:

Conflicts:

Volere

Lopmmgh
g

Figure C1: Voolere Requirements Shell

University of Twente, Information Systems group

31

Guidelines for Requirements Analysis

version 2.11 —01.08.2006

Appendix D. Volere Requirements Specification Template

The Volere method [RR99] provides a template for
the contents of a requirements specification. Here
we only give the contents with some bits of
explanation. An extensive description of the
template can be downloaded from
www.volere.co.uk. It is very thorough and complete,
and for a small project there is probably no need
write a requirements specification with 27 chapters.
But you may use this as a checklist.

Project Drivers

The purpose of the project

2. Client, customer and other stakeholders.
The client is the person paying for the
development, and owner of the delivered
product. The customer is the person buying the
software. Client and customer are the same for
in-house developments but different when the
system to be developed will be sold to others.

3. Users of the product

Project Constraints

4. Mandated constraints. Constraints that the
project must satisfy. Includes development time
and budget.

5. Naming conventions and definitions
6. Relevant facts and assumptions

Functional requirements
7. The scope of the work. Describes the domain.
Could include a context diagram.

8. The scope of the product. Could include use
case diagram.

9. Functional and data requirements

University of Twente, Information Systems group

Non-functional requirements

10.
11.
12.
13.

14.
15.
16.
17.

Look and feel requirements
Usability and humanity requirements
Performance requirements

Operational requirements. Expected physical
environment, hardware, and software
applications with which the system should
interface.

Maintainability and support requirements
Security requirements

Cultural and political requirements

Legal issues

Project issues

18

19.

20.

21.

22,

23.
24,
25.
26.

27

. Open issues. Issues that have been raised
and do not yet have a conclusion.

Off-the-shelf solutions. Ready-made software
products or components that can be used

New problems. Problems that may result from
introducing the system.

Tasks. A stepwise description of system
development, delivery, and implementation

Cutover. Issues related to the migration to the
new system.

Risks
Costs
User documentation and training

Waiting room. Requirements that will not be
part of the agreed system, but could be
included in future versions.

. |deas for solutions

32

Software Engineering
Spring 2008

Michel Chaudron
Ariadi Nugroho

www lloseng.com

Outline

- Introduction

- Course logistics

- Introductory lecture Software Engineering
- What is SE?
- What does a SE do?
- What does a SE process look like?

N

/ www lloseng.com

/ © Lethbridge/Laganiere 2001 Chapter 1: Software and Software Engineering

Introduction

Michel Chaudron

- Associate Professor in Leiden (1d) & Eindhoven (4d)
- Ph.D. students: Ariadi Nugroho (ssistanty & Werner Heijstek

- M.Sc. & Ph.D. from Leiden, some time abroad
- some years with IT company

- research 1n software engineering;:
- software architecture and component-based sw engineering
- quality, measurement in SE — esp. UML

- Collaborations with companies: Philips, Oce, CapGemini,
LogicaCMG, KLM, Nokia, ...

N

/ www lloseng.com
/ © Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 3

What you will learn?

Engineering = skill + knowledge
This course 80% knowledge and 20% skills

Basic concepts, vocabulary of Software Engineering
Main activities in SE projects

Main methods and techniques (excluding: programming)
Guest Lectures by professionals

SE as an academic research area

N

/ www lloseng.com

/ © Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering

Book: Object-Oriented Software Engineering,
Timothy C. Lethbridge, Robert Laganiére (2" Ed.)

Ch 1: introduction to the subject
Ch 2: OO-basics

Ch 4: Requirements g -
Object-Oriented

Ch5 & Ch 8: MOdElil‘lg using UML Software Engineering
Ch 6: Design patterns PractalSotvere Dovacpmert £

Ch 9: Architecture & Designing

Ch 10: Testing / Quality Assurance

Ch 11: Management (Estimation, Risk)
Websites: en

www lloseng.com

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 5

Assignment

Car Navigation System

- Requirements

- Architecture & Design

- Analysis

- Implementation (mock-up)
- Test

www lloseng.com

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering

Lectures Schedule

Wk- Datum lecturer onderwerp }%{uiswerk/leeswe
nr r
6 1 7 feb Chaudron Introduction Software Engineering LLCh1,2
7 2 14 feb Chaudron Requirements Engineering LL Ch.4.
8 3 21 feb Chaudron Software Architecting LL Ch.9
9 4 28 feb Chaudron Modeling with UML LL Ch5
10 5 6 maart Peter Bink Cost Estimation, Planning & Control LL Ch 11
11 6 13 maart Chaudron Software Metrics LLCh10& 11
12 7 20 maart Bart Kienhuis Design Patterns / Refactoring LL Ch6
13 8 277 maart Chaudron onderzoeksmethoden empirisch
onderzoek in software engineering
14 9 3 april Bart Knaack Testing & Quahty Assurance LL Ch. 10
(Requirements, Design, Code)
15 10 | 10 april Rijn Buve? Gastspreker (KLM ? / TomTom?)
16 1T | 17 april Rijn Buve?
17 12 | 24 april
18 I mei -- Hemelvaart
/ 19 13 | 8 mei Chaudron Vragen-uur
/ www lloseng.com
/ © Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 7

Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 1: Software and Software Engineering

What is Software Engineering?
What is SW quality?
What is a software development process?

www lloseng.com

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering

1.1 The Nature of Software...

Software is intangible

e Hard to understand development effort
Software is easy to reproduce

e Cost 1s 1n its development

—1n other engineering products, manufacturing 1s the costly
stage

The industry is labor-intensive
e Hard to automate

N

/ www lloseng.com
/ © Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 9

The Nature of Software ...

Untrained people can hack something together
e Quality problems are hard to notice
Software is easy to modify
* People make changes without fully understanding it
Software does not ‘wear out’
e [t deteriorates by having its design changed:
—erroneously, or

—1n ways that were not anticipated, thus making it complex

www lloseng.com

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 10

The Nature of Software

Conclusions
e Much software has poor design and is getting worse
* Demand for software 1s high and rising
 We are 1n a perpetual ‘software crisis’

 We have to learn to ‘engineer’ software

www lloseng.com

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering

11

[I” Record will be Changed
[] u ¥ Pt Tog [leinacive Achud Cont 2| Replecemart Vake: =
Types of Software P e
EER T | Undesctandeg The Bock Of Hebrews Libyery O Congress Husber | 6750469
Sady Tt | i irapashonal Commeriy e o ﬂﬁﬂm
Reading Gt 20
N T ——— b cangie A
caniz oo
I !'uw - L o3
Custom e - B E
CET— e
o (e IPutliros.faainan Fress ‘_ o O i
» For a specific customer ST e ’
JSowih\ionde: | CorgRBIOLE - 11T MEBREWS o]
: 2| |E”“’i x5
Generic a a

e Sold on open market ORACLE

e Often called neit- LN
—COTS (Commercial Off The Shelf)
—Shrink-wrapped

Embedded
e Built into hardware

e Hard to change

N

& wwaw.lloseng.com

/ © Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 12

Types of Software

Custom Generic Embedded
Number of copies in use low medium high

NOKIA

Total processing power low high medium
devoted to running this type
of software

Tao | 2abc | cetd

Worldwide annual high low high e
development effort

x| 0% [se8)

OB 4D B -0~ E-#H-QQ Qo Y ghws vuvB I E-@]
S (e (A (R (R B
55 s CaseDagram | (1) Dotaocel | (1] courrsyem

AN

5
2
H o e=—n
ooy bocken el SN RE IR E e ioix |t s
@’\,v [® res 5o, o tromaec: y 991 X [[eoo0e p- [T] - — —
= D | b sweeper .
Fle Edt Vew Favortes Tods el (5] cororen
Google [Glvbol.com v[60 {5) ® M v O | 13 Bocknarkew Py Sosbiocked | Check v g Autolink v | Auoil (51 v |ab Sendtow < [E bol [com () Setingsw [e o
S e @ bt sk esons) |] e e S
@ W WINKELWAGENTE \ PROFIEL AAN /UIT \ BESTELSTATUS \ AccouNT \ KLANTENSERVICE 2
Rp—
bol.com i
HomE Sl BOEKEN | MUZIEK | DVD | peaceresoies | GAMES | ELEKTRONICA | THEPOME VOORDEEL | 1eHANDS (8]
e — =
osken (ederands)
Snel zoeken: [Alle boeken (N =] | @ | utasbreid zosken g
© Stugieboeken, thuis besteld en thuishezorad O De nieuwste Bomvol: het digitale magazine van bolcom O bol.com cadeaubon a
ZOEK OP Welkom bij bol.com!
GENRE Loain en bekijk je persoonlijke aanbevelingen (nieu). (Nieww bij bol.com? Maal een account san.)
Business ’ BOLCOM TOP §
Computers o
Eten & Koken studieboeken. Topkoks voor Thuiskoks
95 3
Geschiedenis & Politiek s pesteld Kb 2aiends vansf €5,50 29
Gezondheid & ‘et hesorgid
Psychologie
Kind & Jeugd The Secret / Nederlandse
Kunst & Cultuur Ver
Literatuur ety
Reizen & Talen M
Religie & Esoterie
School & Studie 2 3. De viiegeraar
Sport & Hobb . Khaled Hosseini
Bl et Nieuwe legal thriller van John Grisham
Wonen & Tuinieren
De aanklacht
Alle genres bol.com prijs: € 19,95 | 2shands vanaf € 15,00 4. JBEER Duizend schitterende
) Het bedrijf Krane Chemical heeft jarenlang chemisch afval SN Duzerd schiftterende www osen mm
2ehands (nieuw!) gedumpt rond het plaatsje Bowmore, met fatale gevolgen. De Khaled Hossaini - -
slachtoffers hebben recht op een schadevergoeding van 40 e
miljoen dollar. Maar Krane is voorlopig niet van plan om uit te LR —
hetalen _Meer infn =
it ibol,

enfntyfeC ErowseC 0T @ [Fio <

e o e [ovim e, pall . e - messvssus e Chapter 1: Software and Software Engineering 13

Types of Software

Real time software
e E.g. control and monitoring systems
e Must react immediately
 Safety often a concern

Business Information Systems (Data processing)
e Used to run businesses

e Accuracy and security of data
are key

Some software has both aspects

/ © Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 14

1.2 What is Software Engineering?...

The process of solving customers’ problems by the systematic
development and evolution of large, high-quality software
systems within cost, time and other constraints

Solving customers’ problems
 This 1s the goal of software engineering
e Sometimes the solution is to buy, not build
e Adding unnecessary features does not help solve the problem

* Software engineers must communicate effectively to identify
and understand the problem

www lloseng.com

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 15

What is Software Engineering?...

Systematic development and evolution

e An engineering process involves applying well understood techniques in a
organized and disciplined way

* Many well-accepted practices have been formally standardized
—e.g. by the IEEE or ISO

Large, high quality software systems

e Software engineering techniques are needed because large systems cannot
be completely understood by one person

e Teamwork and co-ordination are required

» Key challenge: Dividing up the work and ensuring that the parts of the
system work properly together

e The end-product that is produced must be of sufficient quality

www lloseng.com

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 16

What is Software Engineering?...

Other definitions:

* IEEE: (1) the application of a systematic, disciplined, quantifiable approach to the
development, operation, maintenance of software; that is, the application of

engineering to software. (2) The study of approaches as in (1)

* The Canadian Standards Association: The systematic activities involved in the
design, implementation and testing of software to optimize its production and

support.

N

/ www lloseng.com

/ © Lethbridge/Laganiere 2001 Chapter 1: Software and Software Engineering 17

What is Software Engineering?

Cost, time and other constraints
* Finite resources
» The benefit must outweigh the cost
e Others are competing to do the job cheaper and faster

 Inaccurate estimates of cost and time have caused many
project failures

N

/ www lloseng.com

/ © Lethbridge/Laganiere 2001 Chapter 1: Software and Software Engineering 18

What is the Science of Software Engineering?

The scientific study of
methods, techniques, processes

for creating software

Effect of techniques on quality, productivity

Object Oriented programming languages are better.

Agile development processes lead to faster development.

Often studied empirically

N

/ www lloseng.com

/ © Lethbridge/Laganiere 2001 Chapter 1: Software and Software Engineering 19

1.4 Stakeholders in Software Engineering

1. Users °
 Those who use the software |

2. Customers k . /ﬁ
e Those who pay for the software _

3. Software developers

e Those who make the software
4. Development Managers

All four roles can be fulfilled by the same person

N

/ www lloseng.com

/ © Lethbridge/Laganiere 2001 Chapter 1: Software and Software Engineering 20

What does a Software Engineer do?

1In team

individually

Pa

programming
documenting
planning
presenting
reviewing
reporting

interacting
with clients

listening Specializing in different roles
explaining _ desien : :
gning, programming, testing ...
feedback bras ,
sellin g r alnSt(.)r ming
discussing
planning

www lloseng.com

© Lethbridge/Laganiere 2001

Chapter 1: Software and Software Engineering 21

1.5 Software Quality...

Usability

e Users can learn it and fast and get their job done easily
Efficiency

e It doesn’t waste resources such as CPU time and memory
Reliability

e It does what it 1s required to do without failing
Maintainability

e [t can be easily changed

Reusability

e [ts parts can be used in other projects, so reprogramming is not
needed

N

/ www lloseng.com

/ © Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 22

Software Quality...

Customer:
solves problems at

an acceptable cost in
terms of money paid and
resources used

Developer:
easy to design;

easy to maintain;
easy to reuse its parts

QUALITY
SOFTWARE

User:

easy to learn;
efficient to use;
helps get work done

Development manager:
sells more and

pleases customers

while costing less

to develop and maintain

www lloseng.com

© Lethbridge/Laganiere 2001

Chapter 1: Software and Software Engineering 23

Software Quality

The different qualities can conflict
* Increasing efficiency can reduce maintainability or reusability
* Increasing usability can reduce efficiency

Setting objectives for quality is a key engineering activity
* You then design to meet the objectives
e Avoids ‘over-engineering’ which wastes money

Optimizing is also sometimes necessary
 E.g. obtain the highest possible reliability using a fixed budget

www lloseng.com

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 24

Internal Quality Criteria

These:
e Characterize aspects of the design of the software
* Have an effect on the external quality attributes
e E.g.
—The amount of commenting of the code
—The complexity of the code

N

/ www lloseng.com

/ © Lethbridge/Laganiere 2001 Chapter 1: Software and Software Engineering 25

Short Term Vs. Long Term Quality

Short term:
* Does the software meet the customer’s immediate needs?

e Is 1t sufficiently efficient for the volume of data we have
today?

Long term:
e Maintainability

e Customer’s future needs

N

/ www lloseng.com

/ © Lethbridge/Laganiere 2001 Chapter 1: Software and Software Engineering 26

1.6 Software Engineering Projects

Most projects are evolutionary or maintenance projects,
involving work on legacy systems

 Corrective projects: fixing defects

e Adaptive projects: changing the system in response to changes
n

—COperating system
—Database
—Rules and regulations

 Enhancement projects: adding new features for users

e Reengineering or perfective projects: changing the system
internally so 1t 1s more maintainable

www lloseng.com

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 27

Software Engineering Projects

‘Green field’ projects
* New development
e The minority of projects

www lloseng.com

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 28

Software Engineering Projects

Projects that involve building on a framework or a set of
existing components.

e The framework 1s an application that 1s missing some
important details.

—E.g. Specific rules of this organization.
e Such projects:

—Involve plugging together components that are:
- Already developed.
- Provide significant functionality.

—Benefit from reusing reliable software.

—Provide much of the same freedom to innovate found in
green field development.

www lloseng.com

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 29

1.7 Activities Common to Software Projects...

Requirements and specification
* Includes
—Domain analysis
—Defining the problem
—Requirements gathering

- Obtaining input from as many sources as possible

—Requirements analysis

- Organizing the information

—Requirements specification

- Writing detailed instructions about how the software should
behave

N

/ www lloseng.com

/ © Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 30

Activities Common to Software Projects...

Design

* Deciding how the requirements should be implemented, using
the available technology

e Includes:

—Systems engineering: Deciding what should be 1n
hardware and what 1in software

—Software architecture: Dividing the system into
subsystems and deciding how the subsystems will interact

—Detailed design of the internals of a subsystem

—User interface design]

—Design of databases T [ﬁ—ﬁ ®

B C

N

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 31

Activities Common to Software Projects

Modeling
 Creating representations of the domain or the software
—Use case modeling
—Structural modeling
—Dynamic and behavioural modeling
Programming
Quality assurance
e Reviews and inspections
e Testing
Deployment
Managing the process

N

/ www lloseng.com

/ © Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 32

1.8 The Eight Themes of the Book

1. Understanding the customer and the user

2. Basing development on solid principles and reusable
technology

3. Object orientation

4. Visual modeling using UML

5. Evaluation of alternatives

6. Iterative development

7. Communicating effectively using documentation

8. Risk management in all SE activities

www lloseng.com

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 33

Difficulties and Risks in Software Engineering

e Complexity and large numbers of details

e Uncertainty about technology

e Uncertainty about requirements

e Uncertainty about software engineering skills
e Constant change

 Deterioration of software design

e Political risks

www lloseng.com

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 34

Software Development Process Models

Waterfall
eIterative

www lloseng.com

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 35

SDP Models (1)

Waterfall Model (Mid 70ies)

Time

mplementation .
P « =1 milestone 5

— No iterations
— Big bang scenario
— First-time right

www lloseng.com

/ © Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 36

The waterfall model

Feasibility study ‘1
L User Requirements“
L Analysis ‘1
System Design ‘1
L Program Design ‘1
L Coding ‘1
L Testing “v

Operation

L——;/

wianns lleveanr com

/ © Lethbridge/Laganiere 2001 Chapter 1: Software and S DeCO m |SS | on I-

The Classical Waterfall Model (Example)

Requirements Vision & first idea

Analysis Requirements Document (WHAT)
Context model & Requirements Spec.

Architectural Model (HOW)
Feasibility Study (can product be made?)
Risk Assessment (project threats and ris
Design & Specification
System Spec. (WHAT):

1apJo |eijlianbas
12141S Ul 91ND3X3

Design (HOW)

plementation Coding & Testing (HOW):
Integration and acceptance Test s lloseng,

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 38

The V-process model

Another way of looking at the waterfall model

@ Validation process @

Review

/

User acceptance

I

System test

/

Program testing ‘

_—

Corrections

www lloseng.com

/ © Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 39

Problems of the Waterfall Process (1)

The milestones did not fit in many project situations, leading to:

- |Gold-plating — Iterative development

Extensive written requirements spec's cause overemphasis

on "complete” requirements and invite "just-in-case" additions

-| [Inflexible point solutions

- Fixed requirements spec's produce inflexible solutions optimized

around the initial problem statement
— Forced early design decisions

-/Bad usability — A prototype is worth a 100.000 words
)'r itten req. spec's are not nearly as effective as a prototype

-:_"-.*.'-:IG ll;liil;lil.‘illl;li-;liil;llil;-ilill'.clll;l-il-ﬂiililiD]Ircl . OTT arttr réec aCk

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 40

The waterfall model (cont‘d)

Pros:
Imposes structure on complex
projects
Every stage needs to be checked and
signed off:
e Elimination of midstream changes
Good when quality requirements

dominate cost and schedule
requirements

© Lethbridge/Laganiere 2001

Cons:

Limited scope for flexibility /
iterations

Full requirements specification at
the beginning:

e User specifications

No tangible product until the end

Chapter 1: Software and Software Engineering 41

Problems of the Waterfall Process (2)

Different phases are handled by different people

Consultants

Architect(s)

IT-Specialists
IT-Engingers

IT-Engingers

N

>, Communication becomes highly critical

www lloseng.com

/ © Lethbridge/Laganiere 2001 Chapter 1: Software and Software Engineering 42

SDP Models (2)

Waterfall
Model
(Mid 70ies)

Time

Implementation

Evolutionary
Models
(80ies)

Increments
(Spiral cycles)

Iteration
< >
www.lloseng.cg&gpg
/ © Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 43

Rational Unified Process (RUP)

Disciplines ‘

Phasesi

Busmess Modelng
Heguirements
Analysis & Desion

Implementation
Test

Deployment
Configuration &
Change Management
Project Management

Envmonment

un”uﬂ

— L LEFAtIONS

// © Lethbridge/Laganiere 2001

Chapter 1: Software and Software Engineering

Problems of Evolutionary Models

- Inflexible point solutions

The initial release is optimized for demonstration,
consequently the architecture is difficult to extend

- High-risk downstream capabilities

The initial release often defers quality attributes
(dependability, scalability, etc.) in favor of early
functionality

www lloseng.com

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 45

Win-Win Spiral Model (Boehm, 1998)
/

Emphasizes continuous
stakeholder alignment

4. Evaluate product and
process alternatives
Resolve risks

5. Define neX{-increment
6. Implementfroduct of product & process,
& procehbs definitions inclusive partiNgns

7. Verify & commit

lleseng.com

/ © Lethbridge/Laganiere 2001 Chapter 1: Software and Software Engineering 46

Incremental delivery

delivered
system

L, I_. |, ‘ >» 2® D@ >» increment

1

finst incremental delivery

— |—’ — ‘ , ’ increment

2

second incremental delivery

- -

third incremental delivery

increment
3

Each component delivered must give some
/ benefit to the stakeholders

www lloseng.com

/ © Lethbridge/Laganiere 2001 Chapter 1: Software and Software Engineering 47

Proliferation of Alternative Models

Early 1990’s
Examples:

Risk-, reuse-, legacy- and demo-driven
.- Various variants of evolutionary development
Hybrids

SW organizations had difficulties
to establish a common reference

N

/ www lloseng.com

/ © Lethbridge/Laganiere 2001 Chapter 1: Software and Software Engineering 48

The plan

THERE Will BE A& RECEFTION LINE
OUTHIPE o IH HEEE wilL BE A COLF
FUFFET .. ¥OU WLl %IT /N THE Bie cHAIR ...
YO, LAER ANT KIN SIT AT THE Bie

TAFLE ANP OTHERS A% THEY ARLNE
AT THE SHMALL TABLES .. AND MELL PoT”

HOWTO TOSSAVIKING BASH

'-ri.? i![-"?'%f-' —

HEHHHHT

Reality

N _

\ The output of a project needs to be /ﬁ
| \\ Understood R
R Maintained

) Reused ?
% Fake a rational design process £
A = Document in a orderly and |
| systematic manner E
& -l |

www lloseng.com

(@R RT L T don 15>
4

/ © Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 50

Questions?

