
Requirements Engineering, 2004, Luuk Groenewegen 6-7-9.1

Techniques for RE

Chapters 6, 7 and 9

see also our Chap 2.x about UML

and Chap 2.y about Architecture and Patterns

be aware of two possible, feasible starting points

for techniques:

data-centred

starting from

what exist,

what is present

(there)

behaviour-centred

starting from

what happens,

how does it change

(there)

Requirements Engineering, 2004, Luuk Groenewegen 6-7-9.2

data-centred:

data model / EER diagram / class diagram

built around logical, structural units (entities):

in OO: the classes

users & items & (sub)systems as classes

roles & services as methods

apart from structural relationships as

is-a & part-of & general “has-relation-with”

“call relationships” express the communication:

: I want you to give this service

or to play this role

Requirements Engineering, 2004, Luuk Groenewegen 6-7-9.3

behaviour-centred:

scenario’s:

structured English

DFDs (data flow diagrams)

STDs (state transition diagrams)

automata, finite state machines, Petri nets

statechart diagrams

activity diagrams

interaction overview diagrams

sequence diagrams

built around logical dynamical units

(functionalities)

in OO: the use cases

role descriptions

interaction descriptions

either by example or exaustive

Requirements Engineering, 2004, Luuk Groenewegen 6-7-9.4

and with users & items & subsystems as actors

interaction relationships;

I send you this

message / trigger / event / signal /

/ information

enabling you to start behaving accordingly

as well as committing myself to this sending

From you I receive this

message / trigger / event / signal /

/ information

enabling me to start behaving accordingly

and aware of the sender’s committing

Requirements Engineering, 2004, Luuk Groenewegen 6-7-9.5

3 common OO approaches

and 1 (still) unusual OO approach:

1. use cases

scenario’s: examples of behaviour

in a sequential form:

this one does this

then, that one does that

then, ...

always related to Rs

(perhaps in groups)

always declarative

Requirements Engineering, 2004, Luuk Groenewegen 6-7-9.6

2. class diagram

consisting of

users / items / interfaces / (sub)systems

relations:

logical / structural / <<uses>>

methods:

roles / services / functionalities

attributes:

properties / characteristics / status(ses)

always related to Rs

(perhaps in groups)

always declarative (often: one system)

Requirements Engineering, 2004, Luuk Groenewegen 6-7-9.7

3. related to classes

dynamics according to scenario’s as in 1

where such scenario’s can be

- visible: external behaviour

meant for “method sequencing”

- hidden: internal behaviour

per method: specs of functionality

and

influencing of these dynamics

by means of interaction (send / receive)

Requirements Engineering, 2004, Luuk Groenewegen 6-7-9.8

in RE phase (our phase of SE) this means:

ad 2:

- interfaces of system-to-be (StB)

- no internal classes of StB

(unless these directly correspond to

problem domain)

ad 3:

- no hidden behaviours within StB

- visble behaviours correspond to interfaces

(again unless there is a direct

correspondence to problem domain

via classes present, reflecting that)

Requirements Engineering, 2004, Luuk Groenewegen 6-7-9.9

4: Integration-Orientation

as part of modelling within analysis subphase

step 1:

OO model (UML2.0-like) of

- business as-is

- environment (of business) as-is

this is a fully-fledged model

- structure (data-like)

- behaviour (eg. visible and hidden)

- interaction

(communication & coordination)

Requirements Engineering, 2004, Luuk Groenewegen 6-7-9.10

step 2:

1 package of software system to-be

- visible behaviour only

- interaction with business & env

both as-is and to-be

step 3:

align business & environment as-is

with software system to-be

- according to Rs

- in consequence of Rs

- despite Rs

then: extra negotiate / adapt

Requirements Engineering, 2004, Luuk Groenewegen 6-7-9.11

step 4:

show / explain / discuss

the integrated, resulting

sofsys & bus & env to-be

with the stakeholders

so we have now 3 RE-like processes:

step1: existing Rs for the as-is situation

moreover: design too

step 2: the classical RE process

step 3&4: 1&2 but well-integrated towards to-be

Requirements Engineering, 2004, Luuk Groenewegen 6-7-9.12

Environment: full OO-model

Organisation

SoftwareSys

Client
Process

Kernel
Activity

Support

Worker

<<owns>>

: full OO model

use cases
+ interfaces
+ visible beh.

Requirements Engineering, 2004, Luuk Groenewegen 6-7-9.13

Ch.7. Viewpoint-Oriented RE Approaches

VOSE Chap 7.3

VORD Chap 7.4 & 9

VOSE:

Viewpoint-Oriented System Engineering

each stakeholder role gives a viewpoint (VP)

VOSE is of historical relevance only!!

template of VP in VOSE:

- style concrete formalism used

- problem domain (source)

- plan: schedule / approach / who does it

- record: history + reasons

- specs: Rs & model fragments for it

Requirements Engineering, 2004, Luuk Groenewegen 6-7-9.14

integration of huge number of VPs

the old drawback: different styles

are very hard to integrate

furthermore: standard problems

homonyms:

called the same, being different

heteronyms:

called different, being the same

(or overlapping)

overlaps --> consistency required

- generalized vs specialized

sometimes called vertical consistency

- aggregated vs decomposed

sometimes called horizontal consistency

consistency management needed

Requirements Engineering, 2004, Luuk Groenewegen 6-7-9.15

VORD:

VP-Oriented Rs Definition

the system to-be as client-server system

each client gives a VP

2 types of clients:

- direct VPs:

those asking for / receiving a service

- indirect VPs:

those observing any service providing

(engineering / organisational /

/ environmental / ...)

Requirements Engineering, 2004, Luuk Groenewegen 6-7-9.16

direct VPs

- users

- tuners: system administrators, operators, ...

- extra!: items, such as product

in view of proactive process support

note:

fully-fledged OO / UML

so the well-known difficulties with

integrating different styles

now belong to the realm of OO

where it has been rather partially solved

up to now

see Chap 9 for a large example

