
RE-UML Luuk Groenewegen, 2007, BachCS UML.1

6. UML 2.0: 13 sublanguages

UML presents the state-of-the-art in SE

with respect to combining

specification

understanding

visualization

analysis

of (software) systems

and with respect to additionally combining

support for

construction

documentation

of software systems

RE-UML Luuk Groenewegen, 2007, BachCS UML.2

to that aim, already UML 1.4 / 1.5 had

9 diagram languages

as visual sublanguages:

divided into

4 static diagram languages

5 dynamic diagram languages

RE-UML Luuk Groenewegen, 2007, BachCS UML.3

UML 2.0 even has

13 diagram languages

as visual sublanguages

divided into

6 static diagram languages

7 dynamic diagram languages

RE-UML Luuk Groenewegen, 2007, BachCS UML.4

the 6 static diagram languages are

- class diagram

logical structure unit, on type level

- object diagram

logical structure unit, on instance level

NB

some people prefer to consider

the class diagram and the object diagram

as two manifestations of

the same “class/object diagram”

RE-UML Luuk Groenewegen, 2007, BachCS UML.5

furthermore there are

- component diagram

physical structure:

specifying a software (sub)system

is now one component in isolation

can now have ports:

physical interfaces for

connecting physical links (channels) to

- deployment diagram

physical structure:

specifying component allocation

on hardware

together with machine connections

(eg. LANs, busses)

RE-UML Luuk Groenewegen, 2007, BachCS UML.6

the following two ar new diagram languages

- package diagram

- grouping of whatever model fragments

- more or less like old package

- nevertheless,

rather class-like or component-like

- can now have ports too

- composite structure diagram

this is a separate diagram for

physically interconnected elements

the (new) collaboration diagram is seen as

a particular composite structure diagram

RE-UML Luuk Groenewegen, 2007, BachCS UML.7

the 7 dynamic (behavioural)

diagram languages are

- use case diagram

functionality as declarative behaviour,

without any time or step ordering

(this is the only dynamic diagram without

such ordering; so it is

uniquely declarative in dynamics)

roughly, globally indicating

- the main behavioural units

- where such units are used

can “now” be located

in whatever structural item

ie. inside a certain class

can “now” be handled as class-like

ie. can participate in other relationships

than a uses relationship

RE-UML Luuk Groenewegen, 2007, BachCS UML.8

- statemachine diagram

(former statechart diagram)

detailed behaviour,

usually local to a class/object),

not necessarily sequential (one thread)

but often more or less so

- activity diagram

global behaviour,

often concurrent,

nearly data-flow-process-like

usually organised in swim lanes

although non-local, its being global

is comonly restricted

to a concrete collaboration

RE-UML Luuk Groenewegen, 2007, BachCS UML.9

note:

whereas the use case diagram is declarative,

the statemachine and activity diagrams are

really behavioural, specified in terms of

consecutive steps

even commucative steps can be visible

in the latter two,

but interaction still remains (rather) hidden

interaction is far more explicitly addressed

in the remaining 4 diagram languages

RE-UML Luuk Groenewegen, 2007, BachCS UML.10

- communication diagram

(former collaboration diagram)

interaction between objects,

scenario-wise, by enumerating the steps

one scenarion per diagram

a communication diagram can be viewed

as an specialized collaboration diagram:

the structure of the physically connected

objects (or roles thereof)

is enhanced with

one collaborative scenario,

the communicative (interaction) steps located

at the link via which the sending is done

RE-UML Luuk Groenewegen, 2007, BachCS UML.11

- sequence diagram (sd)

interaction between objects,

scenario-wise, by placing the steps along

scale-less time axes, one axe per object

now all scenario’s together:

“one” per sd-frame,

sd-frames composed within a

generalized while-structure frame

note;

this is a substantial enhancement compared to

the 1.4 version,

where only one scenario was allowed

RE-UML Luuk Groenewegen, 2007, BachCS UML.12

there are two new dynamic diagrams:

- timing diagram:

sequence diagram

(mostly simple ones only)

with state changes per lifeline and with time

- interaction overview diagram

while-structured composition of

sequence diagram fragments

structure of an activity diagram

with lifelines instead of swim lanes

and with interactions

instead of activities

RE-UML Luuk Groenewegen, 2007, BachCS UML.13

note:

out of 7 dynamic diagrams

4 address interaction explicitly

but these 4 do not address other behaviour

the 2 diagrams addressing

the other behaviour

do not address interaction (so much)

the 1 declarative dynamic diagram

does not address

step-wise behaviour

nor interaction

RE-UML Luuk Groenewegen, 2007, BachCS UML.14

rough impression of the 13 diagrams:

(see Fowler for more details - but not all)

class diagram:

Company Person

worksFor

1 *

Manager

Staff

Worker

ICTer
Department

RE-UML Luuk Groenewegen, 2007, BachCS UML.15

rectangles are the classes

edges between the classes are the relationships

triangle (in edge) refers to is-a relationship:

inheritance

diamond (in edge) refers to part-of relationship:

aggregation / composition

black triangle at edge:

read direction of relationship name

RE-UML Luuk Groenewegen, 2007, BachCS UML.16

a more elaborate class description:

example attributes of Person:

address,

Sofi-number,

age,

salary,

function

together with type indication

name compartment

attribute compartment

operation compartment

other, e.g. responsibility
or signal compartment

RE-UML Luuk Groenewegen, 2007, BachCS UML.17

example operations of Staff:

test,

review,

inform,

study

together with parameters

attribute and operation compartment are

nearly always present

example responsibilities of ICTer:

requirements-engineering,

designing,

coding

responsibilities might be combined

with contracts

such responsibilities might correspond

to (the) operations specified

RE-UML Luuk Groenewegen, 2007, BachCS UML.18

the signals originate from real-time situations:

they consist of name and type of

incoming signals as received,

outgoing signals as sent;

sending / receiving usually goes via ports

ports are rather specialised classes,

on their instance level linked via connector

representing the physical channel for

sending / receiving between ports

ports can serve as physical interface of a group

of objects, eg, a package or component

ideas are from ROOM, via UML-RT, now in

UML 2.0

RE-UML Luuk Groenewegen, 2007, BachCS UML.19

object diagram:

underlined text indicates an instantiation

rectangles are the objects

edges between the classes are

the links / relations

:Company

:Manager

:Staff

:Worker

:ICTer

:Department

worksFor

worksFor

worksFor

RE-UML Luuk Groenewegen, 2007, BachCS UML.20

component diagram: now iconized

components are

units of physical implementation

like a software system

or (!) an organisational working unit or artefact

RoomReservation

<<provided interfaces>>

Login

RoomDB

<<required interfaces>>

Change
Reserve
Inspect

RE-UML Luuk Groenewegen, 2007, BachCS UML.21

can also be visualized as:

or as: with ports at the component border

in the latter case,

the interfaces name the functionality provided

and the actor required, where

the ports are to have suitable protocol roles for

realizing the corresponding interactions

RoomReservation

Login RoomDB

RoomReservation

Login

RoomDB

Inspect

Reserve

Change

RE-UML Luuk Groenewegen, 2007, BachCS UML.22

compare to old component diagram (UML1.4):

the above is now expressed through

the new composite structure diagram

Room
Reservation

Agenda

Document
Service

Document
System

RE-UML Luuk Groenewegen, 2007, BachCS UML.23

deployment diagram:

BulkServer

HomeServer

GroupMachine

DocSys

ResSys

Agenda

DocSrv

Lan
Srv

PC

Doc

RE-UML Luuk Groenewegen, 2007, BachCS UML.24

a deployment diagram visualizes

the allocation - called deployment - of compo-

nents to physical hardware - called nodes

(see DocSys, Agenda, DocSrv, ResSys

inspired by transp. 6.22)

3-dimensional-boxes represent the nodes

the links between nodes are

communication paths:

physical connections

via which nodes communicate

RE-UML Luuk Groenewegen, 2007, BachCS UML.25

even UML 2.0 uses the deployment diagram

only for deployment to computer-like hardware

so there is no counterpart-interpretation for

organisations

apart from being stored in a database, deployed

on some central node,

artifacts of eg current interest are deployed, ie

physically present, on one or more local nodes

(see eg. document Doc on the PC)

