
SPIM S20: A MIPS R2000 Simulator�\ 125 th the performane at none of the ost"James R. Laruslarus�s.wis.eduComputer Sienes DepartmentUniversity of Wisonsin{Madison1210 West Dayton StreetMadison, WI 53706, USA608-262-9519Copyright 1990{1997 by James R. Larus(This doument may be opied without royalties,so long as this opyright notie remains on it.)
1 SPIMSPIM S20 is a simulator that runs programs for the MIPS R2000/R3000 RISC omputers.1SPIM an read and immediately exeute �les ontaining assembly language. SPIM is a self-ontained system for running these programs and ontains a debugger and interfae to a fewoperating system servies.The arhiteture of the MIPS omputers is simple and regular, whih makes it easy to learnand understand. The proessor ontains 32 general-purpose 32-bit registers and a well-designedinstrution set that make it a propitious target for generating ode in a ompiler.However, the obvious question is: why use a simulator when many people have workstationsthat ontain a hardware, and hene signi�antly faster, implementation of this omputer? Onereason is that these workstations are not generally available. Another reason is that these ma-hine will not persist for many years beause of the rapid progress leading to new and fasteromputers. Unfortunately, the trend is to make omputers faster by exeuting several instru-tions onurrently, whih makes their arhiteture more diÆult to understand and program.The MIPS arhiteture may be the epitome of a simple, lean RISC mahine.In addition, simulators an provide a better environment for low-level programming than anatual mahine beause they an detet more errors and provide more features than an atualomputer. For example, SPIM has a X-window interfae that is better than most debuggers forthe atual mahines.�I grateful to the many students at UW who used SPIM in their ourses and happily found bugs in a professor'sode. In partiular, the students in CS536, Spring 1990, painfully found the last few bugs in an \already-debugged"simulator. I am grateful for their patiene and persistene. Alan Yuen-wui Siow wrote the X-window interfae.1For a desription of the real mahines, see Gerry Kane and Joe Heinrih, MIPS RISC Arhiteture, PrentieHall, 1992. 1

Finally, simulators are an useful tool for studying omputers and the programs that run onthem. Beause they are implemented in software, not silion, they an be easily modi�ed to addnew instrutions, build new systems suh as multiproessors, or simply to ollet data.1.1 Simulation of a Virtual MahineThe MIPS arhiteture, like that of most RISC omputers, is diÆult to program diretly beauseof its delayed branhes, delayed loads, and restrited address modes. This diÆulty is tolerablesine these omputers were designed to be programmed in high-level languages and so presentan interfae designed for ompilers, not programmers. A good part of the omplexity resultsfrom delayed instrutions. A delayed branh takes two yles to exeute. In the seond yle,the instrution immediately following the branh exeutes. This instrution an perform usefulwork that normally would have been done before the branh or it an be a nop (no operation).Similarly, delayed loads take two yles so the instrution immediately following a load annotuse the value loaded from memory.MIPS wisely hoose to hide this omplexity by implementing a virtual mahine with theirassembler. This virtual omputer appears to have non-delayed branhes and loads and a riherinstrution set than the atual hardware. The assembler reorganizes (rearranges) instrutionsto �ll the delay slots. It also simulates the additional, pseudoinstrutions by generating shortsequenes of atual instrutions.By default, SPIM simulates the riher, virtual mahine. It an also simulate the atualhardware. We will desribe the virtual mahine and only mention in passing features thatdo not belong to the atual hardware. In doing so, we are following the onvention of MIPSassembly language programmers (and ompilers), who routinely take advantage of the extendedmahine. Instrutions marked with a dagger (y) are pseudoinstrutions.1.2 SPIM InterfaeSPIM provides a simple terminal and a X-window interfae. Both provide equivalent funtion-ality, but the X interfae is generally easier to use and more informative.spim, the terminal version, and xspim, the X version, have the following ommand-lineoptions:-bareSimulate a bare MIPS mahine without pseudoinstrutions or the additional addressingmodes provided by the assembler. Implies -quiet.-asmSimulate the virtual MIPS mahine provided by the assembler. This is the default.-pseudoAept pseudoinstrutions in assembly ode.-nopseudoDo not aept pseudoinstrutions in assembly ode.-notrapDo not load the standard trap handler. This trap handler has two funtions that mustbe assumed by the user's program. First, it handles traps. When a trap ours, SPIMjumps to loation 0x80000080, whih should ontain ode to servie the exeption. Seond,2