Homework:

- Read
- Chapter 1 Introduction Software Engineering
- Chapter 2 Review Object Orientation

www lloseng.com

© Lethbridge/Laganiére 2001 Chapter 1: Software and Software Engineering 51

Requirements Engineering J

Software Engineering
Leiden University 2007-2008
Michel Chaudron

Requirements Engineering

Based on Selections from

- Chapter 4 from Object-Oriented Software Engineering
by Lethbridge & Laganiere

- Requirements Engineering.: A Good Practice Guide
by lan Sommerville & Pete Sawyer

- Generative Programming by Czarnecki

What, Why, Who, When, Where, How?

Requirements engineering

The process of establishing the services
that the customer requires from a
system and the constraints under which
it operates and is developed.

The requirements themselves are the
descriptions of the system services and
constraints that are generated during
the requirements engineering process.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6

"The hardest single part of building a software system is
deciding precisely what to build. No other part of the
conceptual work is as difficult as establishing the
detailed technical requirements, including all the
interfaces to people, to machines, and to other
software systems. No other part of the work so
cripples the resulting system if done wrong.

No other part is more difficult to rectify later".

Fred Brooks, "No Silver Bullet",
IEEE Computer,1987
Author of The Mythical Man-month

Understanding the problem

What the customer What the project

What the analyst

What the What the

explained leader understood designed consultant defined programmer made
How it was What was What was What was What she
maintained documented charged installed client needed

Developers’ View of Users

Users’ View of Developers

Users don't know what they want.
Users can't articulate what they want.
Users have too many needs that are
politically motivated.

Users want everything right now.
Users can't prioritize needs.

Users refuse to take responsibility for the
system.

Users are unable to provide a usable
statement of needs.

Users are not committed to system
development projects.

Users are unwilling to compromise.
Users can’'t remain on schedule.

Developers don’'t understand operational needs.
Developers place too much emphasis on
technicalities.

Developers try to tell us how to do our jobs.
Developers can't translate clearly stated needs
into a successful system.

Developers say no all the time.

Developers are always over budget.
Developers are always late.

Developers ask users for time and effort, even
to the detriment of the users’ important
primary duties.

Developers set unrealistic standards for
requirements definition.

Developers are unable to respond quickly to
legitimately changing needs.

Learning from each other

Users, customers,

managers, domain

experts, and

developers share
different skills,

| backgrounds, and

expectations.

Developing a shared vision

Requirements emerge
from a process of
co-operative learning in
which they are explored,
prioritized, negotiated,
evaluated, and
documented.

The 10 top reasons for not doing
requirements

10. We don’t need requirements, we’re using objects/java/web/....

. The users don’t know what they want

. We already know what the users want

. Who cares what the users want?

. We don’t have time to do requirements

. It’s too hard to do requirements

. My boss frowns when | write requirements

. The problem is too complex to write requirements

. It’s easier the change the system later than to do the
requirements up front

. We have already started writing code, and we don’t want to
spoil it

N W A~ U1 OO NN 0 ©

—_—

Volere Requirements Resources http:/www.volere.co.uk

“I held my entire program up for 4+ weeks due to
unclear, unwritten requirements. Took some heat for
that in the beginning, but the deep dive
requirements effort is highlighting a Silicon spin we
didn't know about, standards that we don't support,
other postlaunch requirements nobody
considered...all of this causing us and mgmt to
guestion the viability of the product. BTW, this is all
stuff we wouldn't have realized until it smacked us in
the face 6 months from now. Spending a month now
prevented us from spending millions before a
conscious decision.”

From : Reflections on a Successful Corporate Requirements Engineering Training
Curriculum, Erik Simmons, Intel Corporation, 2005

Stakeholder issues

Steve McConnell, in his book Rapid Development, details a number
of ways users can inhibit requirements gathering:

- Users don't understand what they want or users don't have a
clear idea of their requirements

- Users won't commit to a set of written requirements

- Users insist on new requirements after the cost and schedule
have been fixed.

- Communication with users is slow

- Users often do not participate in reviews or are incapable of
doing so.

- Users are technically unsophisticated
- Users don't understand the development process.
- Users don't know about present technology.

Why Software Projects Fail

Example of empirical research

25.0%

Related to
Requirements
Engineering

352 companies - 8 000 software projects. Source: The Standish Group, 19495 12

Contribution of Requirements Defects
Defect Source

6% 7%

6 % 6%

5%
5%
5%,
e Requirements
28% —— = translation

O Environment B Logic design

M Interface -
O Documentation

O Data
Incomplete

H Other requirements

13

Why Requirements Engineering?

- Scope the problem

- Understand the problem
- for the client as well as the architect
- Basis for design

- Contract between client/user and builders
- agreement on what has to be built

Understand the Domain

What is important?
Which things are stable and which change?
How does the project add to an organizations' success

Initial Steps in RE process

- What are the drivers?

- Stakeholders & concerns
- What are the constraints?

- Economical/technical/organisational
- What is the scope of the system?

Twin Peaks Process

Separate but concurrent development of
requirements & architecture

General

Specification

WHAT:
problem peral

structuring

Architecture

Requirements

Detailed

Independent

Implementation
Dependence

Depe nient
>

HOW:
solution

structuring

Progressing understanding of architecture & design
provides a basis for discovering further system

requirements and vice versa

There is interaction between available solutions and

requirements

What

|

What

|

What is required by the customer?

What are we going to realize?

How How are we going to realize the product?

T

What What What

oy

How How Hoyv

4R .
WhatWhatWhat
oo
How How How
o
P .
What What What
vor oy
How How How

What are the subsystems we will realize?

How will the subsystems be realized?

up to "atomic" components

Slide by Gerrit Muller, EST, 2007 18

What is a Requirement ?

- A statement about the proposed system that all
stakeholders agree must be made true in order
for the customer’s problem to be adequately
solved.

Short and concise piece of information

Says something about the system

All the stakeholders have agreed that it is valid
It helps solve the customer’s problem

Contract between customer and builder

Example Requirement Template

Requirement #: Reguirement Type: Event/use case #:

Description:

Rationale:

Source:
Fit Criteria:

Customer Satisfaction: Customer Dieatisfaction:
Dependencies: Conflicts:
Supporting Materials:

History: V(@l'erle

Copyright: B AtiEntis Bystans Guld

20

10

Errors

Up to 30-50% of the errors found further downstream
the development process are due to errors in the
requirements.

Requirements errors are typically non-clerical.

incorrect facts 49%
omissions 31%
inconsistencies 13%
ambiguities 5%

Requirements errors can be detected.
Review by authors 23%
Review by others 10%

21
Specify the requirements and
| read them to check that they
meet their needs. T hey
specify changes to the
requirements
-| Use the requirements
document to plan a bid for
Managers the system and to plan the
system development process
| Use the requirements to
-s understand what system is to
be developed
System test | Use the requirements to
engineers develop validation tests for
the system
Use the requirements to hel
maﬁféﬁ?nce understand the system an
engineers the relationships between its
22

11

Types of requirements

- User requirements:

The description of the functions that the system
has to fulfil for its environment in terms of the

users interacting with the system, e.g. in the form
of use cases.

-Software requirements:

The software requirements are a translation and a
more precise description of the user requirements,
in terms for software engineers.

Functional and extra-functional requirements
23

Types of Requirements

- Functional requirements
- Describe what the system should do

- Extra-functional requirements
- *ilities: Availability, Security, Reliability, Timeliness,
- Capacity

Constraints that must be adhered to during execution

24

12

Tvpes of extra-functional rea’rements

Non-functional
requirements

Poduct Organisational External
requirements requirements requirements
Efficiency Reliability Portability Interoperability Ethical
requirements requirements requirements requirements requirements
pammsl Eaaasee— e E—

Usability Delivery Implementation Standads Legsldive
requirements requirements requirements requirements requirements
Performance Space Privacy Safety

requirements requirements requirements requirements
0
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 6

Functional requirements

- What /nputs the system should accept
- What outputs the system should produce

- What data the system should store that other
systems might use

- What computations the system should
perform

26

Examples

The system shall allow users to search for an item by
title, author, or ISBN.

Defines system functionality.
If an item is not returned within the period of load,
then the person who loans the item will be fined Euro

1 per week.

Defines (causal) relations between system functions.

27

Examples of XFR: Reliability

Typically expressed in terms of
for repairable systems
Mean Time Between Failures (MTBF)
Number of hours that pass before a component fails
E.g. 2 failures per million hours:
MTBF = 10/ 2 = 0,5 * 10° hr

For non-repairable systems
Mean Time To Failure (MTTF)
Mean time expected until the first failure of a system
Is a statistical value over a long period of time

Mean Time To Repair (MTTR) Availability 8

14

Examples XFR: Maintainability

Maintainability

The average person time required to fix a category
3 defect (including testing and documentation
upgrade) shall not exceed two person days.

29

System Quality Attributes

- Time To Market
- Cost and Benefits

Projected life time

- Targeted Market

Integration with
Legacy System
Roll back Schedule

Performance

- Availability End User's . Portability Developer’s

Business
Community
view

- Maintainability

- Usability view - Reusability view

- Security

- Testability

30

15

Constraints

Constraints are not negotiable

Constraints concerning the environment and
technology of the system.
- Platform
- Technology to be used

Constraints concerning the project plan and
development methods
- Development process (methodology) to be used
- Cost and delivery date
- Often put in contract or project plan instead

31

Constraints

Constraint restrict how the requirements are to be implemented.

Interface Requirements.
How external interfaces with other systems must be done.

Communication Interfaces.
The networks and protocols to be used.

Hardware Interfaces.
The computer hardware the software is to execute on.

Software Interfaces.

How the software should be compatible with other software:

applications, compilers, operating systems, programming
languages, database management systems.

User Interfaces.
Style, format, messages

32

16

Requirements on Requirements (1)

Each individual requirement should be
Important/necessary for the solution of the current problem
Unique
Unambiguous
Logically consistent
Not over-constrain the design of the system

- Atomic: not consist of multiple separate requirements

33

Requirements on Requirements (2)

The set of requirements together should be:
- Complete

Expressed using a clear and consistent notation

- at the same level of detail
- Without duplication

34

17

Requirements on Requirements (3)

S Specific
To-the-point, precise
M Measurable
Quantifiable and verifiable
A Acceptable (to the stakeholders)
Accessible, understandable (for the user)
Achievable (technically/planning/economically)
R Realistic
Deducible to the real business drivers
T Testable

35

Let’s consider

- “All communication between client and server is

secure” not
- “It is easy to extend” measurab/eJ

- “The system should respond Qurcrry

- “The user should not have to.wait m a few
second ...”
- “Determine solution within 0.3 sec

[{}

18

Requirements Prioritization

37

The Cost of Traditional BRUF

Big Requirements Up Front
Source: Jim Johnson of the Standish Group, Keynote Speech XP 2002

Pie chart shows percentage of functionality used by stakeholders

“Successful” Projects Still Have Significant Waste

Pareto-rule applies: 20% of functionality delivers 80% of value

Always
7%

Often
13%

Never
45%

Sometimes
16%

38

Rarely
19%

19

Prioritizing Requirements

- MIL STD:
- Must have, will have, may have

- RUP: MoSCoW
Must have
Should have

Could have
Won'’t have

Criteria: indicate importance

Alternative criteria: volitility, cost to realize, risk, ..

39

Cost-Value Prioritization of Requirements

Motivation for Prioritization:
- Focus development effort
- Allocate resources based on importance

- Make trade-offs between conflicting
goals, such as quality, cost and time-to-
market

40

20

Cost-Value Prioritization of Requirements

Process:

1. Review requirements for clarity and completeness (by
Requirements Engineers)

2. Assess relative value of requirements in pair wise
manner (Customers and users)

3. Assess relative cost of realizing requirements in pair
wise manner (by experienced SW Engineers)

4. Calculate (value, cost)-pairs (using AHP*)
Plot requirements as (value, cost)-pairs
6. Prioritize

(92

* Analytic Hierarchy Process

41
- 14 Requirements
) 2%
?
‘qé,; 16% 25
SR R Lo medium value °'3
o & 5 o 5 00 S h
3 noopy M S medium cost
E 0 s Il s il I s s L ml 41 Il — 15 Q \° 06
= 1234567 80900112131 z
Requirement 2
% 10] ®! 5
< L
>
e
RN LY \ﬂ\!a\ug\
- 2 - o \o? “(;0
g 0) o o7 8 w20 W
§ 15 - T ez . ‘ ‘
2 i 102 0 5 10 15 20 25
g 10 “ 4) s 7 P Cost (percent)
s g & i &
o 2
8 0! Lwl L LA | U | |
12 3 4 5 6 7 8 9 1011 1213 14
Requirement 42

21

THE ANALYTIC HIERARCHY PROCESS

To make decisions, you identify, analyze, and make trade-
offs between different alternatives to achieve an objective.
The more efficient the means for analyzing and evaluating
the alternatives, the more likely you'll be satisfied with the
outcome. To help you make decisions, the Analytic Hierachy
Process compares alternatives in a stepwise fashion and mea-
sures their contribution te your objective. !

AHP in action. Using AHP for decision making invalves
four steps, We'll assume here that you want to evaluate can-
didate requirements using the criterion of value.

Step 1. Set up the n requirements in the rows and columns of an
n x naatriv. We'll assume here that you have four candidate
requirements: Reql, Req2, Req3, and Req4, and you want to
know their relative value. Insert the # requirements into the
rows and columns of a matrix of order # (in this case we have
a4 4 matrix).

Step 2. Perforns pamrwise comparisons of all the requirements
according ro the criterion. The fundamental scale used for this
purpose is shawn in Table A.! For each pair of requirements
{starting with Reql and Req2, for example) insert their
determined relative intensity of value in the positien (Reql,
Req2) where the row of Reql meets the column of Req2. In
position (Req2, Reql) insert the reciprocal value, and in all
positions in the main diagonal insert a *1.” Continue to per-
form pairwise comparisons of Reql-Req3, Reql-Reqd,
Req2-Req3, and so on. For a matrix of order n, #-(n —1)/2
comparisons are required. Thus, in this example, six pairwise
comparisons are requireds; they might look like this:

Reql Req2 Req3 Reqd
Reql 1 173 2 4
Req2 3 1 5 3
Req3 12 175 1 173
Reqd 174 17 3 1

Step 3. Use averaging over narmalized columns m estimate the
cigenvalues of the matix (which represent the criterion distri-
bution). Thomas Saaty proposes a simple method for this,
known as averaging over normalized columns.! First, caleu-
late the sum of the » columns in the comparison matrix.
Neat, divide each element in the matrix by the sum of the
column the element 1s a member of, and caleulate the sums
of each row:

Reql Req2 Reqd Reqd Sum
Reql 0.21 0.18 0.18 0.48 L0
Req2 0.63 0.54 045 036 198
Req3 0.11 0.11 0.09 0.04 034
Req4 0.05 0.18 0.27 012 062

Then normalize the sum of the rows (divide each row
sum with the number of requirements). The resultof this
computation is referred to as the priority matrix and is an esti-
mation of the eigenvalues of the matrix.

1.05) (026
1 |ros| |os0
3034 0.00
0.62) lo.16

Step 4. Assign each requirement irs velattve value based on the
estimated eigenvalnes. From the resulting eigenvalues af the
comparison matrix, the following information can be
extracted:

+ Reql contains 26 percent of the requirements’ total
value,

+ Req2 contains 50 percent,

Req3 contains 9 percent, and

+ Req# contains 16 percent.

43

AHP consistencv

Result consistency. If we were able to determine precisely
the relative value of all requirements, the eigenvalues would
be perfectly consistent. For instance, if we determine that
Reql is much more valuable than Req2, Req2 is somewhat
more valuable than Req3, and Req3 is slightly more valuable
than Reql, an inconsistency has occurred and the result’s
accuracy is decreased. The redundancy of the pairwise com-
parisons makes the AHP much less sensitive to judgment
errors; it also lets you measure judgment errors by caleu-
lating the consistency index of the comparison matrix, and
then calculating the consistency ratio.

Consistency index. The consistency index (C1) is a first indi-
cator of result accuracy of the pairwise comparisans. You cal-
culate iras CI =(Amax—n)/{n—1). Amax denores the
maximum principal eigenvalue of the comparison matrix.
The closer the value of Amax is to » (the number of
requirements), the smaller the judgmental errors and thus
the more consistent the result. To estimate A max you first
multiply the comparison matrix by the priority vector:

1 1/3 2 41)(026) (122
3 1 5 3 0.50((218
12 15 1 13| 009|037
14 7h3 3 0.16] | 0.64

“Then you divide the first element of the resulting vector by
the first element in the priority vector, the second element of
the resulting vector by the second element in the prioritgy
vector, and so on:

122/0.26) (4.66
2187050 |440
037 /0.09 | 7| 429
0.64/70.16) |4.13

44

22

Prioritization

- Estimation of relative weights
- ratio-scale

- 100 $ approach

- ratio-scale

- Ranking by comparing
- (bubble)sorting - ordinal scale

45

Managing Changing Requirements

- Requirements change because:
- Business process changes
- Technology changes
- The problem becomes better understood

- Requirements analysis never stops
- Continue to interact with the clients and users

- The benefits of changes must outweigh the costs.
- Certain small changes (e.g. look and feel of the Ul) are
usually quick and easy to make at relatively little cost.

- Larger-scale changes have to be carefully assessed

- Forcing unexpected changes into a partially built system will
probably result in a poor design and late delivery

- Some changes are enhancements in disguise
- Avoid making the system bigger, only make it better 46

23

Requirement Changes

Requirements Changes - Business Systems

Requirements Growth %

-5-0 0-5 510 1015 1520 20-25 25-30 30-35 3540 4045 4550 50-55
Requirements Growth %

B — Business Systems Avg. Line Style ==========-== 1 Sigma Line Style

Traceability

- From req to arch choices/features
- From features to req’s

- Check

- Completeness of system
- Analyze impact of changing requirements

48

24

Forward Traceability

................... How is this requirement realized?
""""""""""" To help in understanding...

49

Backward Traceability

To which requirements does this
part of the system contribute?
-------- | Whyam | here?

...................

50

25

Why Traceability?

Accountability: where did this requirement come from?

- The source of a requirements may be needed for clarification,
negotiation, conflict resolution

Matching solution to problem
- For monitoring completeness of system:

- Acceptance test: are all requirements addressed?
- are there unnecessary requirements/features?

Analyze impact of changes (in req’mt’s / design decions)

- Change request: What parts of the design need to change, if a
requirement changes?

Reuse of requirements

51

How Traceability: Hyperlinks

design document and requirements document
contains hyperlinks to each other

Requirements document

Typical use: .
interactive exploring / 1.2YYYY
1.3727777

browsing req.docs

Design document

Using .html documents
1.1 Design Decision: use tactic XYZ

& browsersdue to / supports requirement 1.2
.... because rationale

2

26

But also
- Trace the source of requirements

Stakeholders

1.1 Customerl
1.2 Developer

Requirements document

1.1 XXXX
1.2YYYY

1.3 Maintainer

== ... Supports stakeholder 1.2
.... because rationale

mTrace the history/evolution of requirements

Requirements document
Version 0.5

1.1 XXXX
1.2YYYy

Requirements document

2T cancelled

1.1 VVVVV modified because

53

How Traceability: Matrix

A matrix links requirement to design decisions

requirements =)<

1

2

314|5(6(..[.]-

design

decisions q

Uses: database

or spread-sheet

54

27

Req. Management Guidelines

Basic Guidelines:

1. Define policies for requirement management
2. Define traceability policies

3. Maintain a traceability manual

Intermediate Guidelines:
4. Use (automated) requirements management tool
5. Define change management policies
- Maintain a change history
6. ldentify global system requirements

Advanced Guidelines:
7. Measure requirements stability
- Identify volatile requirements

8. Record rejected requirements 55
From: Sommerville & Sawyer

Traceability Research Questions

- How much traceability should one do?