RE-UML Luuk Groenewegen, 2007, BachCS UML.26

package diagram:

it is considered to be a new diagram,

but it is rather like it was

a package is a grouping

(of whatever UML fragments

but very often it is class-like:

just a class / object diagram fragment):

a package can have ports, like a component

FullTeam

Staff
advises

CoreTeam
checks

Worker

involves

RE-UML Luuk Groenewegen, 2007, BachCS UML.27

- it has the “tab” at the left upper corner

naming of its members is somewhat strict:

each package has a “name space” for its mem-

bers, the elements it “owns”

therefore, a package can import members from

other packages

(possibly via qualification or via aliasing)

also, a package can “merge” with another:

where the source package is merging with the

target package, the merged one

<<merge>>

RE-UML Luuk Groenewegen, 2007, BachCS UML.28

composite structure diagram:

a really new diagram, constituting

a composition of interconnected elements

modelling how instances cooperate at run time

there are two manners of visual representation:

- composition via ports and connectors

connected elements are

classes, packages, components, ...

- composition as collaboration

connected elements are

restricted - as far as relevant - views of

classes (or whatever) denoted as roles

RE-UML Luuk Groenewegen, 2007, BachCS UML.29

via ports and connectors:

communication of an element - a pair of Ger-

man traffic lights - with its environment

takes place via its port(s) only

a port specifies either the services provided / re-

quired or more detailed role behaviour

a connector of the right type - conforming to the

ports it connects - transmits the communication,

possibly after some extra manipulation

TrafficLights

TrafficLights

PairA

PairB

RE-UML Luuk Groenewegen, 2007, BachCS UML.30

as collaboration:

the collaboration expresses:

3 elements exist being the roles of:

- Eater connected to a Philosopher,

- LeftFork and RightFork, each connected

to a different Fork

DiningPhilosopher

Eater

RightForkLeftFork

RE-UML Luuk Groenewegen, 2007, BachCS UML.31

the idea is:

5 objects instances of class Philosopher exist

also 5 objects instances of class Fork exist

the 5 Phils are seated at a round table, where

they can eat after having thought long enough

for eating the need the 2 Forks each of which

they share with their respective two neighbour

Phils

they may take a Fork only if it is not in use by

the other Phil

(elegant illustrations of deadlock, starvation

and also of a good solution)

note:

a collaboration expresses the structural infor-

mation of UML 1.4’s collaboration diagram

RE-UML Luuk Groenewegen, 2007, BachCS UML.32

the same collaboration

in an unusual and instantiated form:

DinPhil1

Phil1

Fork2Fork1

:LeftFork :RightFork
:Eater

DinPhil2

Phil2

:Eater

:LeftFork

RE-UML Luuk Groenewegen, 2007, BachCS UML.33

so far we have presented

the 6 structural diagram sublanguages

of UML 2.0

hereafter we present its 7 dynamical

diagram sublanguages

RE-UML Luuk Groenewegen, 2007, BachCS UML.34

use case diagram:

ovals are the use cases: each use case has one or

more scenario’s, describing the interaction be-

tween the use case and the actor(s)

actors are persons or things outside the system

use cases and actors are “class-like”

the box containing the use case is called

system boundary

DBReserve

Change

Inspect

Secretary

User

<<includes>>

RoomReservation

RE-UML Luuk Groenewegen, 2007, BachCS UML.35

each use case refers to behaviour (scenario’s)

but nothing in the diagram refers to

explicit or implicit chronological ordering

<<includes>> and also <<extends>> are

dependencies indicating structural connections

relationships between actors and use cases are

uses dependencies

in case of a human actor:

usually directed to the use case

in case of a non human actor:

often directed to the actor, but not always

although a use case diagram is about behaviour,

it only specifies its structural aspect:

being there; for whom / what; connections

this is the declarativity mentioned above

RE-UML Luuk Groenewegen, 2007, BachCS UML.36

so, use case diagrams remained unchanged

“but”

- any classifier can contain (“own”) its use cases

(inspired by above FullTeam package)

main “change” here is:

it was already allowed

but now it is

more explicitly advocated / put forward

Staff

Check

Advise

RE-UML Luuk Groenewegen, 2007, BachCS UML.37

- a class-like notation for use cases, with icon

(inspired by above RoomReservation)

note how the above allows for

refining a use case in terms of smaller use cases,

still without any ordering

(although up to now this seems highly unusual

in UML)

Change

extension points

Reserve:
in ChangeAgreed state

RE-UML Luuk Groenewegen, 2007, BachCS UML.38

a very welcome / interesting / intriguing

consequence of the above

is the following unusual appearance of

a general use case diagram:

