Algorithms for Classification:

The Basic Methods

Outline

Simplicity first: 1R

Naïve Bayes

Classification

- Task: Given a set of pre-classified examples, build a model or *classifier* to classify new cases.
- Supervised learning: classes are known for the examples used to build the classifier.
- A classifier can be a set of rules, a decision tree, a neural network, etc.
- Typical applications: credit approval, direct marketing, fraud detection, medical diagnosis,

.....

- Simple algorithms often work very well!
- There are many kinds of simple structure, eg:
 - One attribute does all the work
 - All attributes contribute equally & independently
 - A weighted linear combination might do
 - Instance-based: use a few prototypes
 - Use simple logical rules
- Success of method depends on the domain

Inferring rudimentary rules

- 1R: learns a 1-level decision tree
 - I.e., rules that all test one particular attribute
- Basic version
 - One branch for each value
 - Each branch assigns most frequent class
 - Error rate: proportion of instances that don't belong to the majority class of their corresponding branch
 - Choose attribute with lowest error rate

(assumes nominal attributes)

Pseudo-code for 1R

For each attribute,

For each value of the attribute, make a rule as follows:

count how often each class appears

find the most frequent class

make the rule assign that class to this attribute-value

Calculate the error rate of the rules

Choose the rules with the smallest error rate

Note: "missing" is treated as a separate attribute value

Evaluating the weather attributes

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Attribute	Rules	Errors	Total errors
Outlook	Sunny → No	2/5	4/14
	Overcast \rightarrow Yes	0/4	
	Rainy \rightarrow Yes	2/5	
Тетр	Hot \rightarrow No*	2/4	5/14
	$Mild \rightarrow Yes$	2/6	
	Cool \rightarrow Yes	1/4	
Humidity	High \rightarrow No	3/7	4/14
	Normal \rightarrow Yes	1/7	
Windy	False \rightarrow Yes	2/8	5/14
	True \rightarrow No*	3/6	

* indicates a tie

Dealing with numeric attributes

- Discretize numeric attributes
- Divide each attribute's range into intervals
 - Sort instances according to attribute's values
 - Place breakpoints where the class changes (the majority class)

	This	s mir	nin	Out	look		Т	emper	atu	re	Hu	mid	ity	W	'indy		Play	
				Su	nny			85	5			85		F	alse		No	
Exa	ampl	e: t	er	Su	nny			80)			90		Т	rue		No	
				Over	cast			83	5			86		E	alse		Yes	
				Ra	iny			75	5			80		E	alse		Yes	
64	65	68	69	70	7	71	72	72		75	75		80	81	83	85		
Yes	No	Yes	Yes	Yes	N	io i	No	Yes	Ι	Yes	Yes	Ι	No	Yes	Yes	No		

The problem of overfitting

- This procedure is very sensitive to noise
 - One instance with an incorrect class label will probably produce a separate interval
- Also: *time stamp* attribute will have zero errors
- Simple solution: enforce minimum number of instances in majority class per interval

Discretization example

•	Exar	nple	(wi	th r	nin	= (3):						
64	65	68	69	70	71	72	72	75	75	80	81	83	85
Yes	s 🖗 No	🖗 Yes	Yes	Yes	No	No	Yes	🖗 Yes	Yes	No 🖗	Yes	Yes 🖗	No

• Final result for temperature attribute

04	05	08	69	70	/1	12	12	/5	/5	80	81	83	δC
Yes	No	Yes	Yes	Yes	🖤 No	No	Yes	Yes	Yes	No	Yes	Yes	No

With overfitting avoidance

Resulting rule set:

Attribute	Rules	Errors	Total errors
Outlook	Sunny → No	2/5	4/14
	Overcast → Yes	0/4	
	Rainy → Yes	2/5	
Temperature	≤ 77.5 → Yes	3/10	5/14
	> 77.5 → No*	2/4	
Humidity	≤ 82.5 → Yes	1/7	3/14
	> 82.5 and ≤ 95.5 \rightarrow No	2/6	
	> 95.5 → Yes	0/1	
Windy	False \rightarrow Yes	2/8	5/14
	True \rightarrow No*	3/6	

Discussion of 1R

- 1R was described in a paper by Holte (1993)
 - Contains an experimental evaluation on 16 datasets (using *cross-validation* so that results were representative of performance on future data)
 - Minimum number of instances was set to 6 after some experimentation
 - 1R's simple rules performed not much worse than much more complex decision trees
- Simplicity first pays off!

Very Simple Classification Rules Perform Well on Most Commonly Used Datasets

Robert C. Holte, Computer Science Department, University of Ottawa

witten&eibe

- "Opposite" of 1R: use all the attributes
- Two assumptions: Attributes are
 - equally important
 - statistically independent (given the class value)
 - I.e., knowing the value of one attribute says nothing about the value of another (if the class is known)
- Independence assumption is almost never correct!
- But ... this scheme works well in practice

Probabilities for weather data

Out	tlook		Temp	eratur	e	Hur	nidity			Windy		Pla	iy
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5		Outlo	ok	Temp	Humidity	Wind	ly Play	
							Sunny	/	Hot	High High	False	e No No	
							Overo	ast	Hot	High	False	e Yes	
							Rainy	,	Mild	High	False	e Yes	
							Rainy	,	Cool	Normal	False	e Yes	
							Rainy	, 	Cool	Normal	True	No	
							Sunny	ast v	Mild	Normai High	False	res No	
							Sunny	, ,	Cool	Normal	False	Yes	
							Rainy	,	Mild	Normal	False	e Yes	
							Sunny	/	Mild	Normal	True	Yes	
							Overo	ast	Mild	High	True	Yes	
							Overo	ast	Hot Mild	Normal High	False	e Yes No	

