Datapath

FIGURE 5.1 (See adjoining page.) A typical processor, divided into control and :

Gatapath, plus memory. The paths for control are in dashed lines and the paths for data H__'“'ﬁ

transfer are in solid lines. The processor uses three buses: S1, S2, and Dest. The iR PR Data in

lundamental operation of the datapath is reading operands from the register file, operating

on them in the ALU, and then storing the result back. Since the register file does not need L. |Address Memory

lo be read and written every clock cycle. most designers follow the advice of making the |

Irequent case fast by breaking this sequence into multiple clock cycles and making the Data out

clock cycle shorter. Thus, in this datapath there are latches on the two outputs of the ,

register file (called A and B) and a latch on the input (C). The register file contains the 32 — ——

general-purpose registers of DLX. (Register 0 of the register file always has the value 0, A S IAR — interrupt address register
matching the definition ot register 0 in the DLX instruction set.) The program counter (PC) S1 8 Sz S1182 - MAR - memory address register
and interrupt address register (IAR) are also part of the state of the machine. There are S1°82 S1 < S2 ng - ’:ﬁ’“"’)’ data regisler
also registers. not part of the state, used in the execution of instructions: memory address S5 82 MPeche PC - program oot

register (MAR), memory data register (MDR), instruction register {IR). and temporary
register (Temp). The Temp register is a scratch register that is available for temporary

Storage for control to perform some DLX instructions. Note that the only path from the St B
and 32 buses to the Dest bus s through the ALU.

0]

Microprogrammed Control

After constructing the first full-scale. operational. stored-program COMptey |
1949, Muaurice Wilkes reflected on the process. 1/A) was casy—teletypewriye.
could just be purchased directly from the lelegraph company. Memory and ;.
datapath were highly repetitive. and that made things simpler. But control v .
nesther casy nor repetitive. so Wilkes set out 1o discover a better way (0 devy
control. His solution was to turn the contral unit into a miniature COMPuter by
having a table 10 specity coniro) of the datapath and a second table to deternn
control flow at the micro level, Witkes called his invention NICroprogranimm
and attached the prefix “micro™ to traditional terms used at the controb feyl
icromstruction. microcode, microprogram. and so on. (To avoid confusion th
prefin: “macro”™ is sometimes used 1o describe the higher level, ¢,

macroinstruction and macroprogram.) Microinstructions specify alf the contra
sgnads for the datapath, plus the ability o condttionally decide which micro

r""ll o LU e a5 Ay - - LEC R - L. L I T — el R * H O ow I '

4 . o T

Controf /

"
r—--.'_—-"—' i gkl oy, E—— "

Microprogram
memory

Datapath

Address selec)
logic

Insiruction regisier

instruction should be executed next. As the name “micmprngrumming“ suggests,
once the datapath and memory for the microinstructions are designed, control
becomes essentially a programming task: that is. the task of writing an inter-
preter lor the instruction set. The invention of microprogramming enabled the
Instruction set to be changed by altering the contents of control store without
touching the hardware. As we will see in Section 5.10, this ability played an
important role in the IBM 360 family—one that was g surprise to its designers.

Figure 5.5 shows an organization for a simple microprogrammed control. The
structure of 4 microprogram is very similar to the state diagram, with a
microinstruction for each state in the diagram.

ABCs of Microprogramming

While it doesn't matter to the hardware how the control lines are grouped within
1 micrainstruction, control lines performing related functions are traditionally
placed next to each other for ease of understanding. Groups of related controf
hines are called fields and are £IVen names in a microinstruction tormat. Figure
2.6 shows a microinstruction format with cight fields, each named to reflect ity
function, Microprogramming can he thought of as supplying the proper bit
pattern an cach field. much like assembly lunguage programming of
Tmacromstructions,”

FIGURE 5.6 Example microinstruction with eight tields (used for DLX in
Section 5.7).

A program counter ¢an be used 1o supply the next microinstruction., as shown
in Figure 5.5, but some computers dedicate a ficld in every microinstruction to
the address of the next instruction. Some even provide multiple next-address
tields to handle conditiona) branches.

While conditional branches could be used 1o decode an instruction by testing
the opeode one bitat a time, tis tedious approach is too slow in practice. The
simplest fast instruction decading scheme is 1o jam the macrotnstruction opcode
Into the middle of the address of the hext micromstruction, similar 1o an indexed

jump instruction in assembly fanguage. A more refined approach is 1o use the

apcode o mdex a able contining microinstruction addresses that supply the
hextaddress, similar 1o a jump 1able in asscinhly code,

The microprogram memory, or control store, 1s the nmst'vis‘sihlc unld Cinl,
measured hardware in microprogrammed control; hem:'r:. It s the focus
techniques 10 reduce hardware costs. Techniques to lr!m umtrnl-smrf.{ SN
include reducing the number of microinstructions, reducing the width of ca)
microinstruction. or both. Just as cost is traditionally measured -hy control-sioy,
size, performance is traditipnally measured by CPIl. The wise Microprogramme
knows the frequency of macroinstructions by using statistics Ill?'c those s
Chapter 4. and hence knows where and how time is best sr?en_l-—mstrucliun..
demanding the largest part of execution time are optimized for speed. and the
others are optimized for space.

In four decades of microprogramming history there have been a wide varien
of terms and techniques for microprogramming. In fact, a wokshop has me:
annually on this subject since 1968, Before looking at a few examples, let u.
remember that control techniques—whether hardwired or microcoded— e
judged by their impact on hardware cost, clock cycle time. CPL and
development time. In the next two sections we will examine how hardwire cosis
can be lowered by reducing control-store size, First we look at two techniques 1o
reduce the width of microinstructions, then one technique to reduce the numbe
Of nuCromstructions,

Reducing Hardware Costs by Encoding Control Lines

The adeal approach to reducing control store is 1o hirst write the complee
microprogrim in i symbolic notation and then measure how control Lines are sl
m cach microinstruction, By taking measurements we are able to recognize
control bits that can be encoded into a smaller field. If no more than one of. sav.
X lines is set simultancously in the same microinstruction, then they can be
cencoded into o 3-bit hield (log> 8 = 3). This change saves 5 bits in evern
microinstruction and does not hurt CPL, though it does mean the extra hardware
cost of a 3-to-8 decoderneeded to generate the original 8 control lines.
Nevertheless, shaving 5 bits oft control-store width will usually overcome the
cost of the decoder.

This technmique of reducing field width is called encoding. To further save
space. control hines may be encoded together if they are only occasionally setn
the same microinstruction: two microinstructions instead of one are then
required when both must be set, As long as this doesn’t happen in criticul
routines. the narrower microinstruction may justify a few extra words of control
store.