Environment

Organisation

SoftwareSys

Client
Process

Kernel
Activity

SupportWorker

<<owns>>

RE-UML Luuk Groenewegen, 2007, BachCS UML.39

this representation opens

new insight in modelling

even during early phases of SE

ie before designing the software system to-be

it makes sense to model

what, how, where, when

of the organisation and environment systems

in order to investigate relevance / impact

of the software system (to-be)

RE-UML Luuk Groenewegen, 2007, BachCS UML.40

question:

is it reasonable to expect

world outside software system

can be sufficiently well modelled by UML

at this point:

a tentative yes, see role of model in ch 2, 4, 5

remaining chapters will,

among other things, consolidate the “yes”

above ideas are referred to as:

Integration-Orientation

(see the CoOrg05 paper)

RE-UML Luuk Groenewegen, 2007, BachCS UML.41

statemachine diagram:

very much inspired by Harel’s statecharts

Amber

Red
Green

StillRed

Init

Amber Off

/ send Other.id(myId)

[not iMFirst]

[iMFirst]

IdSent

/ send Other.turningRed

LettingTrafficPass

LettingTrafficWait

id(otherId) / computeFirst

turningRed

/ send Other.turningRed

RedAndAmber

RE-UML Luuk Groenewegen, 2007, BachCS UML.42

this is a rather technical example:

take two “equal” statemachines as above,

each statemachine specifies

one identically behaving pair of traffic lights

(German traffic lights actually,

because of state RedAndAmber

RE-UML Luuk Groenewegen, 2007, BachCS UML.43

a statemachine (diagram) specifies

local behaviour, usually thread-like

rounded squares are (super / sub)states

directed edges are transitions / steps

small diamonds are pseudo-states for testing

a statemachine always is in a state,

so a transition is in one go

RE-UML Luuk Groenewegen, 2007, BachCS UML.44

transition labels:

- between [and] : a guard / condition for the

transition

- after / : an action list; eg. sending: “send

event”; actions are atomic: “run to completion”

- before / , or without any / : “event”, which cor-

responds to receiving: “ accept event”

in a state:

- entry and exit actions can be specified

- activities can be performed (interruptable)

- refinement of a state by a substatemachine

- refinement of a state by concurrent sub-

statemachines, separated by dashed lines

RE-UML Luuk Groenewegen, 2007, BachCS UML.45

statemacines in UML also have some Petri net

features:

a parallel continuation of a transition,

called fork;

a sequential continuation of two transitions,

called join:

very often a statemachine specifies the possible

behaviours of one class / object

or the possible behaviours of an “interface” of a

package or of a component

any instantiated statemachine has, at any mo-

ment, “one of its states” as current state

fork: join:

RE-UML Luuk Groenewegen, 2007, BachCS UML.46

compared to the old statechart diagram from

UML 1.4,

the statemachine diagram has remained

essentially unchanged

but

some new notation exists for the actions:

accept action is the old receive, corresponding

to some send elsewhere

accept time action is receiving an event that has

been sent at a certain time instance, eg. at the

end of each month

the visualization suggests an hour-glass / clock

send accept accept time

RE-UML Luuk Groenewegen, 2007, BachCS UML.47

statemachine is still meant for local behaviour,

such as for a class, object, component

but now much mre explicitly also for

port protocol role

connector protocol

interface external / visible behaviour

a superstate,

being a state containing other state(s)

is called a composite state

if the state is refined sequentially only;

a superstate is said to consist of regions,

if the state is refined into at least two parallel re-

finements, which are the regions

RE-UML Luuk Groenewegen, 2007, BachCS UML.48

activity diagram:

ICTer Staff

Secretaryelicit

advise

organize

Worker

analyse

negociate

document

review

Meeting

validate

RE-UML Luuk Groenewegen, 2007, BachCS UML.49

more or less like statemachine diagrams, but

- states now reflect one activity

(commonly, a state is called an activity)

- transitions now only can have guards

(omitted above)

so:

neither sends nor accepts (receives)

are to be specified

thus interaction is (usually) left implicit

activity diagram specifies non local behaviour,

across classes / objects

often, the various classes / objects involved

have their own “swim lanes”