this �le ontains startup ode that invokes the routine main. Without the trap handler,exeution begins at the instrution labeled start.-trapLoad the standard trap handler. This is the default.-trap fileLoad the trap handler in the �le.-noquietPrint a message when an exeption ours. This is the default.-quietDo not print a message at an exeption.-nomapped ioDisable the memory-mapped IO faility (see Setion 5).-mapped ioEnable the memory-mapped IO faility (see Setion 5). Programs that use SPIM sysalls(see Setion 1.5) to read from the terminal should not also use memory-mapped IO.-fileLoad and exeute the assembly ode in the �le.-s seg size Sets the initial size of memory segment seg to be size bytes. The memorysegments are named: text, data, stak, ktext, and kdata. For example, the pair ofarguments -sdata 2000000 starts the user data segment at 2,000,000 bytes.-lseg size Sets the limit on how large memory segment seg an grow to be size bytes. Thememory segments that an grow are: data, stak, and kdata.1.2.1 Terminal InterfaeThe terminal interfae (spim) provides the following ommands:exitExit the simulator.read "file"Read �le of assembly language ommands into SPIM's memory. If the �le has alreadybeen read into SPIM, the system should be leared (see reinitialize, below) or globalsymbols will be multiply de�ned.load "file"Synonym for read.run <addr>Start running a program. If the optional address addr is provided, the program startsat that address. Otherwise, the program starts at the global symbol start, whih isde�ned by the default trap handler to all the routine at the global symbol main with theusual MIPS alling onvention. 3

step <N>Step the program for N (default: 1) instrutions. Print instrutions as they exeute.ontinueContinue program exeution without stepping.print $NPrint register N .print $fNPrint oating point register N .print addrPrint the ontents of memory at address addr .print symPrint the ontents of the symbol table, i.e., the addresses of the global (but not loal)symbols.reinitializeClear the memory and registers.breakpoint addrSet a breakpoint at address addr . addr an be either a memory address or symboli label.delete addrDelete all breakpoints at address addr .listList all breakpoints.. Rest of line is an assembly instrution that is stored in memory.<nl>A newline reexeutes previous ommand.? Print a help message.Most ommands an be abbreviated to their unique pre�x e.g., ex, re, l, ru, s, p. Moredangerous ommands, suh as reinitialize, require a longer pre�x.1.2.2 X-Window InterfaeThe X version of SPIM, xspim, looks di�erent, but should operate in the same manner as spim.The X window has �ve panes (see Figure 1). The top pane displays the ontents of the registers.It is ontinually updated, exept while a program is running.The next pane ontains the buttons that ontrol the simulator:quitExit from the simulator. 4

PC = 00000000 EPC = 00000000 Cause = 0000000 BadVaddr = 00000000
Status= 00000000 HI = 00000000 LO = 0000000

R0 (r0) = 00000000 R8 (t0) = 00000000 R16 (s0) = 0000000 R24 (t8) = 00000000
R1 (at) = 00000000 R9 (t1) = 00000000 R17 (s1) = 0000000 R25 (s9) = 00000000
R2 (v0) = 00000000 R10 (t2) = 00000000 R18 (s2) = 0000000 R26 (k0) = 00000000
R3 (v1) = 00000000 R11 (t3) = 00000000 R19 (s3) = 0000000 R27 (k1) = 00000000
R4 (a0) = 00000000 R12 (t4) = 00000000 R20 (s4) = 0000000 R28 (gp) = 00000000
R5 (a1) = 00000000 R13 (t5) = 00000000 R21 (s5) = 0000000 R29 (gp) = 00000000
R6 (a2) = 00000000 R14 (t6) = 00000000 R22 (s6) = 0000000 R30 (s8) = 00000000
R7 (a3) = 00000000 R15 (t7) = 00000000 R23 (s7) = 0000000 R31 (ra) = 00000000

