
1

Lecture 9
Directory Based Multiprocessors

Slides were used during lectures by
David Patterson, Berkeley, spring 2006

Review

• Caches contain all information on state of
cached memory blocks

• Snooping cache over shared medium for smaller
MP by invalidating other cached copies on write

• Sharing cached data ⇒ Coherence (values
returned by a read), Consistency (when a written
value will be returned by a read)

Outline

• Review
• Directory-based protocols and examples
• Synchronization
• Consistency
• Cross Cutting Issues
• Fallacies and Pitfalls
• Cautionary Tale
• Sun T1 (“Niagara”) Multiprocessor
• Microprocessor Comparison
• Conclusion

Bus-based Coherence

• All of (a), (b), (c) done through broadcast on bus
– faulting processor sends out a “search”
– others respond to the search probe and take necessary

action

• Could do it in scalable network too
– broadcast to all processors, and let them respond

• Conceptually simple, but broadcast doesn’t
scale with p

– on bus, bus bandwidth doesn’t scale
– on scalable network, every fault leads to at least p network

transactions

• Scalable coherence:
– can have same cache states and state transition diagram
– different mechanisms to manage protocol

Scalable Approach: Directories

• Every memory block has associated directory
information

– keeps track of copies of cached blocks and their states
– on a miss, find directory entry, look it up, and communicate

only with the nodes that have copies if necessary
– in scalable networks, communication with directory and

copies is through network transactions

• Many alternatives for organizing directory
information

Basic Operation of Directory

• k processors
• With each cache-block in memory:

k presence-bits, 1 dirty-bit
• With each cache-block in cache:

1 valid bit, and 1 dirty (owner) bit• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by processor i:
• If dirty-bit OFF then { read from main memory; turn p[i] ON; }
• if dirty-bit ON then { recall line from dirty proc (cache state to

shared); update memory; turn dirty-bit OFF; turn p[i] ON;
supply recalled data to i;}

• Write to main memory by processor i:
• If dirty-bit OFF then { supply data to i; send invalidations to all

caches that have the block; turn dirty-bit ON; turn p[i] ON; ... }
• ...

2

Directory Protocol

• Similar to Snoopy Protocol: Three states
– Shared: ≥ 1 processors have data, memory up-to-date
– Uncached (no processor has it; not valid in any cache)
– Exclusive: 1 processor (owner) has data;

memory out-of-date

• In addition to cache state, must track which
processors have data when in the shared state
(usually bit vector, 1 if processor has copy)

• Keep it simple(r):
– Writes to non-exclusive data

⇒ write miss
– Processor blocks until access completes
– Assume messages received

and acted upon in order sent

Directory Protocol

• No bus and don’t want to broadcast:
– interconnect no longer single arbitration point
– all messages have explicit responses

• Terms: typically 3 processors involved
– Local node where a request originates
– Home node where the memory location

of an address resides
– Remote node has a copy of a cache

block, whether exclusive or shared

• Example messages on next slide:
P = processor number, A = address

Directory Protocol Messages (Fig 4.22)
Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

– Processor P reads data at address A;
make P a read sharer and request data

Write miss Local cache Home directory P, A
– Processor P has a write miss at address A;

make P the exclusive owner and request data
Invalidate Home directory Remote caches A

– Invalidate a shared copy at address A
Fetch Home directory Remote cache A

– Fetch the block at address A and send it to its home directory;
change the state of A in the remote cache to shared

Fetch/Invalidate Home directory Remote cache A
– Fetch the block at address A and send it to its home directory;

invalidate the block in the cache
Data value reply Home directory Local cache Data

– Return a data value from the home memory (read miss response)
Data write back Remote cache Home directory A, Data

– Write back a data value for address A (invalidate response)

State Transition Diagram for One Cache
Block in Directory Based System

• States identical to snoopy case;
transactions very similar

• Transitions caused by read misses, write
misses, invalidates, data fetch requests

• Generates read miss & write miss
message to home directory

• Write misses that were broadcast on the
bus for snooping ⇒ explicit invalidate &
data fetch requests

• Note: on a write, a cache block is bigger,
so need to read the full cache block

CPU -Cache State Machine

• State machine
for CPU requests
for each
memory block

• Invalid state
if in memory

Fetch/Invalidate
send Data Write Back message

to home directory

Invalidate

Invalid

Exclusive
(read/write)