- Can we automate traceability?
- Matching keywords between design and req’s?

56

28

Concluding Remarks

There is a lot more to requirements that meets the eye.

A lot of errors in system development can be traced to
erroneous requirements. It pays to make an effort to
check your requirements

Requirements evolve in concert with architectural
decisions.

Domain Engineering helps developing system families

Lots of guidelines exist for doing requirements right!

Use them!
57

Questions?

See you this afternoon & next week

29

[Gacek et al 1995] present the results of a survey of
people who are somehow involved in software
development processes (developers, customers,
maintainers, aquisitioners, etc.).

There they found that, with respect to architects, the
three major concerns were

“1) requirements traceability;
2) support of tradeoff analyses; and
3) completeness, consistency of architecture.”

Gacek, C., Abd-Allah, A., Clark, B.K., and Boehm, B. (1995)

“On the Definition of Software System Architecture,” in
Proceedings of the First International Workshop on Architectures
for Software Systems - 17th ICSE, Seattle, 24-25 April 1995, pp.
85-95. 59

User Input '
FeatureModel 7
—Feature Graph \7 e “T Feature Selection I
—Constraints

\ -
DN
\ }‘ Component Selection I

g \ (Component Set
—

. P

\>‘<‘> Component Part Selection I
Component Part Set '
S

p
Component Family Model
—Feature to Component Map
—Component to Parts Map
~Constraints

/

/
/l Component Restructuring I
=

d Final Component Source'

l Compilation I

[Binary Components '

Component Parts

~C++ Classes
—Aspect Code
—Build Instructions
—Constraints

60

30

Requirements documents

- should be:
- agreed to by all the stakeholders
- sufficiently complete
- well organized

- Easy to read Requirements
- Easy to maintain / change document
- clear -
LY ... because rationale
- 1.2 YYYY
- Traceability:
- use of hypertext may be usefull Design
- for exploring/browsing req.docs document
....due to
requirement 1.2

61

- Analysis anti-patterns

: The Functional/Technical specification is given
to the Development team on a napkin (i.e.,
informally, and with insufficient detail) which is
fundamentally equivalent to having no
specification at all.

. All requirements are communicated to the
development teams in a rapid succession of
netmeeting sessions or phone calls with no
Functional/Technical specification or other

supporting documentation.

: To write the Technical/Functional specification

after the project has already gone live.
62

31

Don Gause lists the five most important
sources of requirements failure as:
- failure to effectively manage conflict,

- lack of clear statement of the design problem
to be solved,

- too much unrecognized disambiguation,
- not knowing who is responsible for what
- lack of awareness of requirements risk.

63

Through Requirements you are meant to find
out and understand what users’ intentions
and need are.

This may be different from what they say it is!

64

32

Ezelsbruggetje

- Het woord is waarschijnlijk afkomstig van
het feit dat de ezel maar een heel klein
randje nodig heeft om snel op de plek
van bestemming te komen; een plank
over een sloot volstaat al. Het woord
ezelsbrug is al heel oud en bestond in
het Latijn al (pons asinorum).

- English translation welcome ...

65

Quality Characteristic Sub_.characteristics

Functionality

Suitability Accuracy Interoperability Security

Reliability

Maturity Faulttolerance Recoverability Compliance

Usability

Understand ability Lealrnahlllty Opelrahlllty Comlpllance

Efficiency

Time behavior Resource behavior Compliance

inability

Complli

Anal)lfsability ChanLeabiIity Stability Tesjabil'ﬂy Comp|iance

Portability

Ada;JtabiIity Instaltability Co-elxistence Replal:eability Comp|iance

ance

is refined into is refined into

iz measured b

[characteristic] — = [sub-characteristic] —— = .

[EEE

33

STIMULUS-ENVIRONMENT-RESPONSE

‘Formula’ for scenario’s
- Use case scenario
Remote user requests a database report via the Web
during peak period and receives it within 5 seconds

- Growth scenario
Add a new data server during peak hours within a
downtime of at most 8 hours.

- Exploratory scenario
Half of the servers go down during normal operation
without affecting overall system availability

A good scenario makes clear what the stimulus is and
what the measurable response of interest is &

34

Software Architecture

Michel R. V. Chaudron
&

" sl
Leiden Institute of Advanced Computer Science

Lecture Outline
m What, Why, When, Where, Who SWARCH

m Describing

m Designing (start of) How

Leiden Institute of Advanced! Co? puter Science

Software Architecture Books

Software
Architecture

m Software Architecture in Practice, Second Edition, jRibractice

Second Edition

L. Bass, P. Clements, R. Kazman,
SEI Series in Software Engineering,
Addison-Wesley, 2003

m Software Architecture: Perspectives on an
Emerging Discipline, Mary Shaw, David Garlan,
242 pages, 1996, Prentice Hall

m Recommended Practice for Architectural Description,
IEEE STD 1471-2000, 23 pages

MRV Chaudron = .
Sheet 3 Leiden Institute of Advanced. yuter Science

Software Project Management

The Deadline
by Tom DeMarco

* easy & fun reading
* lots of lessons from practical experience

Also very though provoking:

Peopleware
by DeMarco & Lister,
Dorset House Publ., 2" ed, 1999

MRV Chaudron

Sheet 4 Leiden Institute of Advanced Gomputer Science

Software Engineering

Increasing amount of software in systems
Windows Complexity KLOC in Avionics System
45 10000 0

5 30 /AE2G

5 2 8 A310
@ 20 = 100

515 — £

E 10 o AZ00FF

z —F 4005
Win Win Win 95 NT4.0 Win 88 NT50 Win P 1 1970 1980 1990 2005
31 NT (1997) (1988) (1989) (2000) 2K (2002 Alirplane type

The al'IlOI.lIlt Of Software nnnnnn Code Size Evolution of High End TV Software .
increases 10 fold every 10 years. | .. ANl
Abstractions are needed. g AT A A T

Sl L

o | | | | | | | | | | | | | |

Nb: logarithmic scale = " |

p— Yo ot o o _
Sheet 5 Leiden Institute of Advanced Gomputer Science

Classic Definitions 1

An architecture is the about

- the organization of a software system,

- the selection of the and their by which
the system is composed, together with their as specified in
the collaborations among those elements,

- the of these structural and behavioural elements into
progressively larger subsystems,

- the that guides this organization

The UML Modeling Language User Guide, Addison-Wesley, 1999
Booch, Rumbaugh, and Jacobson
] MRV Chaudron |
Sheet 6 Leiden Institute of Advanced Gomputer Science

What is Software Architecture?

Classic Definitions 2

The structure of the components of a program/system,
their interrelationships, and and
governing their design and over time.

David Garlan and Dewayne Perry
April 1995 IEEE Transactions on Software Engineering

MRV Chaudron |
Sheet 7 Leiden Institute of Advanced Computer Science

Example:
FEI electron
microscopes

COMMFC interop.

COM Servers

3" Party Software Applications|

A
OLE/Automation DCOM
compatible COM

Application COM Server [P 37 Party interface COM
(Service) Server
Application behavior

13 / v

Instrument Server (Service)
Object Model A COM + FEI specific technologies
{optimized event system)
Tasks
Behavior v ‘
Instrument behavior
v

Subsystem x Suhsysten?* Subsy‘s?sﬁ‘l‘“b

Behavior Behavior | Behavior l

a4 »
B € Control
Model Mode! Model Maodel Mode! Mode!
HAL HAL HAL HAL HAL HAL

MRV Chaudron
Sheet 8

Figure 4: Execution model of the SDB software, in as far as this runs on the PC

Software Engineering

Example: FEI electron microscopes

SEM/ SDB conceptual view

>
k]
=
General g
CadNav CellCount Slice&View TEM Prep purpose Ul H
]
| @
Data /N
Management
o
Material @
Loading Navigation Imaging Processing 3
1 ‘ ‘
| I [| Services: A
A 1 13 S 19 R it
~Test °
ImageEngine - Diagnostics 5
. Y] = E-column: Icolumn: - ChargeNeut F
5% 22 o 5 - safety 8
] 53 23 Gun £ 2 Gun 2 =
g EE &a Optics B] Optics
a2 Apertures g g Apertures.
Field busses (TCPIIP, CAN, Firewire) N\
=
5
3
2
2
23
Electronic Console s
- power supplies 2
- optics
- stage control
- high voltage
Vacuum console (valves, pump, sensors)
Local electronics i
AV uter Science

Figure 1: the SDB family system decomposition and interrelationships on the different levels of abstraction.

Software Engineering

" W— " Material i
Loading Navigation Imaging processing Data management Alignment
jmage display] | Siage FDCLI‘S. Stig Image Pattemning Measur_emenﬁ,
Display client layer layer layer layer Annotation layer
host (4x) |
Control panels Loadlock | [Vacuum | | Navigation Beam, Scan GIg Fatterning, Meas&Ann Aligny Alignment
L control control control control insert | | EP monitor cantral control | | instructions

Keyboard shortcuts, homs stage photo - N | nextline
Toolbar buttons <h 7B | link 24D - videoscope -

compuc. rotation
center stags
[amows | move FOV 80%

snapshot {e-beam) ==
+ | snapshot (i-beam) start
full soreen [quad

pause / unpause -

7 | sucentric FWD

e e [

magn °2, /2. reund
magn, HY, current

Mouse buttons Wheel press & drag
= "joystick” mavement

{in CCD quad: z)

Menu Stage Detectofs‘S:an{Beam' Tools | uﬂermngl File ‘

Figure 3: Functions offered through the user interface, arranged according to task and control means

MRV Chaudron

Sheet 10 Leiden Institute of Advanced uter Science

MC2
Software Engineering

Contents of a good architectural model

m A system’s architecture will often be expressed in
terms of several different views
1 The logical breakdown into subsystems
01 conceptual abstract view
01 functional decomposition
0 responsibility distribution
m The interfaces among the subsystems

1 The dynamics of the interaction among components
1 The data that will be shared among the components

1 The components that will exist at run time, and the
machines or devices on which they will be located

Slide by Lethbridge and Laganiere | ucn imsiee ofAdvam@ﬁg@m“

Viewpoints & views

Exterior
Cowvering Model

view o E

p 0 | n t Electrical Plan

Floor Plans

j] MRV Chaudron 4 ,
M Sheet 12 Leiden Institute of Advanced| uter Science

Slide 11

MC2 hierarchy
- itself a view

- may apply to different views
Michel Chaudron; 27-2-2008

Architectural view

m An architectural view is a simplified
description (an abstraction) of a system from
a particular perspective/view point, covering
particular concerns, and omitting entities
that are not relevant to this perspective

MRV Chaudron s
ol Sheet 13 Leiden Institute of Advanced Co?_‘ iputer Science

Elements of Architectural Design

m Structure

decomposition, hierarchy At different
interfaces levels of
_ abstraction:
m Behaviour - conceptual
L - development
within and between components | _ run-time/
= Data physical

m Design Decisions / Rationale

Leiden Institute of Advanced Co?_‘ iputer Science

Making design decisions

m To make each design decision, the software
engineer uses:

Knowledge of
m the application domain L
th . { Combination of
m the reqL.uremen S top-down and
= the design as created so far i bottom-up
= the technology available .
» software design principles and ‘best practices’
m what has worked well in the past

audron H H . i
Sheatrs Slide by Lethbridge and Laganiere | iuc imsieute of Advanced Computer Science

Positioning Architecture

The question: The answer: Implementation: Deployment:

s ”| Architecture E-—v Executable I
ments

* Features * HL-Design * Decomposition * Memory

* Use cases Components ¢ Algorithms allocation

* Dependability Interfaces * Data structures ¢ Dynamic
Timing Interactions ¢ Distribution Instantiation
Reliability * Styles * Scheduling * Call stacks
Security * Constraints ¢ Recovery * Garbage

* Quality * Guidelines * Language collection

» Standards * Reuse * Encryption * Machine code

* Etc. * Etc. * Etc. * Etc.

MRV Chaudron =
Sheet 16 Leiden Institute of Advanced Computer Science

Architecturally Significant Elements

An architecturally significant element has a significant
impact on the structure, performance, robustness,
scalability, maintainability and evolvability

of the system.

MRV Chaudron et
Sheet 17 Leiden Institute of Advanced Computer Science

Software Engineering

Business Objectives of Software Architecture

Reduce development cost
- improved communication between developers, and
- earlier assessment of design alternatives and
assessment of system risks
Reduce time-to-market

- allowing concurrent development of different subsystems

- enabling reuse

MRV Chaudron et
Sheet 18 Leiden Institute of Advanced Computer Science

Software Engineering

Business Objectives of Software Architecture

Reduce maintenance cost

- Design should plan for incorporation of foreseeable
changes and extensions

Improve product quality
Increase fitness for use through stakeholder involvement;

reduce errors through enforcement of conceptual integrity

MRV Chaudron e
Sheet 19 Leiden Institute of Advanced Gomputer Science

Software Engineering

SA Objectives for Development 1/2

Management of Complexity

Define a model of a system that is intellectually
manageable - better understanding

Answering of what-if questions
Allows stakeholders to evaluate different
architectural solutions and their consequences

MRV Chaudron il
Sheet 20 Leiden Institute of Advanced Gomputer Science

10

SA Objectives for Development 2/2

Feasibility study & risk analysis

Analysis of various (non-)functional features of the
future product; identification of possible problems
during development, production & operation

Project estimation, planning &
organization
Allocation of components to concurrent teams

MRV Chaudron
Sheet 21

Leiden Institute of Advanced Computer Science

For Whom ?

An architecture is a (common) means of understanding
of a system

- Customers, Users, Domain Experts
-Engineers:
- analysts, architects
- programmers
-maintenance, development,
-new members development team

- Marketing, Sales
- Management ...

MRV Chaudron

Shoet Different types of annhhte@nurﬁeg;;;:rsc;ence

11

Stakeholders & their Concerns 1/2

Stakeholder Concern (Examples)

Customer Business goals
Schedule & budget estimation
Feasibility and risk assessment
Requirements traceability & progress tracking
Product-line compatibility

User Consistency with requirements & use cases
Future requirements growth accommodation
Support of dependability & other X-abilities

Service manager Reliability, availability and maintainability

MRV Chaudron s
Sheet 23 Leiden Institute of Advanced Gomputer Science

Stakeholders & their Concerns 2/2

Stakeholders Concern (Examples)

System engineer Requirements traceability
Support of tradeoff analyses
Completeness of architecture
Consistency of architecture with requirements

Developer Sufficient detail for design and development
Workable framework for system construction,
e.g. selection/assembly of components &
technologies
Resolution of development risks

Maintainer Guidance on software modification

Guidance on architecture evolution

MRV Chaudron
Sheet 24

Leiden Institute of Advanced Computer Science

12

Multiple Purposes of Architecture

Understanding
+ Analyzing + Communicating + Constructing

Understanding Describing Guiding
Why What How

Picture from Gerrit Muller, How to Create a Managable Platform Architecture

}] MRV Chaudron il
A Sheet 25 Leiden Institute of Advanced Computer Science

When Architecting?

e When developing a new system

e When changing a system
e if an architecture description is not available,
or insufficient, as a basis for change
e adapt the architecture documentation to changes

e When integrating existing systems

e For special communication needs
to provide a common ground for understanding

1] MRV Chaudron s
Sheet 26 Leiden Institute of Advanced Gomputer Science

13

Software Engineering

... giving people the appropriate tools to frame and
structure their discussion and decision making is
an enormous benefit to the disciplined
development of complex systems.

Software Architecture in Practice 2M ed.
Bass, Clements, Kazman

MRV Chaudron

g
Sheet 27 Leiden Institute of Advanced Gomputer Science

What is Software Architecture?

Definition 3

Architecture of software is a collection of design
decisions that are expensive to change.

Alexander Ran, Nokia Research
September 2001 European Conference on Software Engineering

“The things that are fixed”

MRV Chaudron

e
Sheet 28 Leiden Institute of AdyantS KUDMBNEES icn e

14

Describing

Architectures

T
Leiden Institute of Advanced Computer Science

Philippe Kruchten'’s Definition

Software architecture is not only concerned with
structure and behaviour, but also with

- usage

- functionality

- performance

- resilience

- reuse

- comprehensibility

- economic and technological constraints and tradeoffs
- aesthetics

The Rational Unified Process —— An Introduction,
Addison-Wesley, 1999.

MRV Chaudron il
Sheet 30 Leiden Institute of Advance d Computer Science

15

Software Engineering

4+1 Views Representation of
System Architecture

What can/does
the system do ?

How to build /
configure ?

How is the system
structured?

Development View

Logical View

Programmers
Configuration management

Where to install ?
What hw\nw is useﬂ

Deployment View

System Architect
Functionality (Decomposition)

End-user

Use Case View

How does the
system behave?

Process View
System engineering

System topology
Delivery, installation, maintenance

System Architect

Concurrency, Communication,

Synchronization

How does the
system perform ?

Performance, Scalability, Throughput

stter Science

Sheet 31

Example 4+1 model

Structure model : components,

packages, interfaces Config. Mngnt model

versioning policies

A B file ownership
/\ Stakeholders &
C D
\)
Behaviour mz?del : Deployment model :
MSC, state-diagrams T physical model + mapping
A
2 D]
‘ TCP/IP lover Ethernlet
I C/WC e2e-response times, freq. bandwidth, availability

16

Software Engineering

m Purpose

Use Case Diagram

m Captures system functionality as seen by users
m Built in early stages of development

Specify the context of a system

Capture the requirements of a system
Validate an architecture’s completeness

Drive implementation and generate test cases

m Developed by analysts and domain experts

#] MRV Chaudron
A Sheet 33

Leiden Institute of Advai

B Coniin 1o

Case: Web shop

add item to cart

custome

: @ add item to
catalogue

remove item
from catalogue

remove item from oart

add to stock

shop owner|

package & shi

Loiden Tostity

-d Computer Science

Sheet 34

17

Structure Diagram

m Defines subsystems of functionality

m Purpose
Define decomposition into subsystems
Provide support for use-cases

m Use Component diagram

May use Class, but this suggests OO
implem.

MRV Chaudron et
Sheet 35 Leiden Institute of Advantegl Cb?pug:r Pricnce

Software Engineering

Web Shop: Functional Areas
(VO0.1)

Customer Shop Owner
Registration Registration

Product Catalogue

Shop User Interface Maintenance

Payment Stock Control

MRV Chaudron =l
owdl Sheet36 Leiden Institute of Advanced C‘o?pug:r Science

18

Software Engineering

Areas

Check Use Cases Against Functional

Customer
Registration

Shop Owner
Registration

.. Shop u

add item to
catalogue
_|Product Catalogue
Maintenance

remove item
from catalogue

| stock Control

pay items in cart Payment

package & ship

MRV Ghaudron add item to cary (remove item from capt -
Sheet 37 i Stitute of Advanced Gomputer Science

Software Engineering

Web Shop: Functional Areas (V0.2)

Customer

@ Registration

Shop Owner
Registration

add item to

Shop Ul

catalogue

Product Catalogue
Maintenance

remove item
from catalogue

pay items in cart Payment

add item to carp_"

Stock Control k———

Excluded from.example /i

remove item from cap

Customer Selectiof ¢ Payment adm
Management |+ Shop staff salary adm

‘Eg‘%gﬁ MRV Chaudron
A Sheet 38

T ey i sleOF Kavance;avgioﬁpurtcr Science
L

19

Web Shop: Responsabilities

Customer Registration Entry, storage & retrieval of customers

Shop Owner Registration | Entry, storage & retrieval of shop staff

Shop Ul Provide customers access to product data

Prod. Cat. Maintenance | Entry, storage & retrieval of product data

Cust. Selection Mngmt. | Register customer product selection

Payment Handle transaction between customer & shop

[| Stock Control Register available products in stock

Leiden Institute of Advanced Gomputer Science

u

Software Engineering

|dentify support for Use Cases at different
layers in the architecture

@ login search presentation
@ screen || screen logic
select check
application
i [manage logic
pay items in cart cart
add item to carp
data
user product management
table table
remove item from capt

MRV Chaudron

Sheet 40 Leiden Institute of Advanced Gomputer Science

Software Engineering

|dentification of Data Domains

Customer Registration

Customer data

Shop Staff Registration

interface
issues only

Prod. Cat. Maintenance

Product Catalogue
product-id, p

Cust. Selection Mngmt.