There are dangers to encoding. For example. it an encoded control line is on
the eritical timing path. or if the hardware it controls is on the critical path, then
the clock cycle time will sutTer. A more subtle danger is that a later revision of
the microcode might encounter situations where control lines would be set in the
same mrcroinstruchion, cither hurting performance or requiring changes to the
hardware that could lengthen the development evele.

Assume we want 1o encode the three fields that specify a register on a bus-—
Destination, Sourcel. and Source2—in the DLX microinstruction format in

Figure 5.6. How many bits of control store can be saved versus unencoded
fields”?

Figure 5.7 lists the vegisters tor each source and destination of the datapath in
Figure 5.1 (page 200). Note that the destination field must be able to specify that
nothing 1s modified. Without encoding, the 3 fields require 7 + 9 + 9, or 25 bits.

Since logy 7 = 2.8 and log, 9 = 3.2, the encoded fields require 3 + 4 + 4. or 1|
bits. Thus, encoding these 3 fields saves 14 bits per microinstruction.

| N

g umber Destination Sourcel}Sourcez
!, | - |) -Ternp_“
| 3 p(: ~IAR O
,) AR VAR e o]
: MAR CUMBRTT T
| 6 MDR IRU6bitimm) |
1 7 IR (26-bit imm) _
. X Constant

FIGURE 5.7 The sources and destinations specified in the three fields of Figure 5.6
from the datapath description in Figure 5.1. A and B are not separate entries because A
can only transfer on the S1 bus and B can only transter on the S2 bus (see Figure 5.1 on
pages 200-201). The last entry in the third column, Constant, is used by control to specify a
constant needed in an ALU operation (e.q., 4). See Section 5.7 for its use.

- Reducing Hardware Costs with Multiple

Microinstruction Formats

Microinstructions can be made narrower still if they are broken into different
formats and given an opcode or format field 1o distinguish them. The format
lield gives all the unspecitied control lines their default values. so as not to
change anything else in the machine, and is similar 1o the opcode of a
macroinstruction.

Reducing hardware costs by using format fields has its own performance
cost—namely. executing more microinstructions. Generally, a microprogram
using a single microinstruction format can specify any combination of
operations in a datapath and will take fewer clock cycles than a microprogram
made up of restricted microinstructions. Narrower machines are cheaper because:
memory chips are also narrow and tall: It takes many fewer chips for a 16K
word by 24-bit memory than tor a 4K word by 96-bit memory. {When control

. e nemory is on the processor chip, this hiardware advantage is no longer true)

This narrow but tall approach is often called vertical microcode. while i
wide but short approach is called horizomal microcode. 1t should be noted)
the terms “vertical mi{?cmmde“ and “horizontal microcode™ have no uniy m-ﬂ”
definition—the designers of the 8086 considered its 21-bit microinstruction o !.1.
more horizontal than other single-chip computers of the time. The related 1011
maximally encoded and minimally encoded lead to less confusion,

Figure 5.8 plots control-store size against microinstruction width for .,
fumities of computers. Notice that for cach family the total size 1s similar, ¢\,
though the width varies by a factor of 6. As a rule, mimimally encoded conn.
stores use more bits, and the narrow but tall aspect of memory chips means 1. -
maximally encoded control stores naturally have more entries. Somenm,
designers of minimally encoded machines don’t have the option of shorter R A\
chips. causing wide microinstruction machines to end up with many words .
control store. Since the hardware costs are not lower iIf microcode doesn't use
all the space in control store, machines in this class can end up with much Lz
control stores than expected from other implementations. The ECL R A\

available 1o build the VAX 8BOO, for example, led to 2000 K bits of conn
SMOre,

750
500 - (6Kx80)
DEC VAX
(Models 730. 750 780
»
730 165
400 — (16Kx24) 155 (AKx105)
6KxH
135 145 (OKx69) {4;3{9]6
1 (24Kx16) (12Kx32) xo)
Control st " oM 370
ofe
cize (Kbils) 300 — (Models 135, 145, 1585, 165)
| 65
40 . (2 715KxB7)
200 - 0 (2.75Kx85)
4K x50
(4R x30) IBM 360
4 (Models 30, 40. 50. 65;

100 - T T
-
0 20 40 60 80 100 120
Microinstrucltion width (bils)

FIGURE 5.8 Size of control store versus width of microinstructions for 11 computer
models. Each point is identified by the length and width of control store (not inciuding
panty). Models selected from each family are ones that shipped about the same time: 18M
360 models 30. 40. 50. and 65 all shipped in 1965; IBM 370 models 145. 155, and 16‘;5
sh!pped n 1971, with the 135 lollowing in the next year; and the VAX mc;del 7;80 was
shipped in 1978. followed by the 750 in 1980 and the 730 in 1982, The development of the

\VAY AHocimne all Aavarlannad Ana armatkar incwre O

Reducing Hardware Costs by Adding Hardwired
Control to Share Microcode

The other approach to reducing control store is to reduce the number of
microinstructions rather than their width. Microsubroutines provide one
approach, as well as routines with common “tail" sequences sharing code by
jumps.

More sharing can be done with hardwired control assistance. For example,
many microarchitectures allow bits of the instruction register to specify the
correct register. Another common assist 1s to use portions of the instruction

register to specify the ALU operation. Each of these assists is under
microprogrammed control and 15 invoked with a special value in the appropriate
field. The 8086 uses both techniques, giving one 4-line routine responsibility for
32 opcodes. The drawback of adding hardwired control is it may stretch the
development cycle because it no longer involves programming, but requires
hardware layout for designing and debugging.

This section and the previous two give technigques for reducing cost. The
following sections present three technigues for improving performance.

Reducing CP1 with Special Case Microcode

As we have noted. the wise microprogrammer knows when to save space and
when to spend it. An instance of this is dedicating extra microcode for frequent
instructions. thereby reducing CPI. For example, the VAX 8800 uses its large
controt store for many versions of the CALLS instruction, optimized for register
saving depending upon the value in the register-save mask. Candidates for
special case microcode can be uncovered by instruction mix measurements. such
as those found in Chapter 4 or in Appendix B, or by counting the frequency of
ase of cach microinstruction in an existing implementation (see Emer and Clark

| 19R4]).