CPU Read

CPU Read hit

Send Read Miss
message

CPU Write:
Send Write Miss
msg to home
directory

CPU Write: Send
Write Miss message
to home directory

CPU read hit
CPU write hit

Fetch: send Data Write Back
message to home directory

CPU read miss:
Send Read Miss

CPU write miss:
send Data Write Back message
and Write Miss to home directory

CPU read miss: send Data
Write Back message and
read miss to home directory

Shared
(read only)

State Transition Diagram for Directory

• Same states & structure as the transition
diagram for an individual cache

• 2 actions: update of directory state &
send messages to satisfy requests

• Tracks all copies of memory block
• Also indicates an action that updates the

sharing set, Sharers, as well as sending
a message

3

Directory State Machine
• State machine

for Directory
requests for each
memory block

• Uncached state
if in memory

Data Write Back:
Sharers = {}

(Write back block)

Uncached
Shared

(read only)

Exclusive
(read/write)

Read miss:
Sharers = {P}
send Data Value
Reply

Write Miss:
send Invalidate
to Sharers;
then Sharers = {P};
send Data Value
Reply msg

Write Miss:
Sharers = {P};
send Data
Value Reply
msg

Read miss:
Sharers += {P};
send Fetch;
send Data Value Reply
msg to remote cache
(Write back block)

Read miss:
Sharers += {P};
send Data Value Reply

Write Miss:
Sharers = {P};
send Fetch/Invalidate;
send Data Value Reply
msg to remote cache

Example Directory Protocol

• Message sent to directory causes two actions:
– Update the directory
– More messages to satisfy request

• Block is in Uncached state: the copy in memory is the
current value; only possible requests for that block are:

– Read miss: requesting processor sent data from memory &requestor
made only sharing node; state of block made Shared.

– Write miss: requesting processor is sent the value & becomes the
Sharing node. The block is made Exclusive to indicate that the only
valid copy is cached. Sharers indicates the identity of the owner.

• Block is Shared ⇒ the memory value is up-to-date:
– Read miss: requesting processor is sent back the data from memory &

requesting processor is added to the sharing set.
– Write miss: requesting processor is sent the value. All processors in

the set Sharers are sent invalidate messages, & Sharers is set to
identity of requesting processor. The state of the block is made
Exclusive.

Example Directory Protocol

• Block is Exclusive: current value of the block is held in
the cache of the processor identified by the set Sharers
(the owner) ⇒ three possible directory requests:

– Read miss: owner processor sent data fetch message, causing state of
block in owner’s cache to transition to Shared and causes owner to
send data to directory, where it is written to memory & sent back to
requesting processor.
Identity of requesting processor is added to set Sharers, which still
contains the identity of the processor that was the owner (since it still
has a readable copy). State is shared.

– Data write-back: owner processor is replacing the block and hence must
write it back, making memory copy up-to-date
(the home directory essentially becomes the owner), the block is now
Uncached, and the Sharer set is empty.

– Write miss: block has a new owner. A message is sent to old owner
causing the cache to send the value of the block to the directory from
which it is sent to the requesting processor, which becomes the new
owner. Sharers is set to identity of new owner, and state of block is
made Exclusive.

Example

P1 P2 Bus Directory Memor
step State Addr ValueStateAddr ValueActionProc. Addr Value Addr State {Procs}Value

P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

4

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. P1,P2} 10

10
10

P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1

Write BackWrite Back

A1

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block
(but different memory block addresses A1 ≠ A2)

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0

WrBk P2 A1 20 A1 Unca. {} 20
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1

Implementing a Directory

• We assume operations atomic, but they are not;
reality is much harder; must avoid deadlock
when run out of buffers in network (see
Appendix E)

• Optimizations:
– read miss or write miss in Exclusive: send data directly to

requestor from owner vs. 1st to memory and then from
memory to requestor

Basic Directory Transactions

P

A M/D

C

P

A M/D

C

P

A M/D

C

Read request
to directory

Reply with
owner identity

Read req.
to owner

Data
Reply

Revision message
to directory

1.

2.

3.

4a.

4b.

P

A M/D

C
P

A M/D

C

P

A M/D

C

RdEx request
to directory

Reply with
sharers identity

Inval. req.
to sharer

1.

2.

P

A M/D

C

Inval. req.
to sharer

Inval. ack

Inval. ack

3a. 3b.

4a. 4b.