— Stock Control

(product-id, quantity) Volatile &

derived

Software Engineering

|dentification of Dependencies

Shop Ul
Customer | |Cust. Sel._» Cart- ! Pavment Prod. Catal.|| Stock ||Shop Staff
Registration| | Mngmt. data y Maint. Control| Registration

S

Customer

Product Stock Shop
data Catalogue data Staff
data

—— |
| Subsystem

—

package Leiden tnstitute of Advmcg@@ckncc

View: Definition (from IEEE 1471)

3.4 Architectural Description (AD): A collection
of products to document an architecture.

3.9 View: A representation of a whole system from
the perspective of a related set of concerns.

A view may consist of one or more architectural models

Each such architectural model is developed using the
methods established by its associated architectural
viewpoint.

An architectural model may participate in more than

=y 0
he.view. o pan—
A Sheet 43 Leiden Institute of Advance: d Computer Science

Overview (According to IEEE 1471)

has 1..*
system stakeholder
has
has 1.
concern

architecture /s covered by

1.
described by @@7

1 conforms to

i is organised by establishes
a;zglctﬁ;ttl:;il E@ methods for

consists of
*

1.
model
pmodel;
MRV Chaudron

Sheet 44 Leiden Institute of Advance d Gomputer Science

22

Architectural view

m An architectural view is a simplified
description (an abstraction) of a system from
a particular perspective/view point, covering
particular concerns, and omitting entities
that are not relevant to this perspective

Leiden Institute of Advamg@ﬁg@cimcc

Viewpoints & views

Exterior
Cowvering Model

Electrical Plan

Floor Plans

Leiden Institute of Advamg@ﬁg@cimcc

23

" \
Overview - example \/’

*

has 1..

described by

establishes
methods for

‘model

L
MRV Chaudron J ¥
A Sheet 47 Leiden Institute of Advancs cience

Software Engineering

Recommendations for Architecture Description

- describe the system goals & the assumptions on the environment
- describe the design principles, decisions, guidelines
- and their rationale
- describe several views that can be combined in a consistent model
at least the following views should be given:
- functional/structural (decomposition) view
- include a description of the interfaces between (sub)systems
- process/dynamical/behaviour view
- deployment view
- prevent mixing of views
- address non-functional (*ilities) aspects
- use a well-defined notation and include its key/legend
- this aids systematic use of notation/avoids inconsistent use
- improves common understanding
- prevents mixing of different levels of abstraction
- add explanation in natural language

MRV Chaudron J ¥
A Sheet 48 Leiden Institute of Advancs cience

24

Software Engineering

Concluding Remarks

Experience is the hardest kind of teacher.
It gives the test first and the lesson afterward.
Susan Ruth, 1993

- Software Architecture is a critical aspect in the design
and development of software

- We discussed definitions and objectives of Sw.Arch.

- Good architectural design requires human creativity,
hard work, and a critical attitude.

- Understanding of basic principles of architecture
design, analysis, documentation, and process are
necessary, but experience is hard to beat.

MRV Chaudron e
Sheet 49 Leiden Institute of Advanced Gomputer Science

Design of Software Architecture

Understand the Domain |
/ \
User Domain
Requirements | Requirements

Functional Extra-Functional
Requirements Requirements ¢y ART. |

| }
; [
Group Funconalty| - Seson approach or
in subsystems 9

Design Metrics quality properties

Identify
- Trade-offs
-Sensitivity points

Select
- Architectural Style
-Reference Architecture

!
Synthesize |
i - Architecture Tactics
]
]
]
]
]

UML, Views [Model/Describe |
|

RBD, QN, RMA, v refine| -
“é?lé ATAM, prototype Analyze |> ----------- Leiden Institute of Advanced Gomputer Science

25

Software Engineering

WWW References
Software Architecture

(] Software architecture resources (Gert Florijn, Serc)

n Software Architecture at the SEI

inspired by practice; focus on architecture evaluation; lots of papers

(] Software Architecting Process / Success Factors & Pitfalls

m Architectural Blueprints: the 4+1 view model of Software
Architecture

The original paper by Kruchten: nice examples, but old (pre-UML)

naotatinn
motanuuoTrt

MRV Chaudron 1
Sheet 51

| =i
Leiden Institute of AdyantS KUDMBNEES icn e

Questions

MRV Chaudron

—
Sheet 52

-
iputer Science

Leiden Institute of Advanced Co;

26

Software Engineering

Recommendations for Architecture
Description
- describe the system goals & the assumptions on the environment
- describe the design principles, decisions, guidelines
- and their rationale
- describe several views that can be combined in a consistent model
at least the following views should be given:
- functional/structural (decomposition) view
- include a description of the interfaces between (sub)systems
- process/dynamical view
- deployment view
- prevent mixing of views
- address non-functional (*ilities) aspects
- use a well-defined notation and include its key/legend
- this aids systematic use of notation/avoids inconsistent use
- improves common understanding
- prevents mixing of different levels of abstraction
d_exptanation in natural fanguage

MRV Cha =l
Sheet 53 Leiden Institute of Advanced Computer Science

Zachman Enterprise Architecture Framework

1987, extended: 1992

TIME
DATA What FUNCTION How NETWORK Where PEOPLE Who When MOTIVATION Wi
Listof Things Important Listof Processes the Listof Locations in which List of Organizations Listof Everts Signifcant Listof Business Goals/Strat
SCOPE 10 the Busi Business Perfoms. iroBusres Oparaos Important to the Business o the Business © omggﬁif)
o . w . . .
»
Planner ENTITY = Class of Function = Class of Node = Major Business Bus. Goal/| planne,
anner Business Thing Business Process Location People = Maj Time = Major Bus Event | Gritical Success Factor Planner
2.9. Semantic Model ©.0. Business Process Model | e.g. Business Logistics e.0. Work Flow Model e.0. Master Schedule e.g. Business Plan
ENTERPRISE System c ENTERER\SE
MODEL D\<>\|:| ﬂ_i'—rj Ez (CONCEPTUAL)
(CONCEPTUAL| i
=
Owner Ent = Business Entity Proc. = Business Process Node = Business Location People = Organization Unit Time = Business Event End = Business Objective Owner
Reln - Business Relationship _| O - Business Resources | Link - Business Linkage Work - Work Product Cycle - Business Cycle Means - Business Strategy
.9. Logical Data Model ©.0. Applcation Architecture | e.0. Distibuted System e.g. Human nterface 9. Processing Structure | e.g. Business Rule Model SYSTEM
SYSTEM Aitecure itscue YSTEM
MODEL E (LOGICAL)
(LOGICAL) =
- .
Nods - IS Function =<
Ent = Data Entity Proc = Application Function | (Processor, Storage, etc) People = Role Time = System Event End = Stuctural Assertion Designer
Designer Rein = Data Relatiorship 10 - User Views Link - Line Work - Delverable Cycle = Processing Cycle | Moans ~Act i sig
0.9, Physical Data Model || ©.9- System Design .. Technology Architecture | e.g. Presentation Architecture | e.g. Control Structure .. Rule Design TECHNOLOG
TECHNOLOGY) O
MODEL : : E P ﬁ K (PHYSICAL)
(PHYSICAL) S
Node = Hardware/System =
Builder Ent - Segment Table/etc. Proc.= Computer Function ~Ieotwarg People = User Time = Execute End = Condition Builder
Reln = V0= Data Link = Line Specificatior Work = Screen Fomat Cycle = Component Cycle Means = Action
DETAILED e.g. Data Definition e.g. Program e.g. Network Architecture .. Security Architecture e.g. Timing Definition ©.g. Rule Specification DETAILED!
REPRESEN- REPRESEN-
TATIONS TATIONS
(OUT-OF- (OUT-OF
CONTEXT) CONTEXT)
Contractor Ent = Field Proc.= Language Stmt Node = Addresses People = Identity Time = Interrupt End = Sub-condtion . Sub-
- Reln = Address. 10 = Control Block Link = Protocols Work = Job Cycle = Machine Cycle Means = Step Contractor
FUNCTIONING FUNCTIONING
e.g. DATA «e.g. FUNCTION e.9. NETWORK e.9. ORGANIZATION .g. SCHEDULE e.g. STRATEGY
ENTERPRISE || °9 8 o o . ’ ENTERPRISE |
— © John A. Zachman, Zachman Internationall

27

@® Capgemini

CONSULTING.TECHNOLOGY.OUTSOURCING

Planning, Estimation & Measurement

Peter Bink
March 22th, 2007

s = YT e g

Capgemini

+*68.000 employees

*More than 30 countries
*Serve all possible markets
sApproach: Collaborate

+Study: Chemistry, Environmental
L ' sciences and Laboratory Informatics

*12 years at Capgemini
*Roles: developer (pascal, C, C++),
tester, process improver, project

manger, recruiter, estimation &
measurement officer

Planning, Estimation & Measurement 2007-03-22

& = YA e z-

Capgemini Holland

Appr. 6.000 employees

Accelerated
Delivery
Center

Planning, Estimation & Measurement 2007-03-22

LI B . TN z-

ADC Objective

- -

Firansparency

k)b Cangll]]I]l Planning, Estimation & Measurement 2007-03-22

»»»»»»»»»» TECHROTOGT.OUTTOURCING

Why do you want to estimate?

R o e TN

//(z

= - Planning, Estimation & Measurement 2007-03-22
TONSULITNG. TECHIOL06Y. GUTSOUREINE

T Y e g

/" =3 7
b il i Loss of credibility
Qverestimating available time) Inefficient development effort
= 2 Increased cost)
__ \
x---\“—""‘-\-__
_E' = == “Credibilty |
o Accurate ’ Efficiency
=
< % | Estimates | froieetDevelopssri Cyem —T contret
2 =
3 /./"" = . W
/
—
/ Staff burnout
- L lit:
'/_Undel staffing e
Loss of eredibility
Underestimating Under scoping the QA effort 7
y Missed deadlines
\ / Setting too short a schedule .
_ Inefficient development effort

@ Capgemini

CORSTLITNG. TECHIOL06Y. GUTSOUREITE

Planning, Estimation & Measurement 2007-03-22

' . W ATE -~ 2
L - A
Estimation basics: ways to estimate?

Bottom up
Top down

Planning, Estimation & Measurement 2007-03-22

e _ W oA e e 2
Sy o A
Estimation basics: Expert estimation

{ | M
¥
L W\
1lll|’-——. i — T
-4 -3 -2 -1 0 1 2 3 4
z
Copyright 2000 B. M. Tissue

Improve expert estimation:
*Wide band delphi

*PERT

k,{,) CﬂngﬂlL[ll Planning, Estimation & Measurement 2007-03-22

»»»»»»»»»» TECHROTOGT.OUTTOURCING

T
L

- K3 i - ¥

—_—

The basics of Estimation & Measurement

- 2

[
Esti-

mation)
& o
) 7
5 c
3)
7) Measurement %
3 0y
) O)
5 AT
L R
7

Process

Planning, Estimation & Measurement 2007-03-22

e

o

T

L
The E&M lifecycle

Estimate

IMPROVE ESTIMATE

Analyze

Estimation
database

CREATE INSIGHT

Capgemini

ETECAROT0GT. OUTTOURCING

- q’f

- 2

CREATE BASELINE

Measure

Planning, Estimation & Measurement 2007-03-22

LI R e TN/

The cone of uncertainty 4
. Project
Project cost
(effort and size) Schedule
4x 1.6x
2x \\ 1.25x
1.5x 1.15x
1.25x 1.1x
\\;
1.0x 1.0x
0.8x 0.9x
0.67x 0.85x
0.5x / 0.8x
0.25x 0.6x
Inception Elaboration Time Construction Transition

Planning, Estimation & Measurement 2007-03-22

= Y e

Estimating }

BOTTOM UP TOP DOWN

Calibrated
estimation

@) Capgcmun Planning, Estimation & Measurement 2007-03-22

CORSTLITNG. TECHIOL06Y. GUTSOUREITE

: ' » = ! - A !;\ -;h\ ‘3‘
Top Down estimate K
Traditional

Size X

Capgemini / ADC

Size Duration

Effort

Productivity

Quality

Planning, Estimation & Measurement 2007-03-22

I8 = YA ew gl

Productivity factors <

Process

Technology

@ Capgemini Planting, Esimaton & Weasurement 2007.03.22

uuuuuuuuuu TECHROTOGT.OUTTOURCING

. _ WA e ™ —
. = e (i 9 .
Effect of duration on productivity o
Duration vs productivity
120,0
100,0 <\
80,0
&
; 60,0 A
I; |
0,04 : : : '
10 15 20 25 30 35
Duration (mnths)
Planning, Estimation & Measurement 2007-03-22
| v e -
B ’ "B T . :
. = e (i 9 .
Effect of duration on productivity o
Duration Effort Teamsize Efficiency
[Mnths] [PHR] [FTE] [PHR/FP]
15 63630 24,5 20,1 M
*3200 FP
16 49005 17,7 15!5! .PI 20’4
17 39010 13,3 12,3
18 30911 9.9 9.8 QM

24524

7.5

7.7

20 20736 6 6,5
21 16605 4,6 52
22 13904 3,7 4,4
23 11746 3 3,7
24 9887 24 3,1

@ Capgemini

CORSTLITNG. TECHIOL06Y. GUTSOUREITE

*Duration: 19,9 months
*-25% = 15,75 mnths
*+10%= 22 mnths

Planning, Estimation & Measurement 2007-03-22

AL
Measurement: Tracking actuals K4

Project

RequisitePro .
NIKU / Clarity Repository ClearCase ClearQuest %ﬁzg?:t?::
NIKU / Clarity

i Report to
E&M T?f:(h/;n Project
Officer Control Manager

|)

Planning, Estimation & Measurement 2007-03-22

TONSULITNG. TECHIOL06Y. GUTSOUREINE

T Taa = W I o aaaalmy - e e

FTE Start Cum Cost Lite Gycle
03 3 4 s 578 o TR 0 PRI 1 ITRTY 00
1,500
10
s 2
3 1.000 £
§
s]
"
s00
2
‘ ‘ Transitsbaseline verlongd met 3 weken. | | ‘
T TTT T rTTTTTT rT TTT TPFTT I R TTI R T FT eI PP TTTTETTT T TT T L T T T T T T AP T Te T Tes
LR A A AR LA A R LA R U R L A A
0506 17.07 28-08 09-10 20-11 01-01 1202 26-03 07-05 18-06 30-07 1009 0506 17.07 2608 09-10 2011 0101 1202 26:03 07-05 18-06 30-07 10-09
08 05 04 05
cym RUPSLO Gum Defects Found Gategory Total
03 2 3 4 s TR Al ITRTY w00
120 1200
g
3 g
g g
g
rrirrt T T T T T T T R T T T Frrrr
L A A AR A A R A :
0506 17.07 28-08 09-10 20-11 01-01 1202 26-03 07-05 18-06 30-07 1009 0506 17.07 2608 09-10 2011 0101 1202 26:03 07-05 18-06 30-07 10-09
08 05 04 05
[==curent pian —— o == Gurent Forecas Il Graon Gonvol Baundellow Gonvol Boun Prawer Wtk

G Lapgemini Planning, Estimation & Measurement 2007-03-22

CORSTLITNG. TECHIOL06Y. GUTSOUREITE

Stop Light Overview
Avg Staff Const Cum Effort Const
' s 2 s
50
40
40
k-
30 2
5
3 » g
¢
20 2
20
10
10
T T T T T T T e T T T TP T T e T T P T T T pABadBadRnadneiNnadsakind TITT T T ITT
S0 066 12 15 18 21 24 21 30 33 36 39 42 45 48 68 12 15 13 21 24 21 30 33 36 39 42 45 4
04-0625-0616-0706-08 27-0817-0908-1029-1019-1110-1231-1221-01 11-0204-03 25-0315-04 06-05. 04-0625-0516-0706-0827-08 17- 1911 1 15-0406-05
05 06 05 06
J J
Cum RUPSLOC Cum Defects Found Category Total
' s s 5 00
300
2000
250
< 2
g g
150 8 @
3 1000
100
500
50
T T I T T T T T T T TP T I T e TP T T T T T ro
H k 1821 3 B 5o 1215 18 3]
04-0625-0616-0706-08 27-0817-0908-1029-10 19-1110-1231-1221-01 11-0204-03 25-0315-04 06-05. 04-0625-0516-0706-0827-08 17- 15-0406-05
! 06 05
J J
o CurentPlan = hcuals = CurentForncast | Gmen Conva Bound Vollow ContolBond _ Praject RES
—— et Flanning, Estimation & Measurement 200 /-
NS TLITNG TECRROT067 GUTSOUREITE

T . W I O aeaallyr = ~
Stop Light Overview

FTE Staff Cum Effort Life Cycle
: 2 : 2 3]) 000
6 6000
5 5000
4 4000
- -
3 2
2 B
3 3000
2 2000
1 1000
0 il
LI o 0 0 0 s LI 0 0 B 0 e
36 & 20 15 18 21 24 27 a0 33 36 6 9 120 15 18 21 ‘24 ‘27 a0 33 3
1405 04-05 25-06 16-07 0608 27-08 17-09 0810 2810 19-11 10-12 31-12 2101 1405 04-05 25-06 16-07 0608 27-08 17-09 08-10 28-10 19-11 10-12 3112 2101
05 06 05 06
Cum RUPSLOC Cum Defects Found Category Total
1 2 s : 4
120
600
100
@
<]
0 3 2
3 too &
60 § @
g
0
200
20
D 0
L0 o 0 B B
6§ 12 15 M8 21 24 27 30 33 3 37060 9 20 15 18 21 ‘24 27 a0 83 36
1405 04-06 25-06 16-07 0608 27-08 17-09 0810 28-10 1811 10-12 3112 2101 1405 04-08 25-06 16-07 0608 27-08 17-09 08-10 2810 1811 10-12 31-12 2101
05 06 05 06
/
q o= Curent lan = Actals o= CurentForecast] Groon ContolBaund_ Yellow ContolBaund_ Project UPR,

RS TTTTNG. TECHNOL06Y. GUTSOUREINE

10

» v Y ¥ -\T‘-tx_;“ e ‘i‘

Your questions

Planning, Estimation & Measurement 2007-03-22

[— Y
. : ! PO . !txg . ‘
Manpower build-up (from Construction Industry!)

180%
(40%Lin50%T) (BO% Lin75% T)
160% + ———— Peak Value . T ™ —
AT \ Empirical Labour
140% 4+ ;# ™, Loading Outline
£ M 2

120% 1]

_ ;4 R_esnun:e
100% 1 Overall Average Value Loading Envel

Figure 1 Data

Period Labour (L)
as % of Overall AVEI"&QE

51% 62% 72%
Percent of Total Time (T)

@ Capgemini

Planning, Estimation & Measurement 2007-03-22
CORSTLITNG. TECHIOL06Y. GUTSOUREITE

11

j» = ‘ - 4 ‘qtz: — 24

Allen puts forward the following simple empirical relationship as a first approximation to
planned manpower loading (Allen 1979).

The maximum on-the-job manpower is 160% of the average manpower requirement.

The maximum on-the-job manpower first occurs after 40% of the total manpower
requirement has been expended.

The period of maximum on-the-job manpower accounts for 40% of the total manpower
requirement.

The maximum on-the-job manpower first occurs when 50% of the project time has
elapsed.

The period of maximum on-the-job manpower occurs for 25% of the project time.

Allen, W. 1979. Developing the Project Plan. Notes prepared for Engineering Institute of
Canada Annual Congress Workshop. Toronto. pp 3-9.

Canadian Journal of Civil Engineering, Vol. 21, 1994 pp 939-953, under the title "A
Pragmatic Approach to Using Resource Loading, Production and Learning Curves on
Construction Projects".

Planning, Estimation & Measurement 2007-03-22
TONSULITNG. TECHIOL06Y. GUTSOUREINE

j» = ‘ - 4 ‘qtz: — z‘-

A first approximation to project progress or output is suggested by the following empirical
relationship.

25% of total progress is achieved in the first third of the total time,
Another 50% in the next third, and
The remaining 25% in the last third.