RE-UML Luuk Groenewegen, 2007, BachCS UML.50

an activity from an activity diagram

often represents a large activity only;

however, a state from an activity diagram

can be refined as follows:

the activity name “analyse” then refers to

a separate activity diagram with this name

the new diagram may have various swim lanes

analyse

RE-UML Luuk Groenewegen, 2007, BachCS UML.51

can be combined with “object flow”,

reflecting how some passive object

like a document or a product or an item

subsequently is being processed

by the various classes / objects involved

the (new) notation for such object flow is:

:DocWrite Review

Write Review

ReadyWrite Review

RE-UML Luuk Groenewegen, 2007, BachCS UML.52

in the third case of the object flow,

the object is a “signal object”

this makes interaction in an activity diagram

- unusual, although not strictly forbidden -

visually more explicit

note:

a passive class / object (that is flowing)

may also be present via its own swim lane

activities in such a passive swim lane

usually correspond to

rather “passive activities”,

such as

registration, update, transformation of shape,

transportation

“things that happen to” such a class / object,

as if an administrator is taking notes thereof

RE-UML Luuk Groenewegen, 2007, BachCS UML.53

furthermore,

more dimensional swim lanes can help

to differentiate eg

not only between actors in a certain function

but also, and simultaneously, between locations

and

whole regions can be indicated, selcted for

rather general handling:

- for possible interruption

- for expansion of the (inner) activity handling,

involving various collections of inputs/outputs

RE-UML Luuk Groenewegen, 2007, BachCS UML.54

sequence diagram (sd):

basically, any sequence diagram consists of a

nested frame containing one or more (usually

rather many) sd-lifeline fragments, like eg. the

following sdll-fragment

:Manager :ICTer:Project

suggestSystem

create

reportStatus

continue

handFeasbltStudy

addMaterial

addMaterialreportStatus
addPrepStudyhandPrepStudy

addMaterial

addMaterial

addMaterialreportStatus

addFeasbltStudy

RE-UML Luuk Groenewegen, 2007, BachCS UML.55

any sdll-fragment,

like any communication diagram as we shall

see,

restricts its behavioural representation to

the interaction steps

such as

sends, receives, signals, remote calls, triggers

in addition, any sdll-fragment,

like any communication diagram,

only presents one scenario of the interaction

ie. 1 example interaction sequence realization,

out of many possibilities of such realizations

time is implicitly present:

top down, as an invisible vertical axis

RE-UML Luuk Groenewegen, 2007, BachCS UML.56

at the top of a sdll-fragment,

one finds the (human / non human) actors,

usually objects;

they are

the participants of the particular interaction

the vertical line / thick bar

under each participant is

its “lifeline”

being thick when (/ where) the participant is

actively available for the interaction

many technical details exist

about

synchronous vs asynchronous

time dependency

kind of communication (message, trigger)

initiating vs resulting

RE-UML Luuk Groenewegen, 2007, BachCS UML.57

sdll-fragments are often used as

specification of the various use case scenario’s

so they are suited for

modelling example interactions

partly occurring outside software system

this is another indication for the more general

suitability of OO / UML for

modelling the world outside software system

for instance,

there is nothing against incorporating

in an sdll-fragment

direct communication between actors outside

software system

(in above sdll-fragment:

from ICTer to Manager)

RE-UML Luuk Groenewegen, 2007, BachCS UML.58

now we come to the actual sequence diagram:

it still is about interaction, expressed on the ba-

sis of lifelines,

but instead of specifying one scenario,

it gives as much scenario’s as wanted

to that aim, an sd is composed from sd-frag-

ments,

like a (main) program is composed from struc-

tured programming statements:

the main sd-fragment is called “frame”:

inside one either finds one or more sdll-frag-

ments or further sd-fragments

sd WholePlay

RE-UML Luuk Groenewegen, 2007, BachCS UML.59

sd-fragments inside a frame are either nested or

non-overlapping

they cover a subset of the relevant lifelines, vis-

ualized by graphically containing parts of them,

corresponding to a time interval

an sd-fragment looks as follows:

the interaction operator can be:

alt: alternatives in separate compartments,

excluding one another

opt: content is an option

loop: content is to be repeated

interactionOperator

“content is: sdll-fragments or sd-fragments”