Requestor

Node with
dirty copy

Directory node
for block

Requestor

Directory node

Sharer Sharer

(a) Read miss to a block in dirty state (b) Write miss to a block with two sharers

Example Directory Protocol (1st Read)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

ld vA -> rd pA

Read pA

R/reply

R/req

P1: pA

S

S

5

Example Directory Protocol (Read Share)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

ld vA -> rd pA

R/reply

R/req

P1: pA

ld vA -> rd pA

P2: pA

R/req
R/_

R/_

R/_S

S

S

Example Directory Protocol (Wr to shared)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

st vA -> wr pA

R/reply

R/req

P1: pA

P2: pA

R/req

W/req E

R/_

R/_

R/_

Invalidate pARead_to_update pA

Inv ACK

RX/invalidate&reply

S

S

S

D

E

reply xD(pA)

W/req E
W/_

Inv/_

EX

Example Directory Protocol (Wr to Ex)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrlR/reply

R/req

P1: pA

st vA -> wr pA

R/req

W/req E

R/_

R/_

R/_

Reply xD(pA)Write_back pA

Read_toUpdate pA

RX/invalidate&reply

D

E

Inv pA

W/req E
W/_

Inv/_ Inv/_

W/req EW/_

I

E

W/req E

RU/_

A Popular Middle Ground

• Two-level “hierarchy”
• Individual nodes are multiprocessors, connected

non-hierarchically
– e.g. mesh of SMPs

• Coherence across nodes is directory-based
– directory keeps track of nodes, not individual processors

• Coherence within nodes is snooping or directory
– orthogonal, but needs a good interface of functionality

• SMP on a chip directory + snoop?

Synchronization

• Why Synchronize? Need to know when it is safe for
different processes to use shared data

• Issues for Synchronization:
– Uninterruptable instruction to fetch and update memory (atomic

operation);
– User level synchronization operation using this primitive;
– For large scale MPs, synchronization can be a bottleneck;

techniques to reduce contention and latency of synchronization

Uninterruptable Instruction to Fetch
and Update Memory

• Atomic exchange: interchange a value in a register for
a value in memory

0 ⇒ synchronization variable is free
1 ⇒ synchronization variable is locked and unavailable
– Set register to 1 & swap
– New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

– Key is that exchange operation is indivisible

• Test-and-set: tests a value and sets it if the value
passes the test

• Fetch-and-increment: it returns the value of a memory
location and atomically increments it

– 0 ⇒ synchronization variable is free

6

Uninterruptable Instruction to Fetch
and Update Memory

• Hard to have read & write in 1 instruction: use 2 instead
• Load linked (or load locked) + store conditional

– Load linked returns the initial value
– Store conditional returns 1 if it succeeds (no other store to same

memory location since preceding load) and 0 otherwise

• Example doing atomic swap with LL & SC:
try: mov R3,R4 ; mov exchange value

ll R2,0(R1) ; load linked
sc R3,0(R1) ; store conditional
beqz R3,try ; branch store fails (R3 = 0)
mov R4,R2 ; put load value in R4

• Example doing fetch & increment with LL & SC:
try: ll R2,0(R1) ; load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional
beqz R2,try ; branch store fails (R2 = 0)

User Level Synchronization—
Operation Using this Primitive

• Spin locks: processor continuously tries to acquire,
spinning around a loop trying to get the lock

li R2,#1
lockit: exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?

• What about MP with cache coherency?
– Want to spin on cache copy to avoid full memory latency
– Likely to get cache hits for such variables

• Problem: exchange includes a write, which invalidates all
other copies; this generates considerable bus traffic

• Solution: start by simply repeatedly reading the variable;
when it changes, then try exchange (“test and test&set”):
try: li R2,#1
lockit: lw R3,0(R1) ;load var

bnez R3,lockit ;≠ 0 ⇒ not free ⇒ spin
exch R2,0(R1) ;atomic exchange
bnez R2,try ;already locked?

Another MP Issue:
Memory Consistency Models

• What is consistency? When must a processor see the
new value? e.g., seems that
P1: A = 0; P2: B = 0;

.....
A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...

• Impossible for both if statements L1 & L2 to be true?
– What if write invalidate is delayed & processor continues?

• Memory consistency models:
what are the rules for such cases?