Important parameter:
man-power build up rate: how fast are people added to the project

’\,) CﬂnglD_IIll Planning, Estimation & Measurement 2007-03-22

CORSTLITNG. TECHIOL06Y. GUTSOUREITE

12

Rational Unified Process &
Designing Software (LL Chapter 9)

RUP pictures in this presentation © IBM/Rational

com

Agenda

* Recap Architecture
* RUP
* Design heuristics & guidelines

This afternoon werkcollege
* Design

P)
&
M © Lethbridge/Laganicre 2005 Chapter 9: Architecting and designing software 2

Multiple Purposes of Architecture

Understanding
+ Analyzing + Communicating + Constructing

Understanding Describing Guiding
Why What How

’
B&rﬁl uller, How to Create a Managable Platform Architecture
’ ,’

\ 2 o
‘ © Lethbridge/Laganicre 2005 Chapter 9: Architecting and designing software 3
Overview (according to IEEE 1471)
has " stakehold
system stakeholder
has
has 1.
concern
architecture s covered by
1.%
) viewpoint
descried by |:
1 conforms to
: is organised by establishes
view] mithods o
consists of
‘I “*

4
M © Lethbridge/Laganicre 2005 Chapter 9: Architecting and designing software 4

Viewpoints & views

Support Structure Exterior
Cowvering Model

&
=

Electrical Plan

Floor Plans

© Lethbridge/Laganicre 2005 Chapter 9: Architecting and designing software 5

Capstone Cases — Value Based Softwar

Recommendations for Architecture Description

- describe the system goals & the assumptions on the environment
- describe the design principles, decisions, guidelines
- and their rationale
- describe several views that can be combined in a consistent model
at least the following views should be given:
- functional/structural (decomposition) view
- include a description of the interfaces between (sub)systems
- process/dynamical/behaviour view
- deployment view
- prevent mixing of views
- address non-functional (*ilities) aspects
- use a well-defined notation and include its key/legend
- this aids systematic use of notation/avoids inconsistent use
- improves common understanding
- prevents mixing of different levels of abstraction
- add explanation in natural language

MRV Chaudron P
Sheet 6 Leiden Institute of Advanced| uter Science

Capstone Cases — Value Based Software E

Rational Unified Process (RUP)

MRV Chaudron
Sheet 7

5 L
Leiden Institute of Advmc@

Rational Unified Process

Disciplines

o Business Modeling
o Requiremeants

o Anakysis & Design

8 Implementation.

& Test

m Deployment:

Configuration &
Change Mamt

B ProjectManagement

a Environment

RUP Humps from 3 (largish) projects

ET———

Heijstek & Chaudron 2007 : ;E Heijstek & Chaudron 2007 Heijstek & Chaudron 2007

.z

R

MRV Chaudron i 2
Sheet 9 Leiden Institute of Advanced puter Science

Progress perspective

Business Reguirements Analysis & Implementatian Test Deployment
maodeling design
) L
L~
- " N
Busing-ﬁﬁ Requirements Analysis & Implementation Test Deploymeant
maodaling design
-
L~
L f -.’
Business Reguirements Analysis & Implementation Tast Deployment
maodaeling design
wonewe. | . COM e

Progress perspective (alternative pic)

Iteration 1 Iteration 2 Iteration 3] Iteration 4
UML Modeland | Mo o= ol =
Test Suite 1 || Test Suite 2 || Test Suite 3 | Test Suite 4
e @ ﬁ%
>
& & - p—
¥, 2
"’ © Lethbridge/Laganitre 2005 Chapter 9: Architecting and designing software 11

lteration Perspective

Requirements
. Analysis & Design

o

Initial Planning =
Planning L. Implementation

Hanagan'mt "
Environment

Evaluation &

Deployment

Each iteration

results in an
executable release

& >
04
“'\w& ;
% > e ANOSENG . COM —
»’,« q

7 4
"’ © Lethbridge/Laganitre 2005 Chapter 9: Architecting and designing software 12

Incremental = Risk reduction

- Waterfall

\
\u

Risk Reduction

© Lethbridge/Laganicre 2005 Chapter 9: Architecting and designing software 13

Essentials of RUP

1. Develop software iteratively; Incrementally build and test
2. Manage requirements

3. Use component-based architectures

4. Visually model software

5. Verify software quality

6. Control changes to software

*Develop a Vision

*Manage to the Plan

*Identify and Mitigate Risks Early and regularly
*Examine the Business Case

*Provide User Support

A’
v
© Lethbridge/Laganicre 2005 Chapter 9: Architecting and designing software 14

How Much Processis Nec

Simple updrades
R&D Protatypes
Static web apps

When is Less Appropriate?

* Corlocated teams

Srmaller, simpler projects

Few stakeholders

Early Wfe-ciicle phases
Internally imposed constraints

Cynamic web apps
FPackaged applications
Component based (J2, Mef)

] Strength of Process :

s

essary«

Legacy upgrades
Systermns of systems
Real-time, embedded

Certifiahle guality

When is More Appropriate?

Distributed teams

Large projects (teams of tearms)

Mary stakeholders

Laler Ifecycle phases

Externally imposed constraints

Standards

- Contractual reguirements
Legal reguirements

4 &
L
4
’ © Lethbridge/Laganiere 2005

Chapter 9:

W,

Architecting and designing software

Project Management

[Start of Project
anly]

[All Subsequent Herations]

Plan for Next heration Manage
(Remainder of Initial teration
Keration in Inception)

Conceive New
Froject

i

Evaluate Project
Scope and Risk

Plan the
Project

Scope and

[Project End] ®

[Project Plans Close-Out

[Project *
d Project
canceled] Approved] [Project
Complete]
e @
Canceled iy [Failed
Project acceptance]

[Project
canceled] e
[reration
successful]

Evaluate Project

Canceled
Project

Risk

[Phase End]

B

Monitor & Control
roject

Close-Out
Phase

[Project
cancelzd]

[Phass C. e

Complet ancele

ompl=t=] Project

[Optional , depending on
EE degree of change]

./ ‘
‘ © Lethbridge/Laganigre 2005

Chapter 9:

Plan for Nesxt Plan the
teration Project
’ \L J‘
® = OSEN(.COM e

tteration

Architecting and designing software 16

Implementation ?

Structurethe
Implementation Model

!

Flan the
Integration

Implement
Components

[Components.
Implemerted and
walidated]

[More cumpunents<¢>

to Implement
for this keration]

[More

Subsystem

Integration for

this keration] [Subsystems

Implemented and
Validated]
foenel htegratethe
System
Wore System Builds T(no

forthis teration]

y :

ve
oy
’ g —
4
M © Lethbridge/Laganicre 2005 Chapter 9: Architecting and designing software 17

RUP Tooling

Describes processes in terms of:
* workflows

* roles

* artifacts

Provides
* templates for deliverables

RUP workflow

O
I 4

Architect

Architectural Analysis

s

Use-Case Analysis
Designer

®

Designer

Do

Designer

D>

Object Analysis

[D>—[>

Architectural Design

—_—

Use-Case Design

Object Design

[

Review the Analysis

>

Review the Design

W,

Review the Architecture

’/ © Lethbridge/Laganiere 2005

Chapter 9: Architecting and designing software

Starwdards /Reguiations

© o dwpcrie s e e of B v £ e o e i it 5 s ey Sy 13 b 1
= wirtvaing o o

=

Hsies

Aastora Pk

= brs

i Fimelews and ks he cammiss

510 by s e e s
Wty Beas aty sbeetid o T
ba wcogm of mbt By

o v et
ety w44

ve ot s, Sociom

P Spelaprn i Trass
o Tk s b

- itanny

W,

Tooling

| Ee

Edt Vew Favortes Tods Hep

| sk - > - @[Q| Qeerch Garevortes Gy |5 3 3 - 5 & M

| addvess [ciiprogrem FiestRationafiRatianallnfiedProcessindex: him

=] @so [Juks >

| Gouge [

| Bsearch Web @bearchisie | PHeRA @paneinio - ip - Hhihicht

-€) Elaboration

2 Guidelines Overview
Storeotypes Reference s
@ inats
) Phases
€3 inception el

Sample leration Plan How to Staff

€} Construction
2] Disciplines e
£Design
4 Introduction
ow Concepts

B workiow Details

&
&9 Define 3 Candidate Arch|
&5 Design Components
&5 Design Real-Time Com|
&5 Design the Database
&5 Parforrn Atchitectural Sy
& Refine the Architesture

_ aclvity Overview

28 Artifact Overview

o Guidsings oraniew

B Business Modeling

I Configuration & Change Mana

B Denloyment

B Environment

2] implemertation

g] Sy
sy RIS VESE
s

_»
L e
atvare B O
i B s
ST

Sofware
Auchiot

Q

Use-Tase
Designer Anabss

\

ralysis

L 2
UseCase Al
b (et \
E \
4)

Analysis

" " o

S
=

© Lethbridge/Laganiere 2005

Chapter 9: Architecting and designing software

Design

© Lethbridge/Laganiere 2005

WWW, g.com

Chapter 9: Architecting and designing software

11

9.1 The Process of Design

Definition:

* Design is a problem-solving process whose objective is to
find and describe a way:

—To implement the system’s functional requirements...

—While respecting the constraints imposed by the
quality, platform and process requirements...

- including the budget
—And while adhering to general principles of good
quality
74
~ s‘&»
04
y ' e g.com
4
M © Lethbridge/Laganicre 2005 Chapter 9: Architecting and designing software 23

Design as a series of decisions

A designer is faced with a series of design issues
* These are sub-problems of the overall design problem.
* Each issue normally has several alternative solutions:
—design options.

* The designer makes a design decision to resolve each
issue.

—This process involves choosing the best option from
among the alternatives.

‘
4 ‘
‘ / © Lethbridge/Laganigre 2005 Chdptel 9: 4 uchltecllng and deSlgﬂlﬂg software 24

12

Making decisions

To make each design decision, the software engineer
uses:

* Knowledge of
—the requirements
—the design as created so far
—the technology available
—software design principles and ‘best practices’
—what has worked well in the past

A

ve
oy e
’ q
4
M © Lethbridge/Laganicre 2005 Chapter 9: Architecting and designing software 25

Document decisions

- Record the decision
- Record the motivation
- Record rejected alternatives

./ ‘
‘/ © Lethbridge/Laganiere 2005 Chdptel 9: 4 uchltecllng and deSlgﬂlﬂg software 26

13

Design space

The space of possible designs that could be achieved by choosing
different sets of alternatives is often called the design space

* For example:

separate user
interface |c:yer
for client

programmmed in Java

client-server

programmed in Visual Basic

thin client

programmed in C++

no Sepﬂr(}ie user
monolithic interface layer for client

'/ ‘
‘/ © Lethbridge/Laganigre 2005 Chdptel 9: 4 uchltecllng and deSlgﬂlng software 27

Features

According to

FODA: A prominent and user-visible aspect, quality or
characteristic of a system.

ODM: A distinguishable characteristic of a system that is
relevant to a stakeholder of the system

In mobile telephones: In cars:

- polyphonic ringtones - airco

- SMS, MMS - power-steering
- dual, tri-band, - remote key-lock

MRV Chaudron

Sheet 28 Leiden Institute of Advanced G uter Science

14

Feature models

Types of features

Mandatory: All systems must have it
e.g. A car must have an engine

Alternative:
A system must have one out of multiple options
e.g. Transmission may be manual or automatic

Optional: A system may have a feature
e.g. A car may have air-conditioning

MRV Chaudron 16

Sheet 29 Leiden Institute of Advanced Gomputer Science

Capstone Cases — Value Based Sof!

Table 1
Explanation of feature diagram elements
Feature type Graphical representation
A
Mandatory
Mandatory feature B has to be included if 1s parent feature A is |
selected B
A
Optional
Optional feature B may be mcluded if its parent feature A 1s L
selected. B
Alternative A
Alternative features are organized in alrernarive groups. Exactly one —
- .

feature of such a group B, C, D has to be selected if the group’s
parent feature A is selected.

|
2

eB] [

Or

Or features are organized in or groups. At least one feature of such
a group B. C. D has to be selected if the group’s parent feature A is
selected.

(11
a

MRV Chaudron 16

Sheet 30 Leiden Institute of Advanced Gomputer Science

Feature Diagram

A hierarchical decomposition of features.
A concept higher in the tree consists of its children

car
optional
wheels engine steering transmission airco
/_/‘ wheel .
alternative
mandatory | _
(default) manua automatic

Additional annotations that may be used in the feature diagram:
- mutually exclusive features

- rationale for chosing between alternatives

- composition rules: airco may be used if horsepower>100

MRV Chaudron

Sheet 31 Leiden Institute of Advanced Go rer Science

Feature Solution Diagrams

Feature Solution

s
Emailer (UCM} [}

i Fss |
Lang/Ln
senisnan ke
DaMS (UCH)
o=
ayer
-

1l

e
l Prag Lang Lib
Bl sty

From de Bruin & Van Vliet, 2001

16

Different aspects of design

* Architecture design:
—The division into subsystems and components,
- How these will be connected.
- How they will interact.
- Interface design
* Class design:
—The various features of classes.
» User interface design
* Algorithm design:
—The design of computational mechanisms.

* Protocol design:

—The design of communications protocol.
4
74

4
“/ © Lethbridge/Laganitre 2005 Chapter 9: Architecting and designing software 33

Architecture is making decisions

(o

The life of a software architect is
a long (and sometimes painful)
succession of suboptimal decisions
made partly in the dark.

9 Grady Booch |

- You will not have all information available
- You will make mistakes, but you should learn from them
/v There is no objective measure for ‘goodness’

4
‘/ © Lethbridge/Laganigre 2005 Ch‘dptel 9: 4 uchitecling and de~"igning software 34

wonewe. | com

q

17

Design of Software Architecture
Understand the Domain |

User

Requirements

/ \
Domain

Requirements

Functional
Requirements

l

Group Functionality

in subsystems
Design Metrics

Extra-Functional

Requirements SMART. |

}

Design approach for |
realizing extra-functional
quality properties

Identify
- Trade-offs
-Sensitivity points

Synthesize

UML, Views [Model/Describe |

4
s*'
’ <
5," RBD, QN, RMA,

W ATAM, prototype

Select

- Architectural Style
-Reference Architecture
- Architecture Tactics

Analyze }c

rerine;

r9-Architecting'and designing software 35

18

Design Heuristics and Styles

(LL Chapter 9)

Michel Chaudron

)
Leiden Institute of Advanced ComputerScience

Many slides based on Lethbridge and Laganiere

Agenda

m Recap RUP

m Design heuristics & guidelines
m Architectural Styles

m This afternoon: geen werkcollege
m hand in assignments electronically
chaudron®liacs.nl

MRV Ghaudron
Sheet 2 Leiden Institute of Advance

Summary Rational Unified Process

e ——|
- Requirements
—— Analysis & Design
. Planin
i T I i Y Implementation
S anage
=l L Environment
—————— Test
e pm—— Evaluation
Deployment

Structure
{B]
L —|
(] E § y Rk Recueon
Behaviour model Deployment
: odel
W W
[A]
B]

Software Design Heuristics

MRV Ghaudron
Sheet 4

Different aspects of design

Architecture design:
= The division into subsystems and components,
How these will be connected:
How they will interact:
= Interface design & architectural style
Class design:
= The various features of classes.
User interface design
Algorithm design:
= The design of computational mechanisms.
Protocol design:
= The design of communications protocol.

MRV Ghaudron
Sheet 5 Leiden Institute of Advance

Architecture is making decisions

o

The life of a software architect is
a long (and sometimes painful)
succession of suboptimal
decisions made partly in the dark.
Grady Booch

- You will not have all information available
- You will make mistakes, but you should learn from them
- There is no objective measure for ‘goodness’

MRV Chaudron =)
Sheet 6 Leiden Institute of Advanced Computer Science

Design of Software Architecture

Understand the Domain |
—
User Domain
Requirements | Requirements

Functional Extra-Functional
Requirements Requirements gy ART.

] !

; |
Group Functionality D‘es_lgn approach fgr Identify
reallzmg extra—funptlonal - Trade—offs
quality properties -Sensitivity points

in subsystems
Select

Design Metrics

«Architectural Style
-Reference Architecture
+ Architecture Tactics

Synthesize

UML, Views [Model/Describe |

T
wwve RBD, QN, RMA, M refine -
B0 [anavze | e

Software Engineering 2008

Design Principle 1: Divide and conquer

m Trying to deal with something big all at once
is normally much harder than dealing with a
set of smaller things

Each individual component is smaller, and
therefore easier to understand

Parts can be replaced or changed without having to
replace or extensively change other parts.

Separate people can work on separate parts
An individual software engineer can specialize

Leiden Institute of Advanced i

MRV Ghaudron
Sheet 8

Ways of dividing a software system
A system is divided up into
Layers & subsystems

A subsystem can be divided
up into one or more packages

A package is divided up into c/asses

A class is divided up into methods

MRV Ghaudron
Sheet 9

Leiden Institute of Advanced Comput

Layering

Goals: Separation of Concerns, Abstraction, Modularity, Portability

Partitioning in non-overlapping units that ;
- provide a cohesive set of services at an :
abstraction level 0

(while abstracting from their implementation)
- layer nis allowed to use services of layer n-7
(and not vice versa)
alternative:
bridging layers: layer n may use layers <n
enhances efficiency but hampers portability

MRV Ghaudron
Sheet 10

Leiden Institute of AdvancediCOMBU

Software Engineering 2008

Leiden Institute of Advanced i

MRV Ghaudron
Sheet 11

Layering into levels of abstraction
Hearsay: speech understanding

Sentences | Ti \
Phrases | o |
-

Words \ . U]
Syllables

Phonemes U I U

Acoustic § §

waveform | \

Leiden Institute of AdvanCelCRTBUENS

Software Engineering 2008

Software Engil

Presentation tier
. . . The top-most level of the application is the
Laye rin g in C I ie nt Se rver user interface. The main function of the
j - E interface is to transiate tasks and results to
Q) ‘something the user can understand.
- Presentation layer 4T‘ 8
: . %)
Dialogue with users ! M > gicter
L i application [Ve] i i cati
- Application |Og|C logic ﬁ 2 52222223:%?%'“&?5553%}7 GETLISTOFALL ADD ALL SALES
lecisions and evaluations, ai erforms SALES MADE TOGETHER
Application for individual user| business o ot 1 o0 5000 2 pancaeis LASTVEAR
|Og iC E data between the two surrounding layers.
- Business logic I
(4] saeq
Logic for processing ﬁ server x y Res el
[Data tier ‘) SALE4
across users, divisions e M
information is then passed back to the logic
- Data management Unit of change e for pocesing,and en evntuely
. Sl ack to the user.
Unit of responsibility -
Storage of data Unit of deployment -
Storage
Layering in Computer Networks: .
Layering (2)
OSI & Internet : N
Example: Communication Stack
Application
Browser Request Confirm Response Indication

accept connection,
receive string

Presentation connect,

send string
Data Link

TCP

send datagram . receive datagram

send frame . receive frame

Picture from Jeremy Bradbury,

Physical
Queens Univ. Canada —
Sheet 15 Leiden Institute of Advanced

| | |

Layer 3: End-to-End Distributed (e.g. TCP)

Protocol

Layer 2: Datalink Distributed (e.g. IP)

Layer 1: Physical Local (e.g. OS)

! J

Bitpipe

MRV Ghaudron
Sheet 16

Leiden tnstiute of Advanced GO

A Component-based Reference

Architecture for Computer Games

(E. Folmer, 2007)

Game 0B £] 3]]

4 % Game
g ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, NN interface
A ~ « > L N
neowor| | cappied]| [00 | gD | amcn]] | Domain
- Specific
| \ AN 0.8
N
Q l Notwrk ‘LI l Graptics ul l opt €] l Audo g‘ Hardware
3
) Infra
= structure
v o :
Platform
software

:ﬁ Fig. 1. A reference architecture for the games domain e

Software Engineering 2008

e e
esentation and Dialog Common Elements

cayern
Business Layer

;

R

sapers
Persistence Layer

MRV Ghaudron i
Sheet 18 Leiden tnstitute of Advancel GO cience

Peer to Peer Reference Architecture

Ap[l)‘!;;sﬁion ‘ tools ‘ ‘ applications ‘ ‘ services ‘
Domain specific | - - i
layer ‘ scheduling ‘ ‘ meta-data H messaging H management‘,ﬁ

Quality of service!

layer ‘ security‘ ‘ resource aggregation ‘ ‘ reIiabiIity‘

Group mngmnt | - - i
layer ; ‘ dlscovery‘ ‘ locating & routing ‘

Communication |

layer 3 communication

MRV Ghaudron
Sheet 19

What is Modularity?

We can “see it” via a

MRV Ghaudron
Sheet 20

What is a dependency?

m Component A requires B for it to work

Functional coupling

m A change in module B requires change
in module A
Implementation coupling
Typically requires: re-testing A & B

Development-time

MRV Ghaudron <
Sheet 21 Leiden Institute of Advanced Compui

Dependencies in the code

m There is coupling between
two classes A and Bif:
A has an attribute that refers to (is of type) 8.
A calls on services of an object B.
A has a method which references 8
(via return type or parameter).
Ais a subclass of (or implements) class B.

This is not an exhaustive definition

MRV Ghaudron -
Sheet 22 Leiden Institute of Advanced Compu

Dependency: Coupling

Coupling is the degree of interdependence
between modules

high coupling low coupling

Design Principle: Reduce coupling where possible

MRV Ghaudron
Sheet 23

Software Engineering 2008

Benefits of Low Coupling/Dependencies

Fewer interconnections between modules reduces
time needed for understanding the modules and
interactions
the chance that changes in one module cause
problems in other modules, which enhances
reusability
the chance that a fault in one module will cause a
failure in other modules, which enhances
robustness

Page-Jones, M. 1980. The Practical Guide to Structured Systems Design. New York, Yourdon Press, 1980.