FP0 = 0.000000 FP8 = 0.000000 FP16 = 0.00000 FP24 = 0.000000

FP6 = 0.000000 FP14 = 0.000000 FP22 = 0.00000 FP30 = 0.000000
FP4 = 0.000000 FP12 = 0.000000 FP20 = 0.00000 FP28 = 0.000000
FP2 = 0.000000 FP10 = 0.000000 FP18 = 0.00000 FP26 = 0.000000

quit load run step clear set value

print breakpt help terminal mode

SPIM Version 3.2 of January 14, 1990

Text Segments

xspim

Register
Display

Control
Buttons

User and
Kernel
Text
Segments

SPIM
Messages

General Registers

Double Floating Point Registers

Single Floating Point Registers

Data Segments

Data and
Stack
Segments

[0x00400000] 0x8fa40000 lw R4, 0(R29) []
[0x00400004] 0x27a50004 addiu R5, R29, 4 []
[0x00400008] 0x24a60004 addiu R6, R5, 4 []
[0x0040000c] 0x00041090 sll R2, R4, 2
[0x00400010] 0x00c23021 addu R6, R6, R2
[0x00400014] 0x0c000000 jal 0x00000000 []
[0x00400018] 0x3402000a ori R0, R0, 10 []
[0x0040001c] 0x0000000c syscall

[0x10000000]...[0x10010000] 0x00000000
[0x10010004] 0x74706563 0x206e6f69 0x636f2000
[0x10010010] 0x72727563 0x61206465 0x6920646e 0x726f6e67
[0x10010020] 0x000a6465 0x495b2020 0x7265746e 0x74707572
[0x10010030] 0x0000205d 0x20200000 0x616e555b 0x6e67696c
[0x10010040] 0x61206465 0x65726464 0x69207373 0x6e69206e
[0x10010050] 0x642f7473 0x20617461 0x63746566 0x00205d68
[0x10010060] 0x555b2020 0x696c616e 0x64656e67 0x64646120
[0x10010070] 0x73736572 0x206e6920 0x726f7473 0x00205d65

Figure 1: X-window interfae to SPIM.

5

loadRead a soure �le into memory.runStart the program running.stepSingle-step through a program.learReinitialize registers or memory.set valueSet the value in a register or memory loation.printPrint the value in a register or memory loation.breakpointSet or delete a breakpoint or list all breakpoints.helpPrint a help message.terminalRaise or hide the onsole window.modeSet SPIM operating modes.The next two panes display the memory ontents. The top one shows instrutions from theuser and kernel text segments.2 The �rst few instrutions in the text segment are startup ode(start) that loads arg and argv into registers and invokes the main routine.The lower of these two panes displays the data and stak segments. Both panes are updatedas a program exeutes.The bottom pane is used to display messages from the simulator. It does not display outputfrom an exeuting program. When a program reads or writes, its IO appears in a separatewindow, alled the Console, whih pops up when needed.1.3 Surprising FeaturesAlthough SPIM faithfully simulates the MIPS omputer, it is a simulator and ertain things arenot idential to the atual omputer. The most obvious di�erenes are that instrution timingand the memory systems are not idential. SPIM does not simulate ahes or memory lateny,nor does it aurate reet the delays for oating point operations or multiplies and divides.Another surprise (whih ours on the real mahine as well) is that a pseudoinstrutionexpands into several mahine instrutions. When single-stepping or examining memory, theinstrutions that you see are slightly di�erent from the soure program. The orrespondene be-tween the two sets of instrutions is fairly simple sine SPIM does not reorganize the instrutionsto �ll delay slots.2These instrutions are real|not pseudo|MIPS instrutions. SPIM translates assembler pseudoinstrutionsto 1{3 MIPS instrutions before storing the program in memory. Eah soure instrution appears as a ommenton the �rst instrution to whih it is translated. 6