Reducing CPI by Adding Hardwired Control

Adding hardwired control can reduce costs as well as improve performance. For
example. VAX operands can be in memory or registers, but later machines
reduce CPI by having special code for register—register or register-memaory
moves and adds: ADDL.2 R, 10 (Rm) takes five or more cycles on the 780, but
s few as one on the 8600. Another example is in the memory interface, where
the straightforward solution s tor microcode 1o continuously test and branch
until memory is ready. Because of the delay between the time a condition
becomes true and the time the next microinstruction is read, this approach can
2dd one extra clock to each memory access. The importance of the memory
interface is underlined by the 780 and 8ROO statistics—20% of the 780 clock
cyeles and 234 of the 8800 are waiting for memory 1o be ready. these are called

stalls. A srall is where an instruction must pause one or morc clock ¢yl
waiting for some resource to be available. In this chapter stalls occur only wiy-
waiting for memory; in the next chapter we 'l see other reasons for stalls.
Many machines approach this problem by having the hardware sl
microinstruction that tries to access the memory-data register before the menn.
operation is completed. (This can be accomplished by freezing 1
microinstruction address so that the same microinstruction is executed unnl i
condition is met.) The instant the memory reference 1s readv. i
microinstruction that needs the data is allowed to complete, avoiding the ey

clock delay to access control memory.

Reducing CP! by Parallelism

Sometimes CPI can be reduced with more operations per microinstruction. Thi.
technique. which usually requires a wider microinstruction, increases parallelisn
with more datapath operations, It is another characteristic of machines labele,
horizontal. Examples of this performance gain can be seen in the fact that th
fastest models of each family in Figure 5.8 also have the widest microw
structions. Making the microinstruction wider does not guarantee increase
nerformance. however, An example where the potential gain was not realized -
found in a microprocessor very similar o the 8086, except that another bus w..
added to the datapath, requirisg six more bits in its microinstruction. This could
have reduced the execution phase from three clock cycles to two for many
popular 8086 instructions. Unfortunately, these popular IMACTOINSIrUCoNs wete
grouped with macroinstructions that couldn’t take advantage of thi
optimization, so they all had to run at the slower rate.

5.7

Putting It All Together: Control for DLX

The control for DLX is presented here to tie together the ideas from the preving.
three sections. We begin with a finite-state diagram to represent hardw ire,
control and end with microprogrammed control. Both versions of DLX contral
are used to demonstrate tradeoffs to reduce cost or to improve performanc,
Because the figures are already too large, the checking for data page faulis o
arithmetic overtlow shown in Figure 5.12 (page 218) is not included in 1k,
section. (Exercise 5.12 adds them.)

Memory access
not complete

U=

Memory Interrupt
_&CCESS
compiate
'
PC +—PC + 4 PC w-— (:
A=-— Rs1 clear interrupt
B -— Rs2

signal

Data transter ALU
(Figure 5 14)

Set
{Figure 5.16)

Jump
{Figute 517)

Branch
{Figure 5.18)

(Figure 5.15)

FIGURE 5.13 The top-level view of the DLX finite-state diagram for the non-fioating-
Point instructions. The first two steps of instruction execution—instruction fetch and
Instruction decode/register fetch—are shown. The first state repeats until the instruction is
tetched from memory or an interrupt is detected. If an interrupt is detected, the PC is saved
in 1AR and PC is set to the address of the interrupt routine. The last three steps of

Instruction execution--execution/effective address. memory access. and write back—are
shown in Figures 5.14 10 5.18 on pages 221-224.

' &
&+ oy

Rather than trying to draw the DLX finite-state machine in a single figure
Jhowing all 82 states, Figure S.13 (see page 220) shows just the top level,
containing 4 states plus references to the rest of the states detailed 1n Figures
5.14 (helow) through 5.1 (page 224), Unlike Frgure 5.2 (page 205). Figure 5.13

tahes advantage ol the change to the datapath alle amg PC o address memory

l
Data transter

1

MOVS2I

- e e E— T L

Memory
Hoves e o
IAR = A complete MOR~—B
Memaory I
access
mmplete

LB LBU
C --—am:-mz‘)"unamu:»a,ﬂl a C=— 0*“#aMDR,, 1,
LH LHU

C=—(MDR,)'* MOR ¢ 5,

Figure 5.13

FIGURE 5.14 The effective address calculation, memory-access, and write-back states for the memory-access
and data-transfer instructions of DLX. For loads. the second state repeats until the data is fetched from memory. The
*~31 state of stores repeats until the write is complete. While the operation of all five loads is shown in the states of this
qure. the proper operation of wntes depends on the memory system wrnting bytes and halfwords. without disturbing the
23t of the word n memory. and correctly abgning the bytes and haltwords (see Figure 3.10. page 97) over the proper
“vies of memory. On completion of execution control transters ta Figure 5.13. found on page 220.

L4l l
C+—Temp << 16

| Figure 5.13 I

FIGURE 5.15 The execution and write-back states for the ALU instructions of DLX. After putting a register or the
sign-extended 16-bit immediate into Temp. 1 of the 9 instructions is executed, and the result (C) is written back into the
reqgister file. Only SRA and LI may not be self-explanatory: The SRA instruction shifts right while it sign extends the |
operand and 41 loads the upper 16 bits ot the register while zeroing the lower 16 bits. (The C operators << and >> shift
left and right, respectively: they fill with zeros uniess bits are concatenated explicitly using ##, e.g., sign extension). As_
mentioned above. the check for overflow in ATL and sUs is not included to simplify the figure. On completion of execuhon

rantrol transfers to Fiqure 5.13 (paage 220}.

mih e s & g

| Figure 5.13 I

FLGmUHE 5.1_6 (See adioiping page.} The ‘e;ecution and write-back states for the Set instructions of DLX. After
putting a register or the ._stgn-extended 16-bit immediate into Temp. 1 of the 6 instructions compares A to Temp and then
sets C to 1 or 0. depending on whether the condition is true or false. C is then written back into the register file, and then

execution control transfers to Figure 5.13 (page 220). The dashed i in this fi :
. - : ed lines in
easier to follow intersecting lines. this figure and Figure 5.18 are used to make i

e,

Yes . No

&

PC=—PC+(IRJ*#R,, ,, X"

o ¥

| Figure 513 .

FIGURE 5.18 The execution states for the branch instructions of DLX. The PC is
loaded with the sum of the PC and the immediate only if the condition is true. On
completion of execution, control transfers to Figure 5.13. found on page 220.

Performance of Hardwired Control for DLX

As stated 1 Section 5.4, the goal for control designs is to minimize CPILL clodh
cycle time, amount of control hardware, and development time. CPL s just the
average number of states along the execution path of an instruction.

Let's assume that hardwired control directly implements the finite-state diagran:
in Figures 5,13 to 5,18, What is the CPIHor DLX running GCC?

