Algorithms for Classification:

The Basic Methods

Outline

Simplicity first: 1R

Naïve Bayes

Classification

- **Task: Given a set of pre-classified examples,** build a model or *classifier* to classify new cases.
- Supervised learning: classes are known for the examples used to build the classifier.
- A classifier can be a set of rules, a decision tree, a neural network, etc.
- **Typical applications: credit approval, direct** marketing, fraud detection, medical diagnosis,

……

- Simple algorithms often work very well!
- **There are many kinds of simple structure, eg:**
	- One attribute does all the work
	- All attributes contribute equally & independently
	- **A** weighted linear combination might do
	- **Instance-based: use a few prototypes**
	- **Use simple logical rules**
- **Success of method depends on the domain**

Inferring rudimentary rules

- **1R: learns a 1-level decision tree**
	- I.e., rules that all test one particular attribute
- **Basic version**
	- One branch for each value
	- **Each branch assigns most frequent class**
	- **E** Error rate: proportion of instances that don't belong to the majority class of their corresponding branch
	- **E** Choose attribute with lowest error rate

(assumes nominal attributes)

Pseudo-code for 1R

For each attribute,

For each value of the attribute, make a rule as follows:

count how often each class appears

find the most frequent class

make the rule assign that class to this attribute-value

Calculate the error rate of the rules

Choose the rules with the smallest error rate

Note: "missing" is treated as a separate attribute value

Evaluating the weather attributes

 $*$ indicates a tie

Dealing with numeric attributes

- **Discretize numeric attributes**
- **Divide each attribute's range into intervals**
	- **Sort instances according to attribute's values**
	- **Place breakpoints where the class changes** (the majority class)

The problem of overfitting

- **This procedure is very sensitive to noise**
	- One instance with an incorrect class label will probably produce a separate interval
- Also: *time stamp* attribute will have zero errors
- **Simple solution:** enforce minimum number of instances in majority class per interval

Discretization example

Final result for temperature attribute

With overfitting avoidance

Resulting rule set:

Discussion of 1R

- **1R was described in a paper by Holte (1993)**
	- Contains an experimental evaluation on 16 datasets (using cross-validation so that results were representative of performance on future data)
	- **Minimum number of instances was set to 6 after some** experimentation
	- **1R's simple rules performed not much worse than much** more complex decision trees
- **Simplicity first pays off!**

Very Simple Classification Rules Perform Well on Most Commonly Used Datasets

Robert C. Holte, Computer Science Department, University of Ottawa

witten&eibe

- **•** "Opposite" of 1R: use all the attributes
- **Two assumptions: Attributes are**
	- **Example 1** equally important
	- **statistically independent (given the class value)**
		- I.e., knowing the value of one attribute says nothing about the value of another (if the class is known)
- Independence assumption is almost never correct!
- But … this scheme works well in practice

Probabilities for weather data

Probabilities for weather data

A new day: Likelihood of the two classes

For "yes" = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$

For "no" = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Conversion into a probability by normalization:

 $P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205$

 $P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795$

Bayes's rule

Probability of event H given evidence E :

$$
Pr[H | E] = \frac{Pr[E | H]Pr[H]}{Pr[E]}
$$

- A *priori* probability of H :
	- **Probability of event** *before* **evidence is seen**
- A posteriori probability of H :
	- **Probability of event after evidence is seen**

from Bayes "Essay towards solving a problem in the doctrine of chances" (1763)

Thomas Bayes

Born: 1702 in London, England Died: 1761 in Tunbridge Wells, Kent, England

 $Pr[H]$

 $Pr[H|E]$

witten&eibe

Naïve Bayes for classification

- **Classification learning: what's the probability of the class** given an instance?
	- Evidence $E =$ instance
	- Event $H =$ class value for instance
- Naïve assumption: evidence splits into parts (i.e. attributes) that are independent

$$
Pr[H | E] = \frac{Pr[E_1 | H]Pr[E_1 | H]...Pr[E_n | H]Pr[H]}{Pr[E]}
$$

Weather data example

The "zero-frequency problem"

• What if an attribute value doesn't occur with every class value?