1.4 Assembler SyntaxComments in assembler �les begin with a sharp-sign (#). Everything from the sharp-sign to theend of the line is ignored.Identi�ers are a sequene of alphanumeri haraters, underbars (), and dots (.) that do notbegin with a number. Opodes for instrutions are reserved words that are not valid identi�ers.Labels are delared by putting them at the beginning of a line followed by a olon, for example:.dataitem: .word 1.text.globl main # Must be globalmain: lw $t0, itemStrings are enlosed in double-quotes ("). Speial haraters in strings follow the C onven-tion:newline \ntab \tquote \"SPIM supports a subset of the assembler diretives provided by the MIPS assembler:.align nAlign the next datum on a 2n byte boundary. For example, .align 2 aligns the next valueon a word boundary. .align 0 turns o� automati alignment of .half, .word, .float,and .double diretives until the next .data or .kdata diretive..asii strStore the string in memory, but do not null-terminate it..asiiz strStore the string in memory and null-terminate it..byte b1, ..., bnStore the n values in suessive bytes of memory..data <addr>The following data items should be stored in the data segment. If the optional argumentaddr is present, the items are stored beginning at address addr ..double d1, ..., dnStore the n oating point double preision numbers in suessive memory loations..extern sym sizeDelare that the datum stored at sym is size bytes large and is a global symbol. Thisdiretive enables the assembler to store the datum in a portion of the data segment thatis eÆiently aessed via register $gp..float f1, ..., fnStore the n oating point single preision numbers in suessive memory loations..globl symDelare that symbol sym is global and an be referened from other �les.7

Servie System Call Code Arguments Resultprint int 1 $a0 = integerprint oat 2 $f12 = oatprint double 3 $f12 = doubleprint string 4 $a0 = stringread int 5 integer (in $v0)read oat 6 oat (in $f0)read double 7 double (in $f0)read string 8 $a0 = bu�er, $a1 = lengthsbrk 9 $a0 = amount address (in $v0)exit 10print harater 11 $a0 = integerread harater 12 har (in $v0)Table 1: System servies..half h1, ..., hnStore the n 16-bit quantities in suessive memory halfwords..kdata <addr>The following data items should be stored in the kernel data segment. If the optionalargument addr is present, the items are stored beginning at address addr ..ktext <addr>The next items are put in the kernel text segment. In SPIM, these items may only beinstrutions or words (see the .word diretive below). If the optional argument addr ispresent, the items are stored beginning at address addr ..spae nAlloate n bytes of spae in the urrent segment (whih must be the data segment inSPIM)..text <addr>The next items are put in the user text segment. In SPIM, these items may only beinstrutions or words (see the .word diretive below). If the optional argument addr ispresent, the items are stored beginning at address addr ..word w1, ..., wnStore the n 32-bit quantities in suessive memory words.SPIM does not distinguish various parts of the data segment (.data, .rdata, and .sdata).1.5 System CallsSPIM provides a small set of operating-system-like servies through the system all (sysall)instrution. To request a servie, a program loads the system all ode (see Table 1) into register$v0 and the arguments into registers $a0: : :$a3 (or $f12 for oating point values). System allsthat return values put their result in register $v0 (or $f0 for oating point results). For example,to print \the answer = 5", use the ommands:8

.datastr: .asiiz "the answer = ".textli $v0, 4 # system all ode for print_strla $a0, str # address of string to printsysall # print the stringli $v0, 1 # system all ode for print_intli $a0, 5 # integer to printsysall # print itprint int is passed an integer and prints it on the onsole. print float prints a singleoating point number. print double prints a double preision number. print string is passeda pointer to a null-terminated string, whih it writes to the onsole.read int, read float, and read double read an entire line of input up to and inluding thenewline. Charaters following the number are ignored. read string has the same semantis asthe Unix library routine fgets. It reads up to n � 1 haraters into a bu�er and terminatesthe string with a null byte. If there are fewer haraters on the urrent line, it reads throughthe newline and again null-terminates the string. Warning: programs that use these sysallsto read from the terminal should not use memory-mapped IO (see Setion 5).sbrk returns a pointer to a blok of memory ontaining n additional bytes. exit stops aprogram from running.2 Desription of the MIPS R2000A MIPS proessor onsists of an integer proessing unit (the CPU) and a olletion of oproes-sors that perform anillary tasks or operate on other types of data suh as oating point numbers(see Figure 2). SPIM simulates two oproessors. Coproessor 0 handles traps, exeptions, andthe virtual memory system. SPIM simulates most of the �rst two and entirely omits details ofthe memory system. Coproessor 1 is the oating point unit. SPIM simulates most aspets ofthis unit.2.1 CPU RegistersThe MIPS (and SPIM) entral proessing unit ontains 32 general purpose 32-bit registers thatare numbered 0{31. Register n is designated by $n. Register $0 always ontains the hardwiredvalue 0. MIPS has established a set of onventions as to how registers should be used. Thesesuggestions are guidelines, whih are not enfored by the hardware. However a program thatviolates them will not work properly with other software. Table 2 lists the registers and desribestheir intended use.Registers $at (1), $k0 (26), and $k1 (27) are reserved for use by the assembler and operatingsystem.Registers $a0{$a3 (4{7) are used to pass the �rst four arguments to routines (remainingarguments are passed on the stak). Registers $v0 and $v1 (2, 3) are used to return valuesfrom funtions. Registers $t0{$t9 (8{15, 24, 25) are aller-saved registers used for temporaryquantities that do not need to be preserved aross alls. Registers $s0{$s7 (16{23) are allee-saved registers that hold long-lived values that should be preserved aross alls.9