1
t

CThe number of clock cycles to execute each DX instruction is determined
simiply counting the stites of an instruction. Sliirling at the lop, every nstruction
spends at feast two cloek cyeles in the states in Figure 5013 (ignoring interrupts
The actual number depends on the average number of times the state accessing
memory must repeat because memory s not ready. {These wasted clock cyeles
are usually called memaory stall eveles or want stares.) In cache-based machies
this vatue is typically 0 (i.e., no repetitions since cache access is 1 eyele) when
the datais found in the cache. and 10 or higher when it is not.

The tume for the remaining portion of instruction execution comes from the
addional figures. Besides two ceycles tor fetch and decode. loads takhe tow
more cycles plus clock cycles waiting for the data access, while stores take just
three more cloch Cycles plus wait states. Three extra cloch eycles are also
needed by ALUE instructions, and set instructions take four, Figure S.17 shows
that jumps take just one extra clock cyele with jump and links ek ing three.

o At ¢ a AErid & Maa! ml!’ ‘i‘l&.h‘ii.&\l‘&&&?&iﬂmm TRITITE

Ba N s l’r-f\L |

IM

. DLX instructions Minimum Memory Total clock

| clock cycles accesses cycles

- Louds 0 I ..
Stores > | Z e e o e o 7

) | - B

ALU 5 ..

: Sel 6 . ‘ e 7]
Jumps 3 | _‘ .-,..-_,_4 o

i, .lump uqd inks D l) ___*E’__________J
Branch (taken) 4 L __‘____*_,__*f_______f
Brunch(nm taken) 3 ' S _,_',4_____ o]

FIGURE 5.19 Clock cycles per instruction for DLX categories using the state
diagram in Figures 5.13 through 5.18. Determining the total clock cycles per category
requires multiplying the number of memory accesses-—~including instruction fetches—times
the average number of wait states, and adding this product to the minimum number of clock
cycles. We assume an average of 1 clock cycle per memory access. For example, ioads
take eight clock cycles if the average number of wait states 1S one,

-~

untaken branches need just one. Adding these times to the first portion of
instruction execution yields the clock cycles per DLX instruction class shown in
Figure 5.19.

FFrom Chapter 2, one way to calculute CPHs

1
) (cm * y)
CPl = " Instruction count
=1

Using the DLX instruction mix from Figure C.4 in Appendix C for GCC
(mormalized to 100%). the percentage of taken branches from Figure 3.22 (page
107). and one for the average number of wait states per memory access, the
DL.X CPI for this datapath and state diagram is calculated:

" Loads R * 21% = 1.68
. Stores 7 « 12% = 084
" ALU 6 * 3% = 2.2
Sl 7 o+ 6% = 042 |
;Jump.x 4 +« 2% = ()08
TJump and links 6 *+ 0% = (LX) i
Branch taken) S e 120 = 060
| 4o« 1% = 044

Branch (not taken)

k'l'hnu th 1Y Y ()] Loar (;(" i‘a .'Ihl'l'll{ (11

Total CPI:

6H.2K

Example

Answer

Improving DLX Performance When Control Is Hardwired

As mentioned above, performance is improved by reducing the number of \i...
an instruction must pass through during execution. Sometimes. performance
he improved By removing intermediate calculations that select one of sey ClLi,
options, cither by adding hardware that uses information in the opcode 1o 1y,
select the appropriate option, or by simply increasing the number of states.

Let's look atimproving the performance of ALU instructions by removing [y
lop two states in Figure 5.15 on page 222, which load either a register or
immediate mto Temp. One approach uses a new hardware option. Let's call o
"X see Figure 5.20). The X option selects either the B register or the 16y

immediate, depending on the opeode in IR. A second approach is simpls ..

increase the number of execution states so dhat there are separate states for Al |
instructions using inmmediale versus ALU instructions using registers.

For cach option, what would be the change in performance. and how shoyl,!
the state diagratn be changed? Also, how many states are needed in cach Option

Lither change reduces ALU execution time from five 1o four clock cycles plus
wint states. From Figure C.4. ALU operations are about 37% of the instruction.
lor GCC. Towering CPL from 6.3 10 5.9, and making the machine about 7',
Laster. Figure 5.20 shows Figure 5.15 modified to use the X option instead of thy
two states that load Temp, while Figure 5.21 simply has many more states 1.
achieve the same resuldt. The total number of states are S0 and 58, respectively.

amlil L L I — -l

ALL

AN

AND J

(A, 1"08A > X,

"t Piquie 5 1)

FIGURE 5.20 Figure 5.15 modified to remove the two states loading Temp. The

states use the new X option to mean that either B or (IR, '“##IR,¢ ., is the operand.
depending on the DLX opcode.

ALY

ADD! /
C*—A & “H'ﬁ }I"'”:‘;ﬁ 3!

'
-

SUB! /
C+—A - (IR)*MIR, ,,

ANDI /

C+—A& (IR,)*"WR, ,,

ORI /
C+—A | (IRg)*MWIR,, ,,

XORI /
C=—A ~ (R,}'C4nR,, ,, \l i

]
SLL! / |

C=—A<<(IR,)* R, ,,

SALI / *

C=—A>>(IR,)'®siR ,, ~N

SRAI / P

1=—1R5 35 C*—(A,) #H{A>>1), ;

(—~ C=—(A,) %A >>8), ,
]

N

LHl

C o |Fl|5 31<< 18

i
1411 r]rii!irt

Figure 5 13

FIGURE 5.21 Figure 5.15 modified to remove the two states loading Temp. Unlike

Figure 5.20, this requires no new hardware options in the datapath, but simply more control
states.

Control can affect the clock cycle time, cither because control itself takes
longer than the corresponding operations in the datapath, or because the datapath
operations selected by control fengthens the worst-case clock cycle time,

1"y
A
- b L .

Assume a machine with a 10-ns clock cycle (100-MHz clock rate). SUPPOSE 1y Following the lead of the state diagram. the DLX microprogram is divided

on closer mspection the designer discovered that all states could be executed iy into Figgres 5.23, 5.2:5. .‘:3.27. 5.28. and 5.29, with each secgon t')]thmx;:“rocode cqr.
ns. exeept states that use the shifter. Would it be wise to split those states. HINTIR responding to one ot Frgur:es 3.13 10‘5- 1?5 (pagefs 229-2 f‘)- € [irst state n
two 9-ns clock cycles for shift states and one 9-ns clock for everything else? Figure 5.13 becomes the first two microinstructions in Figure 5.23. The first

microinstruction {address 0) branches to microinstruction 3 if there is an
interrupt pending. Microinstruction 1 fetches an instruction from memory,
branching back to itself as long as the memory access is not complete.
Microinstruction 2 increments the PC by 4, loads A and B, and then does the
first-level decoding. The address of the next microinstruction then depends on
which macroinstruction is in the instruction register. The microinstruction
addresses for this first-level macroinstruction decode are specified in Figure
7.24. (In reality, the table shown in this figure is specified after the
microprogram is written, as both the number of entries and the corresponding
locations aren’t known until then.)