MRV Ghaudron
Sheet 24

Guideline: Minimize Dependency

Avoid dependencies where possible:

Design components so that
they know about as few other components as possible
muse as few parameters as possible
for as short a time as possible
sminimize number of calls between components

Ref: Component are from Mars - Chaudron & De Jong

Leiden Institute of Advanced Comp:

MRV Ghaudron
Sheet 25

Software Engineering 2008

Design Principle:
Reduce coupling where possible

m Coupling occurs when there are /interdependencies
between one module and another
When interdependencies exist, changes in one place will
require changes somewhere else.
A network of interdependencies makes it hard to see at a
glance how some component works.
Type of coupling:
= Content, Common, Control, Stamp, Data, Routine Call, Type use,
Inclusion/Import, External

I 2%

Leiden Institute of Advanced i

MRV Ghaudron
Sheet 26

Separation of Concerns
m Zaken die niet bij elkaar horen moeten

in verschillende eenheden (componenten
/ procedures / ..) worden geaddresseerd

Leiden Institute of Advanced Comp:

MRV Ghaudron
Sheet 27

Example Design Principles

Telecom Domain:

Separate the encoding/decoding of a

message from the handling of a
message, SO

s decode1 ; decode2 ; decode3 ;
action1 ; action2

And not

s decode1 ; action1 ; decode2 ;
action2 ; decode3

MRV Ghaudron
Sheet 28

encode/
decode

handle &

encode/
decode

Leiden Institute of Advanced i

Aspect Orientation

Design & maintain concerns in isolation

Automatically construct implementation
by ‘weaving’ concerns

TTI
|
|

B 11

———
N Loy
g8ing

Madules

Ll

Leiden Institute of AdvancediCoMputerScience

Software Engineering 2008

Design Structure Matrix Map of a Laptop Computer

Sexcen

Leiden Institute of AdvancediCoMputerScience

MRV Ghaudron
Sheet 30

Software Engineering 2008

Design Structure Matrix Map of a Modular System

Design Rules Task Group

““““““ xoox frxoxsoxx Hidden Modules
many Task groups

MRV Ghaudron
Sheet 31

Leiden Institute of Advanced Comp:

DSM of Mozilla before and after redesign
mozilla. 19980408 . , mozilla. 19981211 ‘ 1538 n“lmber

11’.%&& . T T
5.

\ | | P g S| _|of files
g S !

1684 1508/

2.4 dependencies per KSLOC } I 1.3 dependencies per KSLOC|

Formerly Mozilla was the commercial Netscape Navigator,
then released into open source.
| From: Exploring the Structure of Complex Software Designs: An Empirical Study of Open

Source and Proprietary Code, Alan MacCormack, John Rusnak, Carliss Baldwin,
Harvard Business School, draft October 1st 2005

Types of Coupling

- Data coupling

- data from one module is used in another
- Data type coupling

+ two modules use the same data type
« Control coupling

-actions one module are controlled
by another module (switch)

- Content coupling
- a module refers to the internal

of another module Bind to interface

of components

MRV Ghaudron
Sheet 33

Software Engineering 2008

9.9 Ditticulties and Risks in
Deslq_ll’ke modelling, design is a skill that
requires considerable experience

» /ndividual software engineers should not
attempt the design of large systems

n Aspiring software architects should actively
study designs of other systems

m Poor designs can lead to expensive
maintenance

m Ensure you follow the principles discussed|
in this chapter

Leiden Institute of Advanced i

MRV Ghaudron
Sheet 34

Difficulties and Risks in Design

m [t requires constant effort to ensure a
software system’s design remains good
throughout its life

n Make the original design as flexible as possible
so as to anticipate changes and extensions.

m Ensure that the design documentation is usable
and at the correct level of detail

n £nsure that change is carefully managed

MRV Ghaudron
Sheet 35

Leiden Institute of AdvancediCoMputerScience

Inheritance vs. Composition

= The two most common techniques for reusing
functionality in object-oriented systems are c/ass
inheritance and object composition

m Class inheritance defines the implementation of one
class in terms of another’s implementation. With
inheritance the internals of parent classes are often
visible to sub-classes (white box).

= In object composition new functionality is obtained
by assembling or composing objects to get more
complex functionality. Internal details of objects are
not visible, objects appear as black boxes.

MRV Ghaudron
Sheet 36

Leiden Institute of AdvancediCoMputerScience

Pros and Cons of Inheritance

m Pros: Class inheritance is defined statically at
compile-time and is straightforward to use, since
it’s supported directly by the programming
language. Class inheritance makes it easier to modify
the implementation being reused.

= Cons: You can not change the implementations
being inherited at run-time. Inheritance exposes as
subclass to details of its parent’s implementation.
Any change in the parent’s implementation will force
the subclass to change. One cure is to only inherit
from abstract classes since they provide little or no
implementation.

MRV Ghaudron
Sheet 37

v o o AdvancSd e

Software Engineering 2008

Pros and Cons of
Composition
I

m Composition is defined at run-time through
objects acquiring references to other objects.

» Composition requires objects to respect each
other’s interface. Because objects are accessed
solely through their interfaces we don’t break
encapsulation. Any object can be replaced at
run-time by another as long as it has the same
type.

m Because an object”s implementation is written
in terms ob object interfaces, there are
substantially fewer implementation
dependencies.

MRV Ghaudron
Sheet 38

of Advanced GO e cience

Inheritance vs. Object Comp.

m Favoring object composition over class
inheritance helps you keep each class
encapsulated and focused on one task.

m Classes and class hierarchies remain small
and managable.

m A design based on object composition has
more objects (if fewer classes) and the system
behavior depends on their interrelationships
instead of being defined in one class.

MRV Ghaudron
Sheet 39

veiden st o Adsanced GO 3

b
u

nivensiTar

Assigning Responsibilities

> Evenly distribute system intelligence
— avoid procedural centralization of responsibilities
— keep responsibilities close to objects rather than their clients

> State responsibilities as generally as possible
— “draw yourself” vs. “draw a line/rectangle etc.”
— leads to sharing

> Keep behaviour together with any related information
— principle of encapsulation

b
u

nivensimar

Assigning Responsibilities ...

> Keep information about one thing in one place
— if multiple objects need access to the same information
1. @ new object may be introduced to manage the information, or
2. one object may be an obvious candidate, or
3. the multiple objects may need to be collapsed into a single one

> Share responsibilities among related objects
— break down complex responsibilities

b
u

Characterizing Classes
according to Rebecca J. Wirfs-Brock, IEEE Software, March/April 2006

m Information holder: an object designed to know certain information and provide that
information to other objects.

m Structurer: an object that maintains relationships between objects and information about
those relationships.
Complex structurers might pool, collect, and maintain groups of many objects; simpler
structurers maintain relationships between a few objects. An example of a generic
structurer is a Java HashMap, which relates keys to values.

m Service provider. an object that performs specific work and offers services to others on
demand.

m Controller: an object designed to make decisions and control a complex task.

m Coordinator. an object that doesn’t make many decisions but, in a rote or mechanical
way, delegates work to other objects. The Mediator pattern is one example.

m Interfacer. an object that transforms information or requests between distinct parts of a
system. The edges of an application contain user-interfacer objects that interact with
the user and external interfacer objects, which communicate with external systems.
Interfacers also exist between subsystems. The Facade pattern is an example of a
class designed to simplify interactions and limit clients’ visibility of objects within a
subsystem.

Guidelines for Naming Inventions

“...the relation of thought to word is not a thing but a process, a continual

movement back and forth from thought to word and from word to thought. ...

Thought is not merely expressed in words; It comes into existence through
them.”

—Lev Vygotsky, thought and language

Fit a name into some naming scheme
Java example: Calendar-> GregorianCalendar—>JulianCalendar?
ChineseCalendar?

Give service providers “worker” names
Service providers are “workers”, “doers”, “movers” and “shakers *
Java example: StringTokenizer, ClassLoader, and Authenticator

Choose a name that suits a role
Objects named “Manager” organize and pool collections of similar
objects
AccountManager organizes Account objects

Wirfs-Brock Associates
-

www.wirfs-brock.com Copyright 2000

43

Guidelines for Naming Inventions

Choose names that don’t limit behavior options
Account or AccountRecord?

Record—information or facts set down in writing—an informational
object

Account—sounds livelier—an object that makes informed decisions on
the information it represents

Choose a name that suits a lifetime
A ninety-year old named “Junior”?

ApplicationInitializer or ApplicationCoordinator?

Include facts most relevant to the users of a class
MillisecondTimerAccurateWithinPlusOrMinusTwoMilleseconds or
Timer?

Eliminate naming conflicts by adding description
Rename a Properties candidate to TransactionHistoryProperties

Wirfs-Brock Associates
-

www.wirfs-brock.com Copyright 2000 a4

Design Heuristics and

Architectural Styles
(LL Chapter 9)

Michel Chaudron

)
Leiden Institute of Advanced ComputerScience

Many slides based on Lethbridge and Laganiere

Agenda

m Recap Design heuristics & guidelines
m Architectural Styles

m This afternoon: werkcollege use UML
tools; location: PC zaal

m hand in assignments electronically
chaudron®@liacs.nl

MRV Ghaudron
Sheet 2

Design Heuristics

m Separation of Concerns
Information hiding

 —
; [—

m Layerin
y g [m—

m Modularity & Coupling

N R

MRV Ghaudron 2
Sheet 3 Leiden Institute of Advanced

Types of Coupling

Data coupling
- data from one module is used in another

- Data type coupling
+ two modules use the same data type

« Control coupling
-actions one module are controlled
by another module (switch)

- Content coupling
- a module refers to the internals
of another module

MRV Ghaudron -
Sheet 4 Leiden Institute of Advanced Compu

Content coupling:

m Occurs when one component modifies data
that is /nternal/to another component
Reduce content coupling by encapsulating data

Information hiding
= declare them private
= and provide get and set methods

MRV Ghaudron
Sheet 5

Example of content coupling

public class Line
private Point start, end;

public Point getStart() { return start; }
public Point getEnd() { return end;}

}
public class Arch
private Line baseline;
\-/.;)id slant(int newY)
{ Point theEnd = baseline.getEnd();
theEnd.setLocation(theEnd.getX(),newY);

}
}

MRV Ghaudron
Sheet 6

Information Hiding
m Usage of a module depends only on the
information at the interface

m An interface should reveal as little as possible
about the inner workings of the component

m An interface hides design decisions

D. L. Parnas, On the criteria to be used in decomposing systems into modules,
Communications of the ACM, vol. 15, pp. 1053-1058, December 1972.

MRV Ghaudron
Sheet 7

Leiden Institute of Advanced

Common coupling

m Occurs whenever you use a global variable

All the components using the global variable
become coupled to each other

A weaker form of common coupling is when a
variable can be accessed by a subset of the
system’s classes

= e.g. a Java package

global variable

[_module_]

‘ module ‘

[module | [module]

[module] [module ||]

MRV Ghaudron
Sheet 8

Control coupling

m Occurs when one procedure calls another
using a ‘flag’ or ‘command’ that explicitly
controls what the second procedure does

To make a change you have to change both the
calling and called method

Leiden Institute of Advanced Comput

MRV Ghaudron
Sheet 9

Example of control coupling

public routineX(String command)
{
if (command.equals("drawCircle") ﬁ
drawCircle();

}

else

(@
drawRectangle();

}

Caller needs to know:
Not drawCircle => draw Rectangle

Leiden Institute of Advanced Gompilt

MRV Ghaudron
Sheet 10

Control Coupling Example

control coupling

Two modules are control coupled if they communicate using
at least one "control flag”

Example: A code:

{
A call B(t_info, " update”,ok)
parse input if not(ok) then
commands
¥

The behaviour of
component B is controlled
by component A through

. B code: the parameter flag
whi
flag frpnsactiol {receive parameters
ita data, flag, outcome
success flag
case (flag) of
B select { . }

process

transactions update: ¢ ..}

define: {..)
other: outcome := not ok
end case

outcome := ok N X
1 Example from David Stotts

— Dept. of Computer Science
. University of North Carolina
i

Stamp coupling:

m Occurs whenever one of your application
classes is declared as the type of a method
argument

Since one class now uses the other, changing the
system becomes harder
= Reusing one class requires reusing the other

Two ways to reduce stamp coupling,
= using an interface as the argument type
= passing simple variables

MRV Ghaudron
Sheet 12

Example of stamp coupling

class Employee

name: string
address: string
date-of-birth: date
salary: number

public class Emailer
public void sendEmail(Employee e, String message)

send(e.address, e.name, message)

Leiden Institute of Advanced i

MRV Ghaudron
Sheet 13

Example of stamp coupling

Using an interface to avoid stamp coupling

public interface Addressee

public abstract String getName();
public abstract String getEmail();
}

public class ployee i its A {...}
public class Emailer
public void sendEmail(Addressee e, String text)
{1}
}

Leiden Institute of Advanced i

MRV Ghaudron
Sheet 14

Stamp coupling Example

stamp coupling
Two modules are stamp coupled if they communicate via a passed
data structure which contains more information then necessary
for the modules to preform their functions.

Example;

produce
report cards

student recoj

chulative gpa

cwhulative gpa

calculate print
cumulative gpa report card

Example from David Stotts
Dept. of Computer Science
University of North Carolina

Here we assume the "student record” contains name, address,
SSN, outside activities, medical information, contact names,
etc... in addition to academic performance information,

Leiden Institute of Advanced Comput

o

Software Engineering 2008

Data coupling

m Occurs whenever the types of method
arguments are either primitive
The more arguments a method has, the higher
the coupling

= All methods that use the method must pass all the
arguments

You should reduce coupling by not giving
methods unnecessary arguments

There is a trade-off between data coupling and
stamp coupling
= Increasing one often decreases the other

MRV Ghaudron
Sheet 16

Leiden Institute of AdvancediCOMBU

Routine call coupling

m Occurs when one routine calls another

The routines are coupled because they
depend on each other’s behaviour

Routine call coupling is always present in
any system.

MRV Ghaudron
Sheet 17

Leiden Institute of Advanced i

Reduce Routine call coupling

m If you repetitively use the same sequence of
methods to compute something
then you can reduce routine call coupling by

writing a single routine that encapsulates the
sequence.

n}ethod foo method foo’()

b(; { b();

o0; bod0: 0
d0); bed: 0

bf);)

method bced()
{

Type use coupling

m Occurs when a module uses a data type
defined in another module

It occurs any time a class declares an instance
variable or a local variable as having another class
for its type.
The consequence of type use coupling is that if the
type definition changes, then the users of the type
may have to change
Always declare the type of a variable to be the
most general possible class or interface that
contains the required operations

MRV Ghaudron
Sheet 19

Leiden Institute of Advanced Compi

Inclusion or import coupling

m Occurs when one component imports a package
(as in Java)

m or when one component includes another
(as in C++).
The including or importing component is now exposed to
everything in the included or imported component.
If the included/imported component changes something or
adds something.

= This may raises a conflict with something in the includer, forcing
the includer to change.

An item in an imported component might have the same
name as something you have already defined.

MRV Ghaudron
Sheet 20

Leiden Institute of Advanced

External coupling

m When a module has a dependency on
such things as the operating system,
shared libraries or the hardware

It is best to reduce the number of places in
the code where such dependencies exist.

The Facade design pattern can reduce
external coupling

MRV Ghaudron
Sheet 21

Leiden Institute of AdvancediCGompu

Temporal Coupling

Program B

Program A

openfile(data)
closefile(data)
do_long_processing(data);

openfile(data)
do_long_processing(data);
closefile(data)

open close open close

MRV Ghaudron
Sheet 22

Leiden Institute of Advanced Comput

Temporal Coupling

A component X expects an input from component Y
every second.

A component should handle all cases where attempts are
made to use it inappropriately (be in intentionally or not).

A RT-component should have a fall-back scenario:

If I don’t receive an input, then | do ‘plan B’.
So that other components that depend on X will not also
have to deal with this problem.

This is a way of ‘fault containment’ - prevent domino-effect.

MRV Ghaudron
Sheet 23

Leiden Institute of Advanced i

Design of Control Styles

Centralized

Overly Distributed

www.wirfs-brock.com

Copyright 2000 24

Wirfs-Brock Associates
-

Characteristics of Centralized Control

Centralized controllers can have extremely
complex control logic

=] [=]
=] {=]
. [=} -
Controllers surrounded by simple
information holders and service providers

These simple objects tend to have low-level,
non-abstract interfaces

Drawback:
Changes can ripple among controlling
and controlled objects

Wirfs-Brock Associates
-

www.wirfs-brock.com Copyright 2000 25

Characteristics of Overly Distributed Control

Long message chains to dig information
out of information holders

Little or no value-added by those
receiving a message and merely
“delegating” request to next in chain

Drawback:
Hardwired dependencies between objects in call chain|
May break encapsulation

www.wirfs-brock.com Copyright 2000 26

Wirfs-Brock Associates
-

Characteristics of Delegated Control

Coordinators know about fewer
objects than dominating controllers

Higher level communications
between objects

Benefits:
Changes typically localized and simpler
Easier to divide detailed design work

Wirfs-Brock Associates
-

www.wirfs-brock.com Copyright 2000 27

Interface Design

m An interface should reveal as little as possible
about the inner workings of the component

m Users (callers) should depend only on the
interface, not on the implementation

Recommended References:

- Effective Java: Programming Language Guide by Josh Bloch,
Prentice Hall, 2001
Check out video:

- Effective C++ by Scott Meyers, Addison-Wesley, 2005 (3rd ed).

MRV Ghaudron >
Sheet 28 Leiden Institute of Advanced i

Software Engineering 2008

Guidelines for Interface Design (1)
n Completeness:
include all functions
m Essential/Minimal:
omit needless features.
m General:
do not limit the applicability of an interface to its initial purpose as
modules may be used in unexpected ways.
n Consistency
applies to many aspects of interface design such as naming
conventions, parameter passing and exception handling.
mn Orthogonality.
Keep independent features separately
Avoid offering the same service in multiple ways.
n Open-ended:
leave room for future expansion.
L— m Opaqueness/Information-hiding: —

an interface should hide the details of the imgjglmoefmﬁaﬁj%mmdmm —

Software Engineering 2008

Guidelines for Interface Design (2)

1. Keep interfaces and (in that order)

2. Use for users of the interface
that play with respect to the
functionality

3. Don’t combine and functionality in
the same interface

4. Group functionality in interfaces

5. Avoid the introduction of

6. Use interfaces

7. Use conventions

From Henk Jonkers c.sq®hilips-Researehs

MRV Ghaudron
Sheet 30

Guidelines for Naming Inventions

“...the relation of thought to word is not a thing but a process, a
continual movement back and forth from thought to word and from word
to thought. ... Thought is not merely expressed in words; It comes into
existence through them.”

—Lev Vygotsky, thought and language

= Fit a name into some naming scheme
Java example: Calendar-> GregorianCalendar->julianCalendar?
ChineseCalendar?

= Give service providers “worker” names
Service providers are “workers”, “doers”, “movers” and “shakers “
Java example: StringTokenizer, ClassLoader, and Authenticator

= Choose a name that suits a role
Objects named “Manager” organize and pool collections of similar
objects
AccountManager organizes Account objects

o EEE

Leiden Institute of Adys AL ence

Guidelines for Naming Inventions

= Choose names that don’t limit behavior options
Account or AccountRecord?
Record—information or facts set down in writing—an
informational object
Account—sounds livelier—an object that makes informed
decisions on the information it represents
= Choose a name that suits a lifetime
A ninety-year old named “Junior”?
Applicationlnitializer or ApplicationCoordinator?
= Include facts most relevant to the users of a class
MillisecondTimerAccurateWithinPlusOrMinusTwoMilleseconds
or Timer?
= Eliminate naming conflicts by adding description
— Rename a Properties candidate to TransactionHistoryProperties
j Sheet 32 Leid o AdvarCEL e ience

Abstraction and classes

m Classes are data abstractions that contain procedural
abstractions

Abstraction is increased by defining all variables as private.
The fewer public methods in a class, the better the
abstraction
Superclasses and interfaces increase the level of abstraction
Attributes and associations are also data abstractions.
Methods are procedural abstractions

= Better abstractions are achieved by giving methods fewer
parameters

MRV Ghaudron
Sheet 33

Leiden ostiute of Advanced GO .

Design Principle 5:
Increase reusability where possible

m Design the various aspects of your system so
that they can be used again in other contexts
Generalize your design as much as possible
Follow the preceding three design principles
Design your system to contain hooks
Simplify your design as much as possible

MRV Ghaudron
Sheet 34

of dvanced G

Design Principle 6: Reuse existing
designs and code where possible

m Design with reuse is complementary to design
for reusability
Actively reusing designs or code allows you to take
advantage of the investment you or others have
made in reusable components
» Cloning should not be seen as a form of reuse

MRV Ghaudron
Sheet 35

Leiden ostiute of Advanced GO .