 $(e.g. "Humidity = high" for class "yes")$

- Probability will be zero! $Pr[Humidity = High | yes] = 0$
- A *posteriori* probability will also be zero! $Pr[yes|E] = 0$ (No matter how likely the other values are!)
- **Remedy: add 1 to the count for every attribute value-class** combination (Laplace estimator)
- **Result: probabilities will never be zero!** (also: stabilizes probability estimates)

*Modified probability estimates

- **IF 1.5 In some cases adding a constant different from 1 might** be more appropriate
- **Example: attribute outlook for class yes**

$$
\frac{2 + \mu/3}{9 + \mu} \qquad \qquad \frac{4 + \mu/3}{9 + \mu} \qquad \qquad \frac{3 + \mu/3}{9 + \mu}
$$

Summary \qquad Overcast \qquad Rainy

• Weights don't need to be equal (but they must sum to 1)

$$
\frac{2 + \mu p_1}{9 + \mu} \qquad \frac{4 + \mu p_2}{9 + \mu} \qquad \frac{3 + \mu p_3}{9 + \mu}
$$

Missing values

- **Training: instance is not included in** frequency count for attribute value-class combination
- Classification: attribute will be omitted from calculation
- \blacksquare Example:

\nLikelihood of "yes" =
$$
3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238
$$

\nLikelihood of "no" = $1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343$
\n $P("yes") = 0.0238 / (0.0238 + 0.0343) = 41\%$
\n $P("no") = 0.0343 / (0.0238 + 0.0343) = 59\%$ \n

Numeric attributes

- Usual assumption: attributes have a normal or Gaussian probability distribution (given the class)
- The *probability density function* for the normal distribution is defined by two parameters:

Sample mean μ

$$
\mu = \frac{1}{n} \sum_{i=1}^{n} x_i
$$

 \blacksquare Standard deviation σ

$$
\sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2
$$

Then the density function $f(x)$ **is**

$$
f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}
$$

Karl Gauss, 1777-1855 great German mathematician

Statistics for weather data

Example density value:

$$
f(\text{temperature} = 66 \mid \text{yes}) = \frac{1}{\sqrt{2\pi} \cdot 6.2} e^{-\frac{(66-73)^2}{2 \cdot 6.2^2}} = 0.0340
$$

Classifying a new day

A new day:

Likelihood of "yes" = $2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036$ Likelihood of "no" = $3/5 \times 0.0291 \times 0.0380 \times 3/5 \times 5/14 = 0.000136$ $P("yes") = 0.000036 / (0.000036 + 0.000136) = 20.9%$ $P("no") = 0.000136 / (0.000036 + 0.000136) = 79.1\%$

• Missing values during training are not included in calculation of mean and standard deviation

*Probability densities

Relationship between probability and density:

$$
\Pr[c - \frac{\varepsilon}{2} < x < c + \frac{\varepsilon}{2}] \approx \varepsilon \cdot f(c)
$$

- But: this doesn't change calculation of a posteriori probabilities because ε cancels out
- **Exact relationship:**

$$
\Pr[a \le x \le b] = \int_{a}^{b} f(t)dt
$$

Naïve Bayes: discussion

- **Naïve Bayes works surprisingly well (even if** independence assumption is clearly violated)
- **Why? Because classification doesn't require** accurate probability estimates as long as maximum probability is assigned to correct class
- **However: adding too many redundant attributes** will cause problems (e.g. identical attributes)
- Note also: many numeric attributes are not normally distributed (\rightarrow kernel density estimators)

Naïve Bayes Extensions

- **-** Improvements:
	- \blacksquare select best attributes (e.g. with greedy search)
	- **•** often works as well or better with just a fraction of all attributes
- **Bayesian Networks**

Summary

OneR – uses rules based on just one attribute

- Naïve Bayes use all attributes and Bayes rules to estimate probability of the class given an instance.
- Simple methods frequently work well, but …
	- **Complex methods can be better (as we will see)**