Assunning the improvement in the previous example. the AVETAge INStructiog,
executton time for the 100-MHz machine is 5.9%10 ns or 59 ns. The shifter 1.
only used in the states of four instructions: SLL, SRL. SRA., and LHI (sce Figw
5.20). In tact, cach ol these instructions takes S clock cycles (including one w
state for memory access), and only one of the five original clock cycles need e
sphit mto two new clock cycles. Thus, the average execution time of these
stractions changes from 5#10 ns, or S0 ns. 10 6+9 ns. or 54 ps. From Figure
these 4 instructions are about 11% of the instructions executed for GCC (i
normahization). making the average instruction execution time 89¢ (.99 p)\
+ 1% +54 ns or S3 ns. Thus. sphiting the shift state results in a2 machine that i

about 10% faster—a wise decision. (See Exercise 5.8 for o more sophisticared e
| Opcodes (symbolically Absolute 1.abel '

version of this tradeoft,) Figure

- specified) address
Hardwired control is completed by listing the control signads activated in eucl,] Memory 5 Mem: 5§95

state, assignimg numbers 1o the states. and tinally generating the PLA. Now Jer's Move 1o special) Movl2S: - 557
Implement control using microcode in a ROM. Move from special 21 MovS2l: 525
| $2 =B 23 Reg: 527
Microcoded Control for DLX S2 = Immediatc 24 Imm; 5.27
Acwustom format such as this is a stave to the architectre of the hardware amd sranch equal zero > By 529
instruction set whicl i serves. The format must strike o Proper compromise Branch not equal zero)< Bne: | 5.29
hemween ROM size, ROM -output decoding circuitey size, and machine CANCCHEon | Jump | M Jump: 3.29
rate. Jump register 55 JRey: 5.29
Jim MeReviteral. 1977 Jump and link 56 JAL: 5.29
Beltore microprogramming can L;{II'IlI]lL‘IIL‘L‘. the micromnstruction set must he Jump and fink register a - JALR: LB
determined. The first step is to list the possible entries for cach tield of the DI\ Trap ol o Trep Ricadi
nHcromstruction formal rom Figure 5.6 on page 209, Frgure 5.7 on page 2|1 FIGURE 5.24 Opcodes and corresponding addresses for decode tabile 1. The
lisis them For the I)L‘hliﬂillit)!l. Souree | and Souree? Frelds. I-'igurc 5.2 belvw opcodes are shown symbolically on the left, followed by the addresses with the absolute
shows the values for the remainin 2 fields., microinstruction address, a label, and the figure where the microcode can be found. If this
SCGUUNCIng o microinstructions requires further explanation, The table were implemented with a ROM it would contain 64 entries corresponding to the 6-bit

opcode of DLX. As this would clearly resuit in many redundant or unspecified entries, a

microprogrammed control includes i microprogram counter (o specity the PLA could be used to minimize hardware

daddress of the next microinstruction if branch is not taken. as in Frgure 5.5 o
page 208, I addition to the hranches using the Jump address field. three tables
are used 1o decode the DY macroinstructions, These tables are indexed with
the opeodes ol the DL instruction. and supply « nucroprogram address
depending on the value in the opcode. Their use will become clear s we
cxiannne the DX microprogram,

Figure 5.25 contains the DLX oad and store instructions. Microinstruction S
calculiates the effective address. and branches 1o microinstruction 9 if the

I O¢

MM

5

{)

-
!

N

'
H
|

M)

AN

-

i.abel
Moens:
Store:

|)|tml’::

|.0ad:

[.13:

LR

| .H:

1)ost

MAR
MDR

Temp

Temp
$
Temp
¢
Temp
¢

¢
FAR
¢

macroinstruction in the IR is a load. It not. microinstruction 6 loads MDR wilh
the value to be stored. and microinstruction 7 jumps to itself until the memory i
finished writing the data. Microinstruction 8 then jumps back EU microms‘tructmn
() (Figure 5.23) to begin the execution cycle all over again. If the macromst-ruc-
Gon was a luad. microinstruction 9 loops until the data has been read. Micro-
struction 10 then uses decode table 2 (specified in Figure 5.26) to specity the
ddress of the next microinstruction. Unlike the first decode table, this table 1S
used by other microinstructions. (There is no contlict in multiple uses since the

opcodes for cach instance are different.)

Suppose the instruction were load halfword. Figure 5.26 shows that the res.ult
of decode 2 would be to jump to microinstruction |5, This microinstruction
Jhifts the contents of MDR to the left 16 bits and stores the result in Temp. The
following microinstruction shifts Temp right arithmetically 16 bits and puts the
result in C. C now contains the 16 rightmost bits of MDR, with the upper 16 bits
containing the extended sign. This microinstruction jumps to location 22, which
writes C back into the destination register specifier in IR, and then jumps to
feteh the next macroinstruction starting at focation 0 (Figure 5.23).

ALL S
ADD A
28 S§2

ST MDR
SRA Temp
SI1LL. MIDR
SRI. Temp
ST MR
SRA Temp
S

MDR
SRI. Temp
Pass ST MDR
Pass ST A
Pass ST AR

52

pnmlé
13

Constant

Constant

Constant
CTonstant
Constant
Constant
Constant
Constant

¢

24
24
16
|6
|6

_ 1 &

Misc

Data write

Data read

Rde—C

('ond

Lowd’!

Moem'!
Uncond
Mcem'!

Decode

Uncond

tincond
Uncond
Uncond

LUncond
Uincond

Uncond

Jump
label

Load

Dloop

{teich
Load

Wnie !

Wnitel
Wrile!