Probabilities for weather data

Out	tlook		Temperature			Hu	midity			Windy		Play	
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

• A new day:

Likelihood of the two classes

For "yes" = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$

For "no" = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Conversion into a probability by normalization:

P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205

P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

Bayes's rule

Probability of event *H* given evidence *E* :

$$\Pr[H \mid E] = \frac{\Pr[E \mid H]\Pr[H]}{\Pr[E]}$$

- *A priori* probability of *H* :
 - Probability of event *before* evidence is seen
- A posteriori probability of H :
 - Probability of event *after* evidence is seen

from Bayes "Essay towards solving a problem in the doctrine of chances" (1763)

Thomas Bayes

Born:1702 in London, EnglandDied:1761 in Tunbridge Wells, Kent, England

 $\Pr[H]$

 $\Pr[H \mid E]$

witten&eibe

Naïve Bayes for classification

- Classification learning: what's the probability of the class given an instance?
 - Evidence *E* = instance
 - Event *H* = class value for instance
- Naïve assumption: evidence splits into parts (i.e. attributes) that are *independent*

$$\Pr[H \mid E] = \frac{\Pr[E_1 \mid H]\Pr[E_1 \mid H] \dots \Pr[E_n \mid H]\Pr[H]}{\Pr[E]}$$

Weather data example

The "zero-frequency problem"

What if an attribute value doesn't occur with every class value?

(e.g. "Humidity = high" for class "yes")

- Probability will be zero! Pr[Humidity = High| yes] = 0
- *A posteriori* probability will also be zero! (No matter how likely the other values are!) Pr[yes | E] = 0
- Remedy: add 1 to the count for every attribute value-class combination (*Laplace estimator*)
- Result: probabilities will never be zero! (also: stabilizes probability estimates)

*Modified probability estimates

- In some cases adding a constant different from 1 might be more appropriate
- Example: attribute *outlook* for class *yes*

$$\frac{2 + \mu/3}{9 + \mu} = \frac{4 + \mu/3}{9 + \mu} = \frac{3 + \mu/3}{9 + \mu}$$

Sunny Overcast Rainy

 Weights don't need to be equal (but they must sum to 1)

$$\frac{2 + \mu p_1}{9 + \mu} \qquad \frac{4 + \mu p_2}{9 + \mu} \qquad \frac{3 + \mu p_3}{9 + \mu}$$

Missing values

- Training: instance is not included in frequency count for attribute value-class combination
- Classification: attribute will be omitted from calculation
- Example:

Outlook	Temp.	Humidity	Windy	Play
?	Cool	High	True	?

Likelihood of "yes" =
$$3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238$$

Likelihood of "no" = $1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343$
P("yes") = $0.0238 / (0.0238 + 0.0343) = 41\%$
P("no") = $0.0343 / (0.0238 + 0.0343) = 59\%$

Numeric attributes

- Usual assumption: attributes have a *normal* or *Gaussian* probability distribution (given the class)
- The probability density function for the normal distribution is defined by two parameters:

Sample mean μ

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Standard deviation σ

$$\sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2$$

Then the density function *f*(*x*) *is*

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Karl Gauss, 1777-1855 great German mathematician

Statistics for weather data

Out	look		Tempera	ature	Humid	lity		Windy		Pl	ay
	Yes	No	Yes	No	Yes	No		Yes	No	Yes	No
Sunny	2	3	64, 68,	65, 71,	65, 70,	70, 85,	False	6	2	9	5
Overcast	4	0	69, 70,	72, 80,	70, 75,	90, 91,	True	3	3		
Rainy	3	2	72,	85,	80,	95,					
Sunny	2/9	3/5	μ =73	μ =75	μ =79	μ = 86	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	<i>σ</i> =6.2	<i>σ</i> =7.9	<i>σ</i> =10.2	<i>σ</i> =9.7	True	3/9	3/5		
Rainy	3/9	2/5									

Example density value:

$$f(temperature = 66 \mid yes) = \frac{1}{\sqrt{2\pi}6.2}e^{-\frac{(66-73)^2}{2*6.2^2}} = 0.0340$$

Classifying a new day

• A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?
•				

Likelihood of "yes" = $2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036$ Likelihood of "no" = $3/5 \times 0.0291 \times 0.0380 \times 3/5 \times 5/14 = 0.000136$ P("yes") = 0.000036 / (0.000036 + 0.000136) = 20.9%P("no") = 0.000136 / (0.000036 + 0.000136) = 79.1%

 Missing values during training are not included in calculation of mean and standard deviation

*Probability densities

Relationship between probability and density:

$$\Pr[c - \frac{\varepsilon}{2} < x < c + \frac{\varepsilon}{2}] \approx \varepsilon * f(c)$$

- But: this doesn't change calculation of *a posteriori* probabilities because ε cancels out
- Exact relationship:

$$\Pr[a \le x \le b] = \int_{a}^{b} f(t)dt$$

Naïve Bayes: discussion

- Naïve Bayes works surprisingly well (even if independence assumption is clearly violated)
- Why? Because classification doesn't require accurate probability estimates as long as maximum probability is assigned to correct class
- However: adding too many redundant attributes will cause problems (e.g. identical attributes)
- Note also: many numeric attributes are not normally distributed (→ kernel density estimators)

Naïve Bayes Extensions

- Improvements:
 - select best attributes (e.g. with greedy search)
 - often works as well or better with just a fraction of all attributes
- Bayesian Networks

Summary

OneR – uses rules based on just one attribute

- Naïve Bayes use all attributes and Bayes rules to estimate probability of the class given an instance.
- Simple methods frequently work well, but ...
 - Complex methods can be better (as we will see)