RE-UML Luuk Groenewegen, 2007, BachCS UML.60

ref: has a name as content,

refers to an sd of that name

comparable to procedure call

par: parallel threads in separate compartments

these present the basic structuring facilities,

similar to

if then else

if then

while do

call

that concatenation is missing here, is compen-

sated

by the “sequencing” of the sd itself

RE-UML Luuk Groenewegen, 2007, BachCS UML.61

but some others are also nice to have:

break: as alternative to remainder of enclosing

seq: so-called weak sequencing, only the order-

ing per lifeline is relevant

strict: so-called strict sequencing, all ordering

is relevant

neg: negative, expressing what is forbidden

critical: critical region, atomic execution

ignore signals: apart from the signals indicated

consider signals: only for the signals indicated

assert: explicitly specifies the only valid con-

tinuations

RE-UML Luuk Groenewegen, 2007, BachCS UML.62

furthermore:

“coregion” in a lifeline

allows any order for the signals there

between the thick brackets, vertically lined:

this is shorthand for a par fragment

m

e

t

RE-UML Luuk Groenewegen, 2007, BachCS UML.63

communication diagram:

the new name for a collaboration diagram

it only covers simple sd’s, without further frag-

menting

the notation places the essential part of the dia-

gram inside an sd frame:

sd DoFeasibility

:Manager :ICTer

:Project

1: suggestSystem

2: create

3.1a: reportStatus
3.2a: reportStatus

3.1b: addMaterial
3.2b: addMaterial
4: prepStudy

6: continue

5: handPrepStudy

7.1a: addMaterial
7.2a: addMaterial

7.1b: reportStatus

7.3a: addMaterial
8: feasbltStudy

9: handFeasbltStudy

RE-UML Luuk Groenewegen, 2007, BachCS UML.64

note:

that essentail part is

the old UML 1.4 collaboration diagram

compared to the new collaboration diagram,

the essential part

of the communication diagram

annotates the links of a (new) UML 2.0

collaboration diagram with:

the annotation is as follows:

the signals being transmitted over these links

the signals have a sequence numbering accord-

ing to their chronological ordering

moreover, the signals are grouped per transmis-

sion direction

RE-UML Luuk Groenewegen, 2007, BachCS UML.65

essental part of collaboration diagram:

such essential part is claimed to be

semantically equivalent to one sdll-fragment

(not completely true!)

instead of a(n implicit) time axis, it orders the

communication by enumeration

addition of symbol “a” or “b” to such order

number, refers to parallel subthreads

:Manager :ICTer

:Project

1: suggestSystem

2: create

3.1a: reportStatus
3.2a: reportStatus

3.1b: addMaterial
3.2b: addMaterial
4: prepStudy

6: continue

5: handPrepStudy

7.1a: addMaterial
7.2a: addMaterial

7.1b: reportStatus

7.3a: addMaterial
8: feasbltStudy

9: handFeasbltStudy

RE-UML Luuk Groenewegen, 2007, BachCS UML.66

interaction overview diagram:

new diagram, combining

- activity diagram structure (without swim

lanes)

- each activity is replaced by an sd whose life-

lines correspond to these swim lanes

ie. all “activities” are formulated in terms of

communication/interaction only

interaction overview diagram is used for

“complicated” sd’s with many fragments:

it gives these sd’s a more activity-diagram-like

presentation

RE-UML Luuk Groenewegen, 2007, BachCS UML.67

translation of sd to interaction overview:

alt, opt, break are translated by pair of decision

/ merge

par is translated by pair of fork / join

loop is translated as (visual) cycle

where every branching / connecting is properly

nested

the other fragments refer to

exactly one continuation

RE-UML Luuk Groenewegen, 2007, BachCS UML.68

timing diagram

new diagram, combining

sequence diagram and explicit time

and instead of each lifeline:

a scenario of (local) state change sequences

to that aim, a sequence diagram has a horizontal

time axis - from left to right - instead of a verti-

cal time axis

a state change sequence can have two appear-

ances:

s5

s2
s3

s1
s4

s5s2 s3s1 s4 s2

RE-UML Luuk Groenewegen, 2007, BachCS UML.69

sends and receives can then be explicitly cou-

pled with state changes

often such sends and receives are visualized by

a somewhat oblique arrow, annotated by time:

note: sd’s allow

many interaction scenario’s in one diagram,

but only one state change sequence on a lifeline

off

on

closed

opening
open

t=now

{t..t+1}

sd LightButtonAndDoor

:L
ig

h
tB

u
tt

o
n

:D
o
o
r

switchoff
{1..3}

switchedOn