Write |
Write
iteteh

[Ieteh

(omment

Memory instruct.
Store

Fetch next instr.
Loud MDR

Load byte, shift left 1o
remove upper 24 hits
Shift right arithmene
(e sign extend

LB unsigned
Shift right logicdl
l.oad hd’f

Shift right«arithmetic
LH Unsigned

Shift right logical
Load word

Maove to special
Move from spec.
Write hack & go ferch
next instruction

:'GUHE 5.25 The section of the DLX microprogram for loads and stores, corresponding to the states in Figure
,'14 (Page 221). The microcode for bytes and halfwords takes an extra microinstruction to align the data (see Figure
'0 page 97) Note that microinstruction, 5 loads A from Rg. just in case the instruction is a store. The label lfetch is for

e TR R —————

Opcode Absolute Label Figure
address
Load byte . o LB 528
| LO.Eid_b-)’le unsigned wo ‘EEEJ________&?__E
-'.LU;EHH[[“ - L _"_l_S_________ LH: _________?__3-5.
Load half unsigned 17 LHU: 53
Load word 19 Lw. 525§
ADD 25 ADD/: 8.7
SUB 26 SUBL: 527
AND 27 AND/I: 527
OR ' 2% ORE 527
X(JRI | - 2‘5 . S(O‘R*/l | | 557
SLL 30 sty s
SR, 31 SRLI; 5.27
SRA 32 ~ SRA/L: 527
L Cown T T T s
Set eyual s SEQM S
| Setnotequal 37 .SN_E/IZ S _5_%3
Set less than | 39 SLT/I: | 5_.28
Set greater than or equal o 4] SQE/I: __5.28
| Set greater than 43 SGT/: 5.8
l Set Jess than or equal 45 S__LE/I: N . 52_8

P

FIGURE 5.26 Opcodes and corresponding addresses for decode tables 2 and 3. The
opcodes are shown symbotically on the left, followed by the absolute microinstruction |
address, the corresponding label, and the figure where the microcode can be found. Since
the opcodes are shown symbolically, and they go to the same place in both tables, .lhe
same information can be used for specifying decode tables 2 and 3. This similanty is
attributable 1o the immediate version and register version of the DLX instructions sharing
the same microcode. If a table were implemented with a ROM, it would contain 64 entries
corresponding to the 6-bit opcode of DLX. Again, the many redundant or unspecified
entries suggest the use of a PLA to minimize hardware cost.

The ALU instructions are found in Figure 5.27. The first two microinsm‘lt‘-
tions correspond to the states at the top of Figure 5.15 (page 222). After loading
Temp with cither the register or the immediate. cach uses a decode table 10
veetor 1o the microinstruction that exccutes the ALU instruction. To savt
microcode space. the same microinstruction is used whether the operand i!‘r_“
register or an immediate. One of the microinstructions between 25 and “ I
exccuted. storing its result in C. 1t then jumps (o microinstruction 34, which
stores C mto the register specitied i the IR and in turn jumps to fetch the nesl
IT]TII'Ft1il1J\|l'Ill'tillll. ‘

l.oc Label Dest ALU Sl 52 C Misc Cond Jump Comment

label
-3 Reg: ~ Temp PasS2 B e Decode2 sowrcel =reg
24 Imm: Temp PassS2 Imm oo Decoded sourcel =imm.
S _ADDAi: € ADD A Temp e tocond Write2 ADD I
O SULB: C SUB__ A Temp cmcwoow_ bncond Write2 SUB
ST ANDA: € AND A cotemp o _bncond Write2 aND
HORE - C O OR A Temp ~.o.tocond Write2 OR
-0 XORA: _C . XOR A Temp —_..tncond Write YOR -
A SLLa:. ¢ SLL A Temp o Lncond Write2 SIL
WSRLA: € SRL_ A Temp coew oo Uncond | Write2 SRL
SOSRAL € SRA A Temp ce—voco o tncond Write2 SRA
W LHE C sLL Temp Constam 16 Uncond Write2 LHI
W Wrige2 Rde-C Uncond Ifeich Write back & vo

T L L I T —

FIGURE 5.27 Like the first two states in Figure 5.15 (page 222),

Jetch next instruction.

microinstructions 23 and 24 load Temp with an

operand and then vector to the appropriate microinstruction, depending on the opcode in IR. One of the nine
Jilowing microinstructions 1s executed. leaving its result in C. C is written back into the register specified in the register

zestination field of DL X macroinstruction in IR in microinstruction 34

Lzbel Dest ALU S S2 C Misc Cond Jump Comment |

Lo
label

S SEQM: _SUB A Temp __ Zero? Setl Ser equal

b G PassS2 __Consamt__ 0 Uncond _ Writed A= (set to fulse
OSNEM ___SUB A Temp Zero? Set(Set not equal

N | G _PanwS2 Constant | o o_Uncond Writed AT (set 1o true)

Pl SUB. A Temp egative? Setl Set less than
Y - C Pass S2 Constamt_ (0 Uncond Writed A>T 1set 1o fulse)
11 SGEA: ____SUB A Temp Negative? Set0 Set GT or equul
<2 e C PassS2 Constant _ | __Uncond Writed A>T (ser 1o trues
=2 SGT/L: —_RSUB A Temp B Negative? Setl Set gredter than
H o ._C_____PassS2 Constamt_ 0 Uncond ~ Writed 724 rser 1o fulse)
~> SLE/: . RSUB A _Temp e __Nepative? Set0 Ser LT or equal ~
o C Pass S2 Constant | Uncond Writed 724 rser to true)
1 Set: . C Pass 82 Constant () N Uncond Writed Serro() = false
N Setl: C Pass 82 Constant | - Setto | = true
1 Writed: Rde-C L'ncond Ifetch Write back & feich

next instruction

A

':E version using immediates. The tricky microcode is found

FIGURE 5.28 Corresponding to Figure 5.16 (pages 222-223), this microcode performs the DLX Set instructions.
~S in the previous figure. to save Space these same microinstructions execute either the version of set using registers or
th microinstructions 43 and 45, where the subtraction Temp -

" 5 unlike the earlier microcode. Remember that A—, Temp = Temp ~ A (see Figure 5.22 on page 229).