• Sequential consistency: result of any execution is the
same as if the accesses of each processor were kept in
order and the accesses among different processors
were interleaved ⇒ assignments before ifs above

– SC: delay all memory accesses until all invalidates done

Memory Consistency Model

• Schemes faster execution to sequential consistency
• Not an issue for most programs; they are synchronized

– A program is synchronized if all access to shared data are ordered by
synchronization operations

write (x)
...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

• Only those programs willing to be nondeterministic are
not synchronized: “data race”: outcome f(proc. speed)

• Several Relaxed Models for Memory Consistency since
most programs are synchronized; characterized by their
attitude towards: RAR, WAR, RAW, WAW
to different addresses

Relaxed Consistency Models: The Basics

• Key idea: allow reads and writes to complete out of order, but
to use synchronization operations to enforce ordering, so that
a synchronized program behaves as if the processor were
sequentially consistent

– By relaxing orderings, may obtain performance advantages
– Also specifies range of legal compiler optimizations on shared data
– Unless synchronization points are clearly defined and programs are

synchronized, compiler could not interchange read and write of 2 shared
data items because might affect the semantics of the program

• 3 major sets of relaxed orderings:
1. W→R ordering (all writes completed before next read)

• Because retains ordering among writes, many programs that
operate under sequential consistency operate under this
model, without additional synchronization. Called processor
consistency

2. W → W ordering (all writes completed before next write)
3. R → W and R → R orderings, a variety of models depending on ordering

restrictions and how synchronization operations enforce ordering
• Many complexities in relaxed consistency models; defining

precisely what it means for a write to complete; deciding when
processors can see values that it has written

Mark Hill observation

Instead, use speculation to hide latency from
strict consistency model
– If processor receives invalidation for memory reference

before it is committed, processor uses speculation recovery
to back out computation and restart with invalidated
memory reference

1. Aggressive implementation of sequential
consistency or processor consistency gains
most of advantage of more relaxed models

2. Implementation adds little to implementation
cost of speculative processor

3. Allows the programmer to reason using the
simpler programming models

7

Cross Cutting Issues: Performance
Measurement of Parallel Processors

• Performance: how well scale as increase Proc
• Speedup fixed as well as scaleup of problem

– Assume benchmark of size n on p processors makes sense: how
scale benchmark to run on m * p processors?

– Memory-constrained scaling: keeping the amount of memory
used per processor constant

– Time-constrained scaling: keeping total execution time,
assuming perfect speedup, constant

• Example: 1 hour on 10 P, time ~ O(n3), 100 P?
– Time-constrained scaling: 1 hour ⇒ 101/3n⇒ 2.15n scale up
– Memory-constrained scaling: 10n size ⇒ 103/10 ⇒ 100X or 100

hours! 10X processors for 100X longer???
– Need to know application well to scale: # iterations, error

tolerance

Fallacy: Amdahl’s Law doesn’t apply
to parallel computers

• Since some part linear, can’t go 100X?
• 1987 claim to break it, since 1000X speedup

– researchers scaled the benchmark to have a data set size
that is 1000 times larger and compared the uniprocessor
and parallel execution times of the scaled benchmark. For
this particular algorithm the sequential portion of the
program was constant independent of the size of the input,
and the rest was fully parallel—hence, linear speedup with
1000 processors

• Usually sequential scale with data too

Fallacy: Linear speedups are needed to
make multiprocessors cost-effective

• Mark Hill & David Wood 1995 study
• Compare costs SGI uniprocessor and MP
• Uniprocessor = $38,400 + $100 * MB
• MP = $81,600 + $20,000 * P + $100 * MB
• 1 GB, uni = $138k v. mp = $181k + $20k * P
• What speedup for better MP cost performance?
• 8 proc = $341k; $341k/138k ⇒ 2.5X
• 16 proc ⇒ need only 3.6X, or 25% linear speedup
• Even if need some more memory for MP, not linear

Fallacy: Scalability is almost free

• “build scalability into a multiprocessor and then
simply offer the multiprocessor at any point on
the scale from a small number of processors to a
large number”

• Cray T3E scales to 2048 CPUs vs. 4 CPU Alpha
– At 128 CPUs, it delivers a peak bisection BW of 38.4 GB/s, or

300 MB/s per CPU (uses Alpha microprocessor)
– Compaq Alphaserver ES40 up to 4 CPUs and has 5.6 GB/s of

interconnect BW, or 1400 MB/s per CPU

• Build apps that scale requires significantly more
attention to load balance, locality, potential
contention, and serial (or partly parallel) portions
of program. 10X is very hard

Pitfall: Not developing SW to take advantage
(or optimize for) multiprocessor architecture

• SGI OS protects the page table data structure
with a single lock, assuming that page
allocation is infrequent

• Suppose a program uses a large number of
pages that are initialized at start-up

• Program parallelized so that multiple processes
allocate the pages

• But page allocation requires lock of page table
data structure, so even an OS kernel that allows
multiple threads will be serialized at
initialization (even if separate processes)

Answers to 1995 Questions about Parallelism

In the 1995 edition of this text, we concluded the
chapter with a discussion of two then current
controversial issues.