Design Principle 7: Design for flexibility

m Actively anticipate changes that a design may
have to undergo in the future, and prepare for
them

Reduce coupling and increase cohesion
Create abstractions

Do not hard-code anything

Leave all options open

= Do not restrict the options of people who have to modify
the system later

Use reusable code and make code reusable

MRV Ghaudron
Sheet 36

of vanced G

Design Principle 8: Anticipate obsolescence

m Plan for changes in the technology or environment so
the software will continue to run or can be easily
changed

Avoid using early releases of technology

Avoid using software libraries that are specific to particular
environments

Avoid using undocumented features or little-used features of
software libraries

Avoid using software or special hardware from companies
that are less likely to provide long-term support

Use standard languages and technologies that are supported
by multiple vendors

MRV Ghaudron
Sheet 37

situte of Advand AT

Design Principle 9: Design for Portability

= Have the software run on as many platforms as
possible

Avoid the use of facilities that are specific to one particular
environment

E.g. a library only available in Microsoft Windows

MRV Ghaudron
Sheet 38

Leiden Institute of AdvancediGOMBR

Design Principle 10: Design for Testability

m Take steps to make testing easier
Design a program to automatically test the software
= Discussed more in Chapter 10
= Ensure that all the functionality of the code can by driven by an
external program, bypassing a graphical user interface
In Java, you can create a main() method in each class in order
to exercise the other methods

Leiden Institute of Advanced i

MRV Ghaudron
Sheet 39

Design Principle 11: Design defensively

n Never trust how others will try to use a component
you are designing
Handle all cases where other code might attempt to use your
component inappropriately
Check that all of the inputs to your component are valid: the
preconditions

= Unfortunately, over-zealous defensive design can result in
unnecessarily repetitive checking

Leiden tnstitute of Advand S L R ienc

MRV Ghaudron
Sheet 40

Design Heuristics

Design defensively:
Do not trust that others will use your component as
specified - each component should ensure its own
integrity

(from Lethbridge & Laganiere, p. 318)

A component should handle all cases where attempts
are made to use it inappropriately:

- check whether all inputs are valid

- check preconditions

MRV Ghaudron
Sheet 41

veen tosiate o Advar SRR rce

Using cost-benefit analysis to choose

among alternatives

m To estimate the costs, add up:

The incremental cost of doing the software engineering work,
including ongoing maintenance

The incremental costs of any development technology
required

The incremental costs that end-users and product support
personnel will experience

m To estimate the benefits, add up:
The incremental software engineering time saved

The incremental benefits measured in terms of either
increased sales or else financial benefit to users

MRV Ghaudron
Sheet 42

Leiden tnsticute of Advand S LR ienc

Architectural Styles

Theme/Objective of this lecture

The task of the architect is to come up
with a good metaphor for the system
Alexander Ran (Nokia)

- Build vocabulary of architectural styles
- a set of ‘archetypes’ that are often used
- know their relative strengths and weaknesses

- Know when to apply or notto apply a particular style

Leiden Institute of Advanced

MRV Ghaudron
Sheet 44

CONTENTS

Architectural styles

- Client/Server

- Pipe and Filter style
- Blackboard style

- Publish Subscribe

- Peer-to-Peer

MRV Ghaudron
Sheet 45

Leiden Institute of Advanced i

Software Engineering 2008

Architectural style
Nomenclature inspired by building architecture;
Buildings: Gothic, Byzantian,

=

Cathedral Amiens Hagia Sofia, Istanbul

bridges: suspension, arc, ... (check your Euro-notes)

Leiden Institute of Advanced

Architectural style 1/2

An architectural style is defined by:
A set of rules and constraints that prescribe
- Which types of components, interfaces & connectors
must/may be used in a system (vocabulary/metaphor)
Possibly introducing domain-specific types
- How components and connectors may be combined
(structure)

- How the system behaves (behaviour)
The pattern of dependencies (control-flow and data-flow)

A set of guidelines that support the application
of the style (how to achieve certain system properties)

MRV Ghaudron
Sheet 47

Leiden Institute of Advanced i

Architectural style

- Architectural styles are design paradigms for
a set of design dimensions

Some architectural styles emphasize different aspects
such as: Subdivision of functionality, Topology or
Interaction style

- Styles are open-ended; new styles will emerge
- Architectural styles are not disjoint

- An architecture can use several architectural styles

Leiden Institute of Advanced i

MRV Ghaudron
Sheet 48

Client-Server Architectures

o R

Nice source:
IT Architectures and Middleware:
Strategies for building Large Integrated Systems,
Chris Britton and Peter Bye, Addison Wesley, 2004

MRV Ghaudron
Sheet 49 Leiden Institute of Advance

1
C/S Example: Thin Client

Thin Client C/S:
largest part of processing at the server-side

. application L
logic application
i data
management database

Network load: low

Config. Mngmnt: simple (only server)

Security: concentrated at server

Robustness: stateless clients => easy fault recovery

MRV Grauion
Sheet 50 Leiden Institute of Advanc lomputer Science

C/S Example: Thick Client

Thick Client: -
significant processing presentation WWW Browser
at the client-side logic
application application
'OTic (specific)
|
application application
'I logic (generic)
i data
management, database

Network load: high
Config. Mngmnt: complex (both client & server)

Security: complex (both client & server)
Robustness: clients have state => complex fault recovery
WAy rauon i
ey Leiden Institute of Advand ...

C/S Benefits

Scalable
Interoperable

MRV Grauion
Sheet 52 Leiden Institute of Advanc lomputer Science

Pipe and Filter Style (1)

Concept: Series of filters / transformation
where each component is consumer and producer

Components: filters / transformations

Filter 3 Filter 4

----- { Filter 1} Filter 2

h . computational
possibly also: sources and sinks component [

data flow »

Connectors: pipes;
interaction style: streaming of data

Topology: linear; possible variations:

feedback-loops, splitting pipes

Special types of filters

= Pump (Producer)
Produces data and puts it to an output
port that is connected to the input end
of a pipe.

= Sink (Consumer)
Gets data from the input port that is
connected to the output end of a pipe
and consumes the data.

MRV Grauion
Sheet 54 Leiden Institute of Advanc lomputer Science

Pipe and Filter Style (2)

Filter 1 |k Filter 2 Jd Filter 3 Filter 4

Constraints about the way filters and pipes can be joined:
+ Unidirectional flow
+ Control flow derived from data flow

Behaviour Types:

a. Batch sequential
Run to completion per transformation

b. Continuous
Incremental transformation

variants: push, pull, asynchronous
Sheet 55

Leiden Institute of Advanced i

Pipe and Filter Style (3)

Filter 4 |

----- & Filter 1 fof Filter 2]-of Filter 3 :

Semantic Constraints
Filters are independent entities
- they do not share state
- they do not know their predecessor/successor

What are the dependencies between filters?
Compare this with Client Server?

MRV Ghaudron
Sheet 56

Leiden Institute of Advanced

Software Engineering 2008

Example: P&F Compiler Architecture)

O Sources & Sinks, Input & Output Streams

Machine
Code ~®
Generator

O Flexible composability

O Aggregation / Decomposition of Filters
ggreg P Machine

Code
Stream

Unicode Decorated
Character UEiED Abstract Syntax
Stream

Sfream Abstract Syntax
Tree Nodes
Tree Nodes

(¥)

Bytecode
Stream

-
O)
Effor
Wessage
Stream

Software Engineering 2008

Example P&F Architecture

O No intermediate data structures necessary (but possible)
(Pipeline processing subsumes batch processing)

Stream of Stream of Stream of Stream of
letters

bitimages documents customer

requests

— Sofvere ArchEcires Pipes & Fles AGEsles @ —_—

Pipe and Filter Style (4a)

Advantages:
- Simplicity:
- no complex component interactions

- easy to analyze (deadlock, throughput, ...)
- Easy to maintain and to reuse
- Filters are easy to compose (also hierarchically?)
+ Can be easily made parallel or distributed

Leiden Institute of Advanced i

MRV Ghaudron
Sheet 59

Pipe and Filter Style (4b)

Disadvantages:

- Interactive applications are difficult to create
- Filter ordering can be difficult
- Performance:
- Enforcement of lowest common data representation,
ASCII stream, may lead to (un)parse overhead
- If output can only be produced after all input is
received,an infinite input buffer is required
(e.g. sort filter)
- If bounded buffers are used, deadlocks may occur

MRV Ghaudron
Sheet 60

Leiden Institute of Advanced

10

Pipe and Filter Style (5) Quality
Factors

Extendibility: extends easily with new filters
Flexibility: - functionality of filters can be easily
redefined,
- control can be re-routed
(both at design-time, run-time is difficult)
Robustness: ‘weakest link’ is limitation
Security: -
Performance: allows straightforward parallelisation

MRV Ghaudron
Sheet 61

Leiden Institute of AdvancediCompu

Software Engineering 2008

Pipe and Filter Style (6)
Application Context

Rules of thumb for choosing pipe-and-filter (0.a. from Shaw/Buschman)
- if a system can be described by a regular interaction pattern of a
collection of processing units at the same level of abstraction;
e.g. a series of incremental stages
(horizontal composition of functionality);
- if the computation involves the transformation of streams of data
(processes with limited fan-in/fan-out)

Hint. use a looped-pipe-and-filter if the system does continuous
controlling of a physical system

Typical application domain: signal processing
ﬁ [

Sheet 62 Leid

11

Quality Improvement Methods and

Empirical Research in SE

Michel Chaudron

Leiden Institute of Advanced Computer Science
g

Agenda

m Quality Improvement

Software Process Improvement (CMMI)
Review and Inspection
Formal Methods

m Risk Management

m Empirical Research in Software Engineering
m Summary

- «4\‘ MRV Chaudron . . .
e A Sheet?2 Leiden Institute of Advanced Computer Science

CMM - Capability Maturity Model:

CMMI
Distilled

SECOND EDITION

CMMI

Guidelines for Process
Integration and Product
Improvement

o |
X ¥ A Practical
-
" “ -
AR Introduction to

o
.| Integrated Process
) ' Improvement

o
z
z
o
o
z
]
r4
o
u
z
<
3
e
“
a
L]
z
L]
u
x
u
L
u
L

SEI SERIES IN SOFTWARE ENGINEERING

Mary Beth Chrissis
Mike Konrad
Sandy Shrum

MRV Chaudron
Sheet 3

Software Engineering 2008

Premise of Software Process Improvement
(SPI)

“The quality of a product is largely
determined by the guality of the process that
IS used to develop and maintain it.”

PEOPLE
()

LT
TECHNOLOGY q@

& 441 MRV Chaudro
Cword Sheetd

Leiden Institute of Advanced Computer Science

Software Engineering 2008] Ide ntify

opportunities for

CMMI Maturity Levels improvement

Optimizing
Focus on process
improvement
Quantitatively gy 1
o Process measured Managed measured

and controlled

Targets in
terms of

quality and
ctivity

é Process characterized
for the organization
and is proactive

Managed
Process characterized for
projects and is often
reactive

Initial

Process unpredictable,
poorly controlled and
reactive

MRV Chaudron
Sheet 5 Leiden Institute of Advances

Software Engineering 2008

The CMM Structure

indicate

Process
Capability

,

Implementation or
Institutionalization

(Maturity Levels ?

contain

SR\

(Key Process Areas j

achieve
organized by

Common
Features

address

Key
Practices
-

dascribe

Infrastructure or
Activities

MRV Chaudron
Sheet 6

e
Leiden Institute of Advanced Com

uter Science

Process Areas by Maturity Level

Level Focus Process Areas

Software Engineering 2008 7

Is the premise true?

IN ORDER TO AVOID
SHODDY MISTAKES,
EVERYTHING WE DO
FROM NOW ON WILL
BE PART OF A DOCU~-
MENTED PROCESS.

www.dllbert.com scottadama® sol.com

r

LWHAT DOCUMENTED
PROCESS DID YOU USE
TO DECIDE WHAT
DOCUMENTED PROCESS
TO USE?

0 2005 Scott Adams, Inc. /Dist. by UFS, Ing

1405

OR IS THIS ONE
OF THOSE SHODDY
MISTAKES T KEEP
HEARING ABOUT?

© Scott Adams, Inc./Dist. by UFS, Inc.

Process improvement should be done to help
the business— not for its own sake.

= _1"'3 MRV Chaudron
<l Sheet8

Leiden Institute of Advanced Computer Science

Software Review and

Inspection

Leiden Institute of Advanced Computer Science
g

Review

m A Review is a reading technique in

which a software artifact is checked

for defects by one or more persons
other than the creator(s) of the document.

m Review can be applied to any type of document: code,
design documents, test plans and requirements

m There are a number of types of review ranging in formality
and effect.

15 A1 MRV Chaudron
< A Sheet10 Leiden Institute of Advanced Computer Science

Types of Review

m Buddy Checking

having a person other than the
author informally review a piece
of work.

generally does not involve the use of checklists to guide
Inspection and is therefore not repeatable .

generally does not require collection of data
difficult to put under managerial control

A , MRV Chaudron ,
< wd Sheetll Leiden Institute of Advanced Cg{nputer Science

o,

Software Engineering 2008

Types of Review

m Walkthrough

the author of an artifact presents his document or
program to an audience of peers

The audience asks gquestions and makes comments on
the artifact being presented in an attempt to identify
defects

often break down into arguments about an issue

usually involve no prior preparation _ on behalf of the
audience

usually involve minimal documentation of the process and
of the issues found

process improvement and defect tracking are therefore

o Q Merc]wng)dI'm € asy

el Sheet12 Leiden Institute of Advanced Computer Science

Types of Review

m Review by Circulation

similar in concept to a walkthrough

artifact to be reviewed is circulated to a group of the
author(s) peers for comment

avoids potential arguments over issues, however it also
avoids the benefits of discussion

reviewer may be able to spend longer reviewing the
artifact

there is documentation of the issues found, enabling
defect tracking

usually minimal data collection

MRV Chaudron
<A Sheet13 Leiden Institute of Advanced Computer Science

(ool

Types of Review

m Inspection (Fagan 76)
formally structured and managed peer review processes
Involve a review team with clearly defined roles
specific data is collected _ during inspections
Inspections have quantitative goals set

reviewers check an artifact against an unambiguous set
of inspection criteria _for that type of artifact

The required data collection promotes process
Improvement, and subsequent improvements in quality.

Leiden Institute of Advanced Computer Science

| Software Engineering 2008
Software Inspection

m The inspection process comprises three
broad stages:
preparation
collection
repair

m Gilb and Graham [GiloGraham93] expand this three stage process into

the inspection steps; Entry, Planning, Kickoff Meeting, Individual Checking,
Logging Meeting, Root Cause Analysis Edit, Follow Up, EXxit.

Leiden Institute of Advanced Computer Science

Principles of inspecting

m Choose an effective and efficient inspection team
between two and five people
Including experienced software engineers

m Require that participants prepare for inspections

They should study the documents prior to the meeting and come
prepared with a list of defects

m Only inspect documents that are ready

Attempting to inspect a very poor document will result in defects
being missed

o .4 , MRV Chaudron
< A Sheet16 Leiden Institute of Advanced Computer Science

Software Engineering 2008 '

Benefits of Inspection

believers edition

m 30% to 100% net productivity increases;

Overall project time saving of 10% to 30%;

5 to 10 times reduction in test execution costs and time;
Reduction in maintenance costs of up to one order of magnitude;
Improvement in consequent product quality;

Minimal defect correction backlash at systems integration time.

In addition to these tangible benefits, less tangible benefits such as a
training effect for inspectors are also evident.

“ ;3 MRV Chaudron R
23i§i’1'5 Sheet 17 Leiden Institute of Advanced Computer Science

Benefits of Inspection

Chaudron edition

m Helps creating common understanding
and shared vision of the system

m Small investment in effort can have large benefits

Becomes better when staff is trained and checklists and reading
guidelines are available

m Subjective

m Does not solve all problems

=» should be used in combination
with other QA techniques

R ‘ MRV Chaudron .
e Sheet 18 Leiden Institute of Advanced Computer Science
o 1

| Software Engineering 2008
A peer-review

m Managers are normally not involved

This allows the participants to express their criticisms
more openly, not fearing repercussions

The members of an inspection team should feel they are
all working together to create a better document

Nobody should be blamed

Leiden Institute of Advanced Computer Science

Egoless-ness

m You are not your document/code
m Being open to improvement
m Seeing feedback as a learning opportunity

m Nobody is perfect

«‘Q MRV Chaudron ' ' ‘
Vo wdl Sheet20 Leiden Institute of Advanced Computer Science

Quality Improvement Methods

m Structured processes

m Reviews and Inspections
m Metrics

m Testing

m Prototyping

m Mathematical proof of correctness / formal
specification

«4&‘ MRV Chaudron ' ' ‘
A Sheet21 Leiden Institute of Advanced Computer Science

Software Engineering 2008

—

e — C s Ml
?mmm

Defect Discovery Sources

(how are the data generated)

Defect
Detection

Techniques

Static

V&V

Checklist-based Insp.

Inspections

Perspective-based Insp. |

Fagan-based Insp.

Complexity Measures

Tool-Based

Language Compilers |

Design Measures |

Path Testing

Dynamic

Operational
(Post-Deployment)

Scenario-Based Testing

Module Interface Testing

User Interface Testing

User Discovered |

System Administration

Environmental

Risk Management

Leiden Institute of Advanced Computer Science
g

Risk Management

m Risk

Risk refers to uncertainty about
the structure, outcomes or
consequences of a decision or plan.

m Risk Management?
A Method for Dealing with Project Risks
» Identification and Handling of Risks

On-Going Activity

Q MRV Chaudron
S EMAY Shaat 24 Leiden Institute of Advanced Computer Science

Risk?

5
,\, r
Michael Reardin solang his Firgt Ascén “Shikala Ga Ne™ - phalo

MRV Chaudron B ot
Sheet 25 Leiden Institute of Advanced Computer Science

Risk Management: Basic Approach

m Analysis of Project
|dentification of Risks

m For Each Risk:

Impact and Probability Analysis
= What is the Nature of the Risk?

Avoidance/Mitigation Plans
s How Can We Minimize the Risk?

Contingency Plans
= What Do We Do if it Occurs?

LR MY MRV Chaudron
el Sheet 26 Leiden Institute of Advanced Computer Science

Risk Management

Risk Identification

/ Risk Analysis
Risk Assessment /- RISk Exposure

/ - Risk Prioritization

Risk Management

\ / Risk Reduction
~__—Contingency Planning

Risk Control

\ . . =
\Rlsk Monitoring
Continuous Reassessment
MRV Chaudron

C ol Sheet 27 Leiden Institute of Advanced Computer Science

P

&)

Risk Management:

How to ldentify Risks

m Start with a typical list of software risks

m Review development plan
Critical Paths
Critical Staff Members
Critical Vendor Deliveries
Critical Milestones
Training Requirements

m Review Requirements

m Review Technical Design

m Review Past Projects

Leiden Institute of Advanced Computer Science

Software Engineering 2008

Risk Management:
How to Identify Risks (Continued)

m Conduct Risk Brainstorming Sessions with Staff,
Users, Vendors, Customers, and Management

Try to assess the direction of thinking by third parties as
they may give an indication of future requirements,
expectations, or vendor changes.

If you are dependent on vendors, try to understand their
business situation.

m Get as much input as possible!

: :Q MRV Chaudron)))
Ca ol Sheet 29 Leiden Institute of Advanced Computer Science

Common Risks in IT Development

| Name of the risk | Description Stakeholder Software risk
item concerned!! component
| related to
1 | Personnel Lack of qualified personnel | Customer, users, Personnel
shortfalls and their change subordinates, management
maintainers, bosses, | risks
project manager
2 | Unrealistic Development time and Customers, bosses, | Scheduling and
schedules and budget estimated incorrectly | project manager timing
budgets (too low)
3 | Developing wrong | Development of software User, project
software functions | functions that are not needed | manager System
or are wrongly specified functionality
4 | Developing Inadequate or difficult user User, project
wrong user interface manager
interface
5 | Gold plating Adding unnecessary features | Sub-ordinates, users,
"whistles and bells") to project manager
software because of
professional interest or pride Requirements
or user’s demands management

MRV Chaudron
Sheet 30

= z ‘_;‘n
Leiden Institute of Advanced Computer Science

Common Risks in IT Development

Requirements
management
6 | Continuing stream | Uncontrolled and Sub-ordinates, user,
of requirement unpredictable change of project manager
changes system functions and
features
7 | Shortfalls in Poor quality of system Customers, bosses,
externally components that have been project manager
furnished delivered externally
components Sub-contracting
8 | Shortfalls in Poor quality or unpredictable | Customers, bosses,
externally accomplishment of tasks that | project manager
performed tasks are performed outside the
organization.
9 | Real-time Poor performance of the Users, customer,
performance resulting system maintainers, project | Resource usage
shortfalls manager and performance
10 | Straining computer | Inability to implement the Sub-ordinates, users,
science capabilities | system because of lacking customers, project
technical solutions and manager
computing power.