Si S2 C Misc Cond Jump Comment
label
20 Beg: ._____SUB A Constant () - 0} Branch lusir is branch =()
Rl o o L o Uncond Tetch #0: nor taken)
32 Bne: St A C onstant _ () e lfetch Insiris branch =0
>3 Branch: PC___ADD ___pPC immil6 Lncond Iferch) taken “
4 Jump: PC__ADD PC imm26 _...tncond lfewch Jump)
3 JReg: PC Pass ST A e e Lincond Iferch Jump register
M3 JAL: C Pass S PC S Jump and link
) _5_7*“_%____ _____PC ADD PC imm26 Rlle-C Uncond Iferch Jump & save PC
SEJALR: € PawSl PC e __Jump & link reg
59 PC Pass S1 4 RileC Lncond Ifetch Jump & save PC
60 Trap AR Pass S1 PC Trap
61 PC Pass S2 __1imm26 Lncond Ifeich

Figure 5 1% corresponds 1o the states in Figure 5.16 (pages 222-223), e

that the top two states thal load Te'mp are micminstructiups 23 and 24 u'f the pre

vious figure: the decode tables will either jump to locations 25 }0 3.4 In Figur,
517, or 35 to 45 in Figure 5.28, depending on the opcode. The micromnstruction.
for Set perform relative tests by having the ALU subtract Temp trom A and he,
lest the ALU output to see if the result is zero or negative. Depending on the teg
result. C is set to 1 or 0 and written back in the register file before LOINE 10 e
the next macroinstruction. Tests for A = Temp, A # Temp, A < Temp. and A -
Temp are straightforward using these conditions on the ALU output A - Temp
A > Temp and A € Temp. on the other hand. are not simple. but can be done
using the negative condition with the subtraction reversed:

(Temp - A<)y = (Temp< A) = (A>Temp)

11 the result is negative, then A > Temp., otherwise A < Temp. Vaoilal

Figure 5.29 contams the last of the DX microcode and corresponds 1o 1l
states tound e Frgures 5017 and SUE8 (pages 222-224). Micromstruction S0,
corresponding to the macroinstruCtion branch on equal zero, tests it A equals
sero, 1t does. the macroinstruction branch succeeds. and the micromstruction
jumps to the microinstruction 53, This microinstruction loads the PC with the
PC-relative address and then jumps to the microcode that fetches the new
macroimstruction ocation 0). It A does not cqual zero. the macroinstruction
branch fails, so that the next sequential microinstruction (51) executes., jumping
o Jocation O without changing the PC.

A state usually corresponds to a single microinstruction. although i few
cases above two micromstructions were needed. The jump and link instructions
have the reverse case, with two states collapsing into one microinstruction. The
actions in the fast two states of jump and link in Figure 5.17 are found in micro.
instruction 57, and similarly for the jump and link register with microinstruction
59. These microinstructions foad the PC with the PC-relative branch address and
save Cinto R3

Performance of Microcoded Control for DLX

Dest ALL Sourcel Source2 (Constant Misc Cond Jump
gperation
| nencoded 7 11) y 5 3 () 6
F.ncoded 3 4 4 q 5 3 4 6

4 for stores, plus want states

3 for load word, plus wat states

6 tor load byte or load half (signed or unsigned). plus wait states

3 for ALU

4 tor set

2 tor branch cqual zero (taken or untaken)

2 for brunch not equal zero (taken)

I for branch not equal zero (untaken)

| tor jumps

2 tor jump and links
Using the instruction mix for GCC in Figure C.4, and assuming an average of 1
willl state per memory access, the CPLis 7.68. This 1s higher than the hardwired

control CPI, because the test for interrupt tukes another clock cycle at the begin-
ning, loads and stores are slower. and branch equal zero 1s slower for the

untaken case.

Reducing Cost and Improving Performance of DLX
When Control Is Microcoded

The size of a completely unencoded version of the DLX microinstruction is
calculated from the number ot entries in Figures 5.7 (page 21 1) and 5.22 (page
229) plus the size of the Constant and Jump address fields. The largest constant
in the fields is 24, which requires S bits, and the largest address is 61, which
requires 6. Figure 5.30 shows the microinstruction fields, the unencoded widths,
and the encoded widths. Encoding almost halves the size ot control store.

address

Total

= 63 bits

F— T FL B

=—§3 bits

Betore trying to improve performance or reduce costs of control. the existing
performance must he assessed. Again. the process is to count the clock cycles
tor cach instruction. but this time there is a larger variety in performance.

All instructions execute microinstructions 0, 1. and 2 in Figure 5.23 (page
230), giving a base of 3 clocks plus watt states, depending on the repetition of
microinstruction 1. The clock cycles for the rest of the categories are: | The microinstruction can be further shrunk by introducing multiple
* instruction formats and by combining independent fields.

FIGURE 5.30 Width of field in bits of unencoded and encoded microinstruction formats. Note that the Constant
ind Jump address fields are not encoded in this example, placing fewer restrictions on the microprogram using the
“Ncoded tormat.

M,

Example

Answer

Figure 5.31 shows an encoded version of the original DLX microimnstrucy, .
format and the version with two formats: one for ALU operations and one 1. -
miscellancous and branch operations. A bit is added to distinguish the 1w
formats. The ALU/Jump (A/J) microinstruction pertorms the ALU operannng
specified in the microinstruction: the address of the next micromstruction
specified in the Jump address. For the Transter/Misce/Branch (T/M/B) mic.
instruction, the ALU performs Pass St while the Misc and Cond fields speair
the rest of the operations, The primary change in interpretation of the fields v
the new formats is that the ALU condition being tested in the T/M/B for.,
refers to the ALY output from the prior A/) microinstruction since there is .
ALU operation in T/M/B format. In both formats the Constant and Jump ficld
are combined into a single field under the assumption they are not used at ().
same tme. (For the A/) format. the appearance of a constant in a source il
results in Tetching the following microinstruction.) The new formats shrin
width from the original 33 bits 1o 22 bits, but the actual size savings depends o
the number of extra microinstructions needed because of the reduced options,

What i1s the merease in number ol microinstructions, compared to the singl,
Fformuat. for the microcode in Figure 523 (page 23007

peleessss———" S - S -k ———— . oy e b . e p——————a ek T L ———— e i——— =

N L

Sourcel | Source?

Source? Constant/
| Jump address

Constant/
Cond
Jump address

Destination | ALU operalion

0 [Jn\'-.'snnam:,n‘r ALU operation

MisC Transles-Misc Branch

1 Destination Source)

FIGURE 5.31 The original DLX microinstruction format at the top and the dual-

tormat version below. Note that the Misc field is expanded from 3 to 4 bits in the T/M;B 10
make the two formats the same length.

'
'

Frgure 5.32 shows the increase in the number of microinstructions over Figure
5.23 (page 230) because of the restrictions of cach format. The five micro-
instructions in the original format expand 1o six in the new format. Microinstrue-
ton 2is the only one that expands to two microinstructions for this example,

Example

Answer

Sometimes performance can be improved by finding faster sequences of

microcode, but normally 1t requires changes to the hardware. The branch equal
sero nstruction tahes one extra clock cycle when the branch is not taken with
hardwired control, but two with microcoded control; while branch not equal zero
has the same performance for hardwired and microcoded control. Why would
the tormer ditfer in performance? Figure 5.29 shows that microinstruction 52
branches on zero to fetch the next microinstruction, which is correct for the
branch on not equal zero macroinstruction. Microinstruction 50 also tests for
sero for the branch on sero macroinstruction and branches to the
nucroinstruction that loads the new PC. The not zero case is handled by the
following microinstruction (51), which jumps to fetch the next instruction—
hencee. one clock ceycle for untaken branch on not equal zero and two for untaken
branch on equal zero. One solution is simply to add “not zero™ to the microcode
branch conditions in Figure 5.22 (page 229) und change the branch on equal
microcode to the version in Figure 5.33. Since there are only ten branch

conditions, adding the eleventh would not require more than the four bits needed
lor an encoded version of that tield.