1. What architecture would very large scale,
microprocessor-based multiprocessors use?

2. What was the role for multiprocessing in the
future of microprocessor architecture?

Answer 1. Large scale multiprocessors did not
become a major and growing market ⇒ clusters
of single microprocessors or moderate SMPs

Answer 2. Astonishingly clear. For at least for the
next 5 years, future MPU performance comes
from the exploitation of TLP through multicore
processors vs. exploiting more ILP

8

Cautionary Tale

• Key to success of birth and development of ILP in
1980s and 1990s was software in the form of
optimizing compilers that could exploit ILP

• Similarly, successful exploitation of TLP will
depend as much on the development of suitable
software systems as it will on the contributions of
computer architects

• Given the slow progress on parallel software in the
past 30+ years, it is likely that exploiting TLP
broadly will remain challenging for years to come

T1 (“Niagara”)

• Target: Commercial server applications
– High thread level parallelism (TLP)

» Large numbers of parallel client requests
– Low instruction level parallelism (ILP)

» High cache miss rates
» Many unpredictable branches
» Frequent load-load dependencies

• Power, cooling, and space are major
concerns for data centers

• Metric: Performance/Watt/Sq. Ft.
• Approach: Multicore, Fine-grain

multithreading, Simple pipeline, Small
L1 caches, Shared L2

T1 Architecture

• Also ships with 6 or 4 processors

T1 pipeline

• Single issue, in-order, 6-deep pipeline: F, S, D, E, M, W
• 3 clock delays for loads & branches.
• Shared units:

– L1 $, L2 $
– TLB
– X units
– pipe registers

• Hazards:
– Data
– Structural

T1 Fine-Grained Multithreading

• Each core supports four threads and has its own
level one caches (16KB for instructions and 8 KB
for data)

• Switching to a new thread on each clock cycle
• Idle threads are bypassed in the scheduling

– Waiting due to a pipeline delay or cache miss
– Processor is idle only when all 4 threads are idle or stalled

• Both loads and branches incur a 3 cycle delay
that can only be hidden by other threads

• A single set of floating point functional units is
shared by all 8 cores

– floating point performance was not a focus for T1

Memory, Clock, Power

• 16 KB 4 way set assoc. I$/ core
• 8 KB 4 way set assoc. D$/ core
• 3MB 12 way set assoc. L2 $ shared

– 4 x 750KB independent banks
– crossbar switch to connect
– 2 cycle throughput, 8 cycle latency
– Direct link to DRAM & Jbus
– Manages cache coherence for the 8 cores
– CAM based directory

• Coherency is enforced among the L1 caches by a directory
associated with each L2 cache block

• Used to track which L1 caches have copies of an L2 block
• By associating each L2 with a particular memory bank and

enforcing the subset property, T1 can place the directory at L2
rather than at the memory, which reduces the directory
overhead

• L1 data cache is write-through, only invalidation messages are
required; the data can always be retrieved from the L2 cache

• 1.2 GHz at ≈72W typical, 79W peak power consumption

Write through
• allocate LD
• no-allocate ST

9

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

1.5 MB;
32B

1.5 MB;
64B

3 MB;
32B

3 MB;
64B

6 MB;
32B

6 MB;
64B

L2
 M

is
s

ra
te

TPC-C

SPECJBB

Miss Rates: L2 Cache Size, Block Size

T1

0

20

40

60

80

100

120

140

160

180

200

1.5 MB; 32B 1.5 MB; 64B 3 MB; 32B 3 MB; 64B 6 MB; 32B 6 MB; 64B

L2
 M

is
s

la
te

nc
y

TPC-C
SPECJBB

Miss Latency: L2 Cache Size, Block Size

T1

CPI Breakdown of Performance

4.80.21 1.65 6.60 SPECWeb99

5.70.18 1.40 5.60 SPECJBB

4.40.23 1.80 7.20 TPC-C

Effective
IPC for
8 cores

Effective
CPI for
8 cores

Per
core
CPI

Per
Thread

CPIBenchmark

Not Ready Breakdown

• TPC-C - store buffer full is largest contributor
• SPEC-JBB - atomic instructions are largest contributor
• SPECWeb99 - both factors contribute

