March 19, 2008
Operating Systems
LIACS

Spring Semester 2008
Assignment #4

Deadline: Tuesday, April 1, 2008
You are encouraged to work in teams of 2 persons.

Goal
Learn about threads; experiment with race conditions.

Introduction

In this exercise we will continue learning about the key concept of OSs: the notion of a process.
In the first weeks we learned about some process management system calls of Linux. This week
we will focus on the use of the POSIX thread API for C/C++. It allows one to spawn a new
concurrent process flow. It is most effective on multiprocessor systems where the process flow
can be scheduled to run on another processor thus gaining speed through parallel or distributed
processing. Threads require less overhead than “forking” or spawing a new process because the
system does not initialize a new system virtual memory space and environment for the process.
While most effective on a multiprocessor systems, gains are also found on uniprocessor systems
which exploit latency in I/O and other system functions which may halt process execution. (One
thread may execute while another is waiting for I/O or some other system latency.) All threads
share the same address space. A thread is spawned by defining a function and its arguments
which will be processed by the thread.

Assignment

a) In this part of the exercise we will set up a race condition. Moreover we will set up things
in such a way that we will be able to see the nasty effects of this race condition. We assume
the use of POSIX Pthreads. The POSIX standard does not prescribe the exact concurrency
requirements among threads. Assume that the implementation supports concurrent threads
with RR scheduling. That means, each thread is automatically preempted after it ran for
some time and another thread is started. Thus, all threads within a process proceed
concurrently at unpredictable speeds.

To set up a race condition, create two threads, threadO and threadl. The parent thread of
the two threads — main — defines two global variables account! and account2. Each
variable represents a bank account; it contains a single value — the current balance — which
is initially zero. Each thread emulates a banking transaction that transfers some amount of
money from one account to another. That means, each thread reads the values in the two
accounts, generates a random number amount, adds this number to one account and
subtracts it from the other.



The following code skeleton illustrates the operation of each thread:

counter = 0;
do {
templ = accountl;
temp2 = account?2;
amount = rand();
accountl = templ - amount;
account?2 = temp2 + amount;
counter++;
} while (acountl+account2 == 0);
print(counter);

Both threads execute the same code. As long as the execution is not interleaved, the sum of
the two balances should remain zero. However, if the threads are interleaved, one thread
could read the old value of accountl and the new value of account2, or vice versa, which
results in the loss of one of the updates. When this is detected, the thread stops and prints
the step (i.e., the counter) at which this occurred.

Write the code for main and the two threads. Then measure how long it takes to see the
effect of the race condition.

b) In this part of the exercise you will translate the following program:
Cooperating Processes:

procA {

while (TRUE) {
<compute section Al>
update(x);
<compute section A2>
retrieve(y);

procB {

while (TRUE) {
retrieve(x);
<compute section Bl>
update(y);
<compute section B2>

}

Processes A and B share the variables x and y. Process A writes x and reads y, while process B
writes y and reads x. The two processes need to cooperate so that B does not read x until after A
has written it, and so that A does not read y until B has written a new value to y.

Use threads and possibly mutexes to accomplish a good working translation of the given
consumer-producer program.



¢) Implement the program of b) using threads and instead of mutexes use Peterson’s algorithm

for a correct solution.

d) Think of a concrete problem/situation where a solution to the problem can be achieved with

a program described in b).

Hints:

i Read the pthread man pages to become familiar with pthreads and mutexes. In
particular, the functions pthread_create, pthread_exit, and
pthread_join are useful when working with pthreads, and
pthread_mutex_init and pthread_mutex_lock/unlock are
useful when working with mutexes.

ii In order to compile your programs with the pthread library, add -1pthread
to the gcc command line.

Deliverables:

i a README file which contains a list of items you turned in + in what fashion
they are to be used

ii All C programs — part a, b, ¢, and the example for part d.

iii A one-page lab report detailing what you have done in the lab and more
importantly what you have learned from this and what you have learned from

your lab partner.

Make sure each deliverable contains the names of the authors, student IDs, assignment number

and date turned in!
Due date: as stated before April 1st.

Put all files you want to deliver into a separate directory (e.g., assignment4), free of object files

and/or binaries, and create a gzipped tar file of this directory:
tar -cvzf assignnment4.tgz assignnent4/

Mail your gzipped tar file to Sven van Haastregt (e-mail: svhaastr at liacs dot nl) and let the
subject field of your e-mail contain the string ~"OS Assignment 4".