Register Name Number Usagezero 0 Constant 0at 1 Reserved for assemblerv0 2 Expression evaluation andv1 3 results of a funtiona0 4 Argument 1a1 5 Argument 2a2 6 Argument 3a3 7 Argument 4t0 8 Temporary (not preserved aross all)t1 9 Temporary (not preserved aross all)t2 10 Temporary (not preserved aross all)t3 11 Temporary (not preserved aross all)t4 12 Temporary (not preserved aross all)t5 13 Temporary (not preserved aross all)t6 14 Temporary (not preserved aross all)t7 15 Temporary (not preserved aross all)s0 16 Saved temporary (preserved aross all)s1 17 Saved temporary (preserved aross all)s2 18 Saved temporary (preserved aross all)s3 19 Saved temporary (preserved aross all)s4 20 Saved temporary (preserved aross all)s5 21 Saved temporary (preserved aross all)s6 22 Saved temporary (preserved aross all)s7 23 Saved temporary (preserved aross all)t8 24 Temporary (not preserved aross all)t9 25 Temporary (not preserved aross all)k0 26 Reserved for OS kernelk1 27 Reserved for OS kernelgp 28 Pointer to global areasp 29 Stak pointerfp 30 Frame pointerra 31 Return address (used by funtion all)Table 2: MIPS registers and the onvention governing their use.
10

Registers

$0

$31

.

.

.

Arithmetic
Unit

FPU (Coprocessor 1)

BadVAddr

Status

Cause

EPC

Coprocessor 0 (Traps and Memory)

Registers

$0

$31

.

.

.

Arithmetic
Unit

CPU

Multiply
Divide

Lo Hi

Memory

Figure 2: MIPS R2000 CPU and FPURegister $sp (29) is the stak pointer, whih points to the last loation in use on the stak.3Register $fp (30) is the frame pointer.4 Register $ra (31) is written with the return address fora all by the jal instrution.Register $gp (28) is a global pointer that points into the middle of a 64K blok of memoryin the heap that holds onstants and global variables. The objets in this heap an be quiklyaessed with a single load or store instrution.In addition, oproessor 0 ontains registers that are useful to handle exeptions. SPIM doesnot implement all of these registers, sine they are not of muh use in a simulator or are part ofthe memory system, whih is not implemented. However, it does provide the following:Register Name Number UsageBadVAddr 8 Memory address at whih address exeption ourredStatus 12 Interrupt mask and enable bitsCause 13 Exeption type and pending interrupt bitsEPC 14 Address of instrution that aused exeptionThese registers are part of oproessor 0's register set and are aessed by the lw0, mf0, mt0,and sw0 instrutions.Figure 3 desribes the bits in the Status register that are implemented by SPIM. Theinterrupt mask ontains a bit for eah of the �ve interrupt levels. If a bit is one, interrupts atthat level are allowed. If the bit is zero, interrupts at that level are disabled. The low six bits of3In earlier version of SPIM, $sp was doumented as pointing at the �rst free word on the stak (not the lastword of the stak frame). Reent MIPS douments have made it lear that this was an error. Both onventionswork equally well, but we hoose to follow the real system.4The MIPS ompiler does not use a frame pointer, so this register is used as allee-saved register $s8.11