0%

20%

40%

60%

80%

100%

TPC-C SPECJBB SPECWeb99

Fr
ac

tio
n

of
 c

yc
le

s
no

t r
ea

dy

Other

Pipeline delay

L2 miss

L1 D miss

L1 I miss

Performance: Benchmarks + Sun Marketing

14,74016,061
NotesBench (Lotus Notes

performance)

4,850 (2850 with two dual-core
Xeon processors)7,88114,001

SPECweb2005 (Web server
performance)

24,208 (SC1425 with dual single-
core Xeon)61,78963,378

SPECjbb2005 (Java server software)
business operations/ sec

Dell PowerEdgeIBM p5-550 with 2
dual-core Power5 chips

Sun Fire
T2000Benchmark\Architecture

Space, Watts, and Performance

HP marketing view of T1 Niagara

1. Sun’s radical UltraSPARC T1 chip is made up of individual
cores that have much slower single thread performance when
compared to the higher performing cores of the Intel Xeon,
Itanium, AMD Opteron or even classic UltraSPARC
processors.

2. The Sun Fire T2000 has poor floating-point performance, by
Sun’s own admission.

3. The Sun Fire T2000 does not support commerical Linux or
Windows® and requires a lock-in to Sun and Solaris.

4. The UltraSPARC T1, aka CoolThreads, is new and unproven,
having just been introduced in December 2005.

5. In January 2006, a well-known financial analyst downgraded
Sun on concerns over the UltraSPARC T1’s limitation to only
the Solaris operating system, unique requirements, and
longer adoption cycle, among other things. [10]

• Where is the compelling value to warrant taking such a risk?

• http://h71028.www7.hp.com/ERC/cache/280124-0-0-0-121.html

10

Microprocessor Comparison

4331Instruction issues
/ clock / core

12513011079Power (W)
389206199379Die size (mm2)
276230233300Transistor count (M)
1.93.22.41.2Clock rate (GHz)

1.9 MB
shared

1MB/
core

1MB /
core

3 MB
sharedL2 per core/shared

64/32
12K
uops/16 64/6416/8L1 I/D in KB per core

SMTSMTNo
Fine-
grainedMultithreading

8668Peak instr. issues
/ chip

2228Cores
IBM Power 5Pentium DOpteronSUN T1Processor

Performance Relative to Pentium D

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

SPECIntRate SPECFPRate SPECJBB05 SPECWeb05 TPC-like

P
er

fo
rm

an
ce

 re
la

tiv
e

to
 P

en
tiu

m
 D

+Power5 Opteron Sun T1

Performance/mm2, Performance/Watt

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

SPECInt
Rate

/m
m^2

SPECInt
Rate

/W
att

SPECFPRate
/m

m^2

SPECFP
Rate

/W
att

SPECJB
B05

/m
m^2

SPECJB
B05/W

att

TPC-C
/m

m^2

TP
C-C

/W
att

Ef
fic

ie
nc

y
no

rm
al

iz
ed

 to
 P

en
tiu

m
 D

+Power5 Opteron Sun T1

Niagara 2

• Improve performance by increasing threads
supported per chip from 32 to 64

– 8 cores * 8 threads per core
• Floating-point unit for each core, not for each

chip
• Hardware support for encryption standards EAS,

3DES, and elliptical-curve cryptography
• Niagara 2 will add a number of 8x PCI Express

interfaces directly into the chip in addition to
integrated 10Gigabit Ethernet XAU interfaces and
Gigabit Ethernet ports.

• Integrated memory controllers will shift support
from DDR2 to FB-DIMMs and double the
maximum amount of system memory.

Kevin Krewell
“Sun's Niagara Begins CMT Flood -

The Sun UltraSPARC T1 Processor Released”
Microprocessor Report, January 3, 2006

And in Conclusion …

• Caches contain all information on state of
cached memory blocks

• Snooping cache over shared medium for smaller
MP by invalidating other cached copies on write

• Sharing cached data ⇒ Coherence (values
returned by a read), Consistency (when a written
value will be returned by a read)

• Snooping and Directory Protocols similar; bus
makes snooping easier because of broadcast
(snooping ⇒ uniform memory access)

• Directory has extra data structure to keep track
of state of all cache blocks

• Distributing directory
⇒ scalable shared address multiprocessor
⇒ Cache coherent, Non uniform memory access

Reading

• This lecture:
– chapter 4: 4.4-4.10 rest of Multiprocessors and TLP

• Next lecture:
– chapter 5: Memory Hierarchy Design