MRV Chaudron
Sheet 31

o
Leiden Institute of Advanced Computer Science

Software Risk Management

Techniques

Risk items Risk management techniques

Personnel shortfalls Staffing with top talent job matching team-building;

Unrealistic schedules & budgets Detailed multisource cost & schedule estimation;
incremental development; software reuse

Developing the wrong software Organization analysis; mission analysis; user

functions surveys, prototyping; early users manuals
. Prototyping; scenarios; task analysis;
_l.)‘et\;ﬂ:g;ng the wrong user user characterization
Continuing stream of Information hiding; incremental development
requirements changes (defer changes to later increments)
Real-time performance Simulation; benchmarking; modeling;
shortfalls prototyping ~To—

ience

Risk analysis

m estimating size of loss
how long it takes to “fix” the risk

m estimating probability of loss

most experienced estimates risks
delphi method vs. group consensus
betting on topic

adjective calibration

m risk exposure

probability of unexpected loss multiplied by the size
of loss

MRV Chaudron
Cand Sheet 33 Leiden Institute of Advanced Computer Science

IR RS
A=)

| Softare Engineering 2008
Analysis, Exposure, & Prioritization

m For Each Risk:

Determine Probability of Occurrence
= What is the likelyhood of occurrence?

Determine Impact
= What is the impact if it occurres?

Determine Exposure
= What will we lose if the risk occurs?

m For All Risks:
Prioritize
= Where should we put our limited resources?

“ ‘4&‘ MRV Chaudron
U< wd Sheet 34 Leiden Institute of Advanced Computer Science

| Softare Engineering 2008
Analysis, Exposure, Prioritization: How?

m Various Techniques Available But Key Is
Experience

Individual
Organizational

m Don’t Rely on Just Yourself - Get lots of
Inputs

Leiden Institute of Advanced Computer Science

| Sotvware Engineering 2008
Risk Assessment: A Simple
Classification & Tracking Method

m Probability of
Occurrence vs Impact

—

1 to 5 Scale £ Risk #4
m Priorities § ik s

Red - High =

£

Yellow - Med

Green - Low ﬂ
. REVieW/Prese nt Chart <): Lower Probability Higher Probability :>

PeriOd ical Iy Probability of Occurrence

gl;\éecthggdron Leiden Institute of Advanced;.ﬁgg{:;ﬁ%éggscience

Risk Assessment: Probability Methods

m Can we guantitize the risk?

m For Each Risk:

For Each Possible Action:

m Estimate Probability of an Given Outcome P(O)

m Estimate $ Loss of an Given Outcome L(O)

= Multiply the P(O) by L(O) to give $ exposure for the unwanted outcome
Sum all $ exposures for each Possible Action
Compare the $ exposures

Calculate Risk Leverage

m (Risk Exposure Before Reduction - Risk Exposure After Reduction) /
(Cost of Risk Reduction)

15 A1 MRV Chaudron
< A Sheet37 Leiden Institute of Advanced Computer Science

ot Engineering 2008
Example Risk Assessment Using
Probability Method

RISK
EXPOSURE COMBINED
|) RISK
FmdP(Cg)uga(l).I;zult — L(0)=$0.5M $0.375M EXPOSURE
ves o to0s " Lo)=s3M $15M $1.975M
NoPCEEi)t)ideOl.:;(;Ht - L(0)=$0.5M $0.10M
Do
Regression
Testing?
Findp(c(;i)tic::a(l)zgult -~ L(0)=$0.5M $0.125M
N .
L o toes - LO)=%30M $16.50M $16.75M
No;:(zi)t)ic:lol.:;;lt - L(O)=$0.5M $0.10M

RISK LEVERAGE -> $14.775M

MRV Chaudron
Sheet 38 Leiden Institute of Advanced Computer Science

Risk Reduction

m Avoiding Risk
Modifying project requirements

m Transferring the Risk

By allocation to other systems
Buying Insurance to cover financial loses

m Mitigating the Risk
Pre-Event Actions to:
m Reduce Likelihood of Occurrence and/or

= Minimize Impact, Fail-over, Repair, ...

m Some risks cannot be reduced
Contingency Plan - how will you deal with the risk

R , MRV Chaudron
<:wA Sheet39

Leiden Institute of Advanced Computer Science

| ofviare Engincering 2008
Monitoring Risk

m Periodic Review of Risk Status

Changes in Probabilities or Impacts
Changes in Avoidance/Mitigation/Contingency Plans

m Periodic Review of Project to Identify New Risks
m Implementation of Risk Avoidance or Mitigation Plans

m Keep Management and Customers Informed!!!

Frequent Risk Reviews

AN MRV Chaudron

Sheet 40 Leiden Institute of Advanced Computer Science

Software Engineering 2008

Risk Management Process

RiskiAnalysisi

" |dentify
the Risks

o.uk/riskguide

’F:Evaluate
the Risks

a_-----------

Plan and
Resource

" Identify
Responses

www.rulework<ss

....

\ MRV Chaudron

‘x’ sneetal . From: http://www.ruleworks.co.uk/riskguide/manage-risk-nl.htm

Empirical Research in Software

Engineering

Leiden Institute of Advanced Computer Science
g

Empirical Research

Empirical research

IS research that bases its findings on
direct or indirect observation as Its test

of reality.

''''''''''

Astronomy Chemistry Physics
Newton’s apple

A 1,". MRV Chaudron

VAL ol oat a3 Leiden Institute of Advanced Computer Science

0 -

ot Engineering 2008
How to best allocate budget?

* Experienced .. Novice

Java vs .Net
» Code generation
e Automated testing, ...

In-house or offshore

Which features
« What level of quality?

We must understand the effect of our choices on
productivity, quality, ...

Leiden Institute of Advanced Computer Science

Examples

m The use of Object Oriented modeling and
programming improves gquality and
productivity

True ?
Not True?
Don’t know

«‘Q MRV Chaudron ' ' ‘
Cwwll Sheet45 Leiden Institute of Advanced Computer Science

The Bottom Line

“In God we trust,
all others bring data.”

- W. Edwards Deming

What Is ‘evidence’?

o}

/ y MRV Chaudron
% A Sheet 46 Leiden Institute of Advanced Co

N
mputer Science

Use of RUP

Use of RUP leads to improvement of
productivity and guality

Approaches:
Measure

2@ Expert opinions (interviews)
E®» Simulation

Combination of the above (triangulation)

LR MY MRV Chaudron
Ul Sheet47

Leiden Institute of Advanced Computer Science

Empirical Cycle

Real World Theory
E=aNP
=
Observation Induction Hypothesis
Data / Results Idea / Conclusion : Model
Test g Deduction
Experiment / Prediction

Intervention

Leiden Institute of Advanced Computer Science

Software Engineering 2008

Inqﬁiry “Cycle

Note similarity with
Prior Knowledge process of scientific
(e.g. customer feedback) Investigation:
Requirements are theories
about the world; Designs
and implementations are
models of those theories

Initial hypotheses

Observe
(what is wrong with
the current system?)

Look for anomalies - what can't
the current theory explain?

Intervene Model
(revise the theory, model (describe/explain the
or the experiments) observed problems)
Carry out the Design experiments to Create/refine
experiments test the theory and model better theory
(manipulate d reify in a model
the variables) Design

Model and Experiments

MRV Chaudron Bt
Sheet 49 Leiden Institute of Advanced Computer Science

Ky

Important characteristics of scientific
research:

rigor

testability / falsifiability

reproducibility

precision

objectivity

parsimony

generalisability (if possible)

tute of Advanced Computer Science

Many Methods Available:

» Laboratory Experiments
» Field Studies

» Case Studies

» Pilot Studies

» Rational Reconstructions
» Exemplars

» Surveys

» Artifact/Archive Analysis ("mining”!)
» Ethnographies

» Action Research

» Simulations

» Benchmarks

Leiden Institute of Advance d Computer Science
Zt

Study - Examples

m Survey

After a new development process has been introduced:
developers answer a questionnaire about their
confidence in the new process.

m Experiment

Source code inspections: one group of participants
uses inspection technique A, the other group uses
Inspection technique B. Compare the number of
detected defects.

m Case study

Run a pilot project using a new tool (e.g. UML case
tool) and compare productivity to company baseline

MRV Chaudron
Ccwdl Sheet 52 Leiden Institute of Advanced Computer Science

(ool

Experiment

When appropriate : control on who is using which technology,
when, where and under which conditions. Investigation of self-
standing tasks where results can be obtained immediately

Level of control : high

Data collection : process and product measurement,
guestionnaires

Data analysis , compare
central tendencies of treatments, groups

Pro’s : help establishing causal relationships, confirm theories

Con’s : representative? Challenging to plan in a real-world
environment. Application in industrial context requires
compromises

ek ‘ MRV Chaudron

Y4 Sheet 53 Leiden Institute of Advanced Computer Science

Case study

m \When appropriate : change (new technology) is wide-ranging
throughout the development process, want to assess a change in
a typical situation

m Level of control : medium

m Data collection : product and process measurement,
guestionnaires, interviews

m Data analysis : compare case study results to a baseline (sister
project, company baseline)

m Pro’s: applicable to real world projects, help answering why and
how questions, provide qualitative insight

m Con’s: difficult to implement a case study design, confounding
ifi¥actors, analysis of results is subjective

Leiden Institute of Advanced Computer Science

Software Engineering 2008

Survey

When appropriate : for early exploratory analysis. Technology
change implemented across a large number of projects, description
of results, influence factors, differences and commonalities

Level of control : low
Data collection : questionnaires, interviews

Data analysis : comparing different populations among
respondents, association and trend analysis, consistency of scores

Pro’s : generalization of results is usually easier (than case study),
applicable in practice

Con’s . little control of variables, questionnaire design is difficult
(validity, reliability), execution is often time consuming (interviews)

15 A1 MRV Chaudron
~wdl Sheet55 Leiden Institute of Advanced Computer Science

Empirical Life-cycle

Method Development

A

o /y
S\ 72
Initial Idea

Experiment

Industrial Case Studies

MRV Chaudron
e A Sheet56 Leiden Institute of Advanced Computer Science

A process for conducting

Definition empirical studies
l m Determine study goal and research hypothesis. Select type
Design of empirical study to be employed.
l m Operationalize study goal and hypothesis.
| Make study plan: what needs to be done by whom and
mplemen-
tation when.
l m Prepare material required to conduct the study.
Execution = Run study according to plan and collect required data (data
i collection).
Analysis m Analyze collected data to answer operationalized study goal
l and hypotheses
Reporting m Report your study so that external parties are able to

understand results and context of the study.

o , MRV Chaudron
Ul Sheet57 Leiden Institute of Advanced Computer Science

Validity

m Are the results valid for the sample population?

m Are the results valid for the population to which we would like
to generalize?

m Threats to Validity

Conclusion validity

m Relation between treatment and outcome
Internal validity

m Treatment - outcome = causal relationship?
Construct validity

m Relation between theory and observation
External validity

m Generalizability of the result

L5 MY MRV Chaudron
-yl Sheet58 Leiden Institute of Advanced Computer Science

Software Engineering 2008

RUP Humps from 3 (largish) projects

z.00
18. .
% requirements C——J requirements C—] 10.00 requirements
12. 8.00
1g- 1 £.00
€. — 4.00
4. - z.00
i Rr— 890
Z‘ i; analysiz and design 0] g analysic and design
<. 10.]
e : :
3. : . 1
2. e . 1
1. 2. . a
20 48,
334 gg - implementaticn]]
25, 33.00 | 3
20. 25.00 3
15 20. o -
1o 1500 |-
S 120k
g 300 I~ e
5 pafiguraticn and change management 2o b configuraticn and change management C—— change manag=ment
N -
i 2.
%1 1. _
3. 1. _
28
20.
15.
10.
deployment .
Z
L2
Q.80
&
39 8]
3 project maffagement 14.00 Project management — ek reiact memagemens
20 10.00 -
% .00 :
3 €.00 .
20 4.00 :
20 2.00 :
o 8.00 3
7.00 snvircnment) :

€.
S.
4.
2.00 = 1
it rance .00 3 '
ok qualityassurance oeo bk qualitysssursnce C— | sl qualityassurancs 1 |
o0 | 0.00 f E a0o bk B .
o Heijstek & Chaudron 2007 el Heijstek & Chaudron 2007 oo T Heijstek & Chaudron 2007
-1.00 -1.00 -1.00
MRV Chaudron F ..;

Sheet 59 Leiden Institute of Advanced Com uter Science
.

B MetricView Evolution Prototype
File Debug Help

& & INone Bﬁlter:{ @ ! n é\é Search: é é o Clustering: f Caoling: | lterations; S

MetricView

The values of metrics are
visualized on class diagrams
using colors (green = low value,
red = high value).

Example: Coupling-Between-
Objects (CBO) Automatic Zco

[B DiagramNumberOfClasse
[1ED dit
[1HM noa
[1EH noc
[IET rnom

& >

- Visualization options

|_2-D—C0|0led Square v| &l

transparency J

Advanced options...

LRI aE ey)) e 8y K 2028

> T wwwnn, | Mioosi, | 8 Wi, [qlzad., - Ezm.. vlt.z‘WinE... [& Gesen. [GiDemo.. & metric... s mE S

Conclusions

m Empirical Research is essential for validation of
methods/techniques/processes in practice,
Feedback for improvement

Collaboration between industry and academia is
essential

m Different study-types (‘strategies’) are possible.
Depending on the goal and context
Good preparation is important
Good literature is available

MRV Chaudron
Cacwd Sheet 61 Leiden Institute of Advanced Computer Science

(ool

" Software Enginering 2008~
References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

A. Endres, D. Rombach, A Handbook of Software and Systems Engineering — Empirical Observations, Laws and
Theories, Pearson Addison Wesley, 2003.

C. Wohlin, P. Runeson, M. Host, Magnus C. Ohlsson, Bjorn Regnell, and Anders Wesslen, Experimentation in
Software Engineering - An Introduction. The Kluwer International Series in Software Engineering, Kluwer Academic
Publishers, 2000.

R. van Solingen and E. Berghout, The Goal/Question/Metric Method. McGraw-Hill, 1999.

N. Fenton and Shari L. Pfleeger, Software Metrics: A Rigorous Practical Approach. London: International Thompson
Computer Press, 1996.

B. Freimut, T. Punter, S. Biffl, M. Ciolkowski, State-of-the-art in Empirical studies, IESE-Report No. 017.02/E & VISEK
report No. 007/02, Kaiserslautern, Fraunhofer IESE, March 2002.

T. Punter, M. Ciolkowski, B. Freimut, 1. John, Conducting on-line surveys in software engineering, ACM IEEE Int.
Symposium on Empirical Software Engineering (ISESE’03), Los Alamitos, IEEE, pp. 80-88.

B. Kitchenham, Evaluating Software Engineering Methods and Tools - Part 9: Quantitative Case Study Methodology,
ACM SIGSOFT Software Engineering Notes, vol. 23, pp. 24-26, Jan. 1998.

M.V. Zelkowitz, D.R. Wallace, Experimental models for validating Technology, IEEE Computer, vol. 31 no. 5, pp. 23-
31, May 1998.

MRV Chaudron
Sheet 62 Leiden Institute of Advanced Computer Science

Software Engineering 2008 :

M.Sc. Eindprojecten met ...

y océ

logra w2 =

Professionals

e
PHILIPS — 40)

[
sense and simplicity KLM bOI.com

Google NOKIA TomTOM W3

Guest lecture 24 april 11-13

And many more (including companies/universities) abroad ...

53 MRV chaudron =
< w4 Sheet63 Leiden Institute of Advanced Computer Science
Qs 20 ‘

Highlights SE

Leiden Institute of Advanced Computer Science
g

Software Engineering 2008

Book: Object-Oriented Software Engineering, Timothy C.
Lethbridge, Robert Laganiére (2" Ed.)

Ch 1: introduction to the subject

Ch 2: OO-basics AL

Ch 4: Requirements Object-Oriented

Ch 5 & Ch 8:; Modeling using UML SOﬂwareEng'”ee””g

Ch 6: Design patterns

Ch 9: Architecture & Designing

Ch 10: Testing / Quality Assurance

Ch 11: Management (Estimation, Risk)
Websites: en

15 A1 MRV Chaudron
< A Sheet65 Leiden Institute of Advanced Computer Science

| Software Engineering 2008
Project Management

m People are key

Get good people, Make them happy, Set them
loose

m Manage Risk Early and Frequently

m Anticipate changes

Leiden Institute of Advanced Computer Science

Requirements Engineering

m Understand the domain

m SMAR

m Manage Change

Q MRV Chaudron
el Sheet 67 Leiden Institute of Advanced Computer Science

P

| Software Engineering 2008
Software Architecture
m Principle decisions about design of a system
m Describe using multiple views

m Validate architecture
review, measure, prototype

«4‘3 MRV Chaudron ' ' ‘
Cwowdl Sheet 68 Leiden Institute of Advanced Computer Science

Software Engineering 2008

m Mathematics is not a careful march down a well-cleared
highway, but a journey into a strange wilderness, where the
explorers often get lost.

Rigour should be a signal to the historian that the maps
have been made and the real explorers have gone

elsewhere.
[Anglin, W.S.]

R , MRV Chaudron
~wdl Sheet69 Leiden Institute of Advanced Computer Science

&
(o}

Gastcollege 10-04-2008

Testing in practice
Bart Knaack
Logica

Bart.Knaack@logica.com

Agenda lOgiéQ

* Introduction

+ Why testing?

« Testing Theory versus Practice

+ Risk and Requirements Based Testing
+ Testmanagement

+ Pauze

» Future Testing

+ Stories from the real world

Introduction

* Who am I?

« What have | done so far?

Who am I? lbgiéo

Bart Knaack, Senior Test Advisor, Logica, The Netherlands
« 15 years experience in IT, of which 12 in testing.

Developer, Development Lead, Tester, Testautomator,
Testcoordinator, Testmanager, Testadvisor.

Trainer in Testmanagement

ISEB practionner
« SEI accredited CMMi Appraiser
« Father of 2 kids (age 6 and 8)

28
TifERH

I'IIIIII

i

Testpyramide

°

5

TestGrip

R

RRBT e s‘:‘l::te ::::Lgement
Test Management

geason Q) springer

Integrated Test Design
and Automation

-gest Frame
i Test Method

Test Tooling and Utilities

: = J A
2
»

Why testing? loalpco

 Prevent defects during operation of the system.
« Verify intended functionality

.
R
.
.
.
.
.
.
D
.®
i
.
)
T
)

Definition Design Development Production
6

* Boehms Curve
- Validation vs Verification
+ Generic testing process.

28
TifERH

Test levels in the V-model

A
e,
User needs, e
Requirements, %
siness proces ‘%ﬁ

System

stem Integratio
Test

System Test

\\White/ / /- Component

\\ '\‘v bo X'/

echnical Design,\ /// Integration Te

& Code

omponent Tes

terms according to: I'STQB'

Testing Theory versus Practice lo iCQ

- The State of testing per type of business
* Test Techniques

The State of testing per type of business

Branche

Finance

Telecom/
Electronics

Government

Industry

Test Maturity Usage of test

techniques
+/- -
++ +
+ +

Testing as
Carreer

++

Test Techniques

lRe\easmg your potential

* Boundary Value Analysis, Equivalence partitioning, etc.

* Lack of exposure

* Lack of tool support

* Lack of adaptability

- Starting situation, Action, Expected result, Actual result.

Risk and Requirements Based Testing

* Risk and Requirements based testing approach
* The role and responsibilities of the testmanager

* The eight-facetet testmanagement model

I':III!I
2
(3

RRBT: risico’s versus requirements

Matching risico’s met requirements

Requirements

Product
Risico’s

Matching requirements met risico’s

lRe\easing your potential
ORiCQ

Wel risico, geen
requirement:

*Aanvullen requirement
(eerder fouten vinden)

*Afvoeren risico (niet
onnodig testen)

Wel requirement, geen
risico:

*Risico lijst aanpassen
(betere dekkingsgraad
test)

*Requirement afvoeren
(niet onnodig
ontwikkelen, geen
“franje”)

Combineren productrisico’s en

requirements

Analyseren
requirements

i

Must test

Belang
requirement
bepalen

/ Must have
__» Should have Should test

[~ Could have Could test

Won’t have Won’t test

Analyseren
risico’s

i

Impact risico’s
bepalen

Opstellen testcases

Risk and requirements based testing

« Identify the stakeholders

+ Determine productrisks

lRe\easmg your potential

» Link product risks to requirements and quality attributes

* Determine testsorts.

- Determine acceptance criteria

ERROR: undefined
OFFENDING COMMAND: »>-—

STACK:

(

2 T o»z| a
)

/abreve
—dictionary-
/CharStrings
—dictionary-
—dictionary-
/Private
—dictionary-
—dictionary-
false
—-filestream-
-mark-
false
(./n0190231.pfb)
/NimbusSanL-Regultal
/Helvetica-Oblique
-mark-—
/Helvetica-Oblique
1860085
/Helvetica-Oblique
/Font
/Helvetica-Oblique

B Vw|

@P9Tx@ 5d”K B — LMg=

I -

+ -

(

®zR) £

B+ =

1S»i 5.0

P

.<'Y gC E

[u