This change drops the CPl from 7.68 to 7.63 for microcoded control. yet this
is stidl higher than the CPI for hardwired control,

Let’s improve microcoded control so that the CPI for GCC is closer 1o the
original CPl under hardwired control.

The main performance culprit is the separate test for interrupts in Figdre AR
By moditying the hardware, decodel can kill two birds with one stone: I
addition to jumping to the appropriate microinstructions corresponding to the
opcode, it also jumps to the interrupt microcode if an interrupt is pending. Figure
2.34 shows the revised microcode. This modification saves one clock cycle from
cach instruction, reducing the CPI o 6.63.

Value ALU Misc Cond
0 ADD + InstrRead /R« Go to next sequentiul microistruction
M[PC]
l SUB Data Read MDRe- Uncund Alwavs jump
M[IMAR]
2 RSUB -, Write M{MAR/[Int? Pending thetw ecn instruction) intery upt?
(reverse subj MDR
3 AND & AB— RF Loud A&B Mem? Memory access not complere?
from Rey. File
4 OR RdeC Write Rd Zero?! Is the ALU outpur zero
N XOR A R3le-C Write R31 Negauve? [s the ALU output less than zero?
(for call
6 SLL << [.oad? Is the macromstruction a DLX load!
7 SRL >> Decodel Address table | determines next nicro-
(Fig. 324y anstruction cuses muin opcode)
! SRA >> Decodel Address tuble 2 determines nextr nicro-
(F12. 3.26) nstruction cuses “func” opcoder
Y Pass S1 8§/ Decoded Address tuble 2 deternunes next micro-
(Fig. 3.206) instructon cusey main opcode)
1} Pass §2 S22

= ==k 4 mm

FIGURE 5.22 The options for three fields of the DLX microinstruction format in Figure 5.6 on page 209. The
Jossible names are shown on the left of the field name. with an explanation of each field to the right. The real
mcronstruction would contain a bit pattern corresponding to the number in the first column. Combined with Figure 5.7
bage 211). all the fields are defined except the Constant and Jump address fields. which contain numbers supplied by
e microprogrammer. >>, is an abbreviation for shift right arithmetic and —, means reverse subtract (B —, A = A — B).

Loc Label Dest ALU S1 S2 C Misc Cond Jump Comment
label

0 Ifetch: Interrupt? Intrpt Check interrupy

| [loop: Instr Read Mem? lloop IR «-M[PC].
wdlil for nienyn .

) PC ADD PC Constant 4 AB«RF Decodel -

3 Intrpt: 1AR Pass S1 PC | [nterrupi i

4 pPC Pass SZ_’. Constant 0 Uncond Ifetch PC«0 ci [
fetch next
instruction

FIGURE 5.23 The first section of the DLX microprogram, corresponding to the states in Figure 5.13 (page 220).
The first column contains the absolute address of the microinstruction. followed by a label. The rest of the fiekds contain
values from Figures 5.7 (page 211) and 5.22 for the microinstruction format in Figure 5.6 (page 209). As an exampie.
microinstruction 2 corresponds to the second state of Figure 5.13. It sends the output from the ALU into PC, telis the ALL
to add. puts PC onto the Source1 bus, and a constant from the microinstruction (whose value is 4) onto the Source? bus
In addition, A and B are loaded from the register file according to the specifiers in IR. Finally, the address of the next
microinstruction to be executed comes from decode tabie 1 (Figure 5.24), which depends on the opcode in the instruction

register (I1R).

LLoc Label Type Dest
(1 ltetch: M/T/B
I Hoop M/T/B
3 M/T/B
4 oot A/l AR
3 A/ PC

ALL S S2 Misc Cond Const/
Jump
- : Interrupt? Intrpt
-- Instr Mem? [loop
| Read -
ADD PC Comstamt .-~ .- 4
-- -~ ABe— Decodel
RF i S
PJHHSI PC o .- .= | 5 _
SUB Temp Temp --- [tetch

Increment PC

Comment

Check interrupt
IR «M{[PC]: wait

_[m' Memory

—— et AR

r— — - - - - " [LR Y

Interrigi

PCe()tr ninus r1=0)
& vo tetch nexr
Instruction

FIGURE 5.32 Version of Figure 5.23 (page 230) using the dual-format microinstruction in Figure 5.31. Note that
ALU Jump rmicromstructions check the S1 and S2 fields for a constant specifier to see If the next address IS sequential (as
1 microinstruction 2). otherwise they go to the Jump address (as in microinstructions 4 and 5). The microprogrammer
-hanged the last microinstruchion to generate a zero by subtracting a register from itselt rather than through straight-
orward use ot constant 0 Using the constant would have required an additional microinstruction since this format goes to
e next sequential instruction f a constant s used. (See Figure 5.31)

Loc Label Dest ALU
M Bey: >LB
S PC ADD

————
A e ek ol . s Tmgm m

St S2 C Misc Cond Jump Comment
label
A Conmvtame 0 o Itetch Branch =0 L
PC immié C Uncond ftetch =0 taken

F .
IGURE 5.33 Branch not equal microcode from Figure 5.29 (page 234) rewritten by using a not zero condition in

microinstruction 44

Loc Label Dest ALU S S2 C Misc Cond Jump Comment
label
(} Itetch: Instr Read Mem? lteich IR «<M{[PC]: wuu
. B Jor memory

I PC ADD PC Constant 4 AB¢RF Decode! Also go 1o interrupt
o | " if pending interrup:
2 Intrpt: IAR SUB PC Constant 4 Interrupt: undo PC
) increment |

3 PC Pass S2 Constant () Uncond [Ifetch PCe0 & go ferch

next instruction

FIGURE 5.34 Revised microcode that takes advantage of a change of the hardware to have decode1 go to

microinstruction 2 if there is a pending interrupt. This microinstruction must reverse the incr

microinstruction so that the correct value is saved.

ement of PC in the prior

	101.gif
	102.gif
	103.gif
	104.gif
	105.gif
	106.gif
	107.gif
	108.gif
	109.gif
	110.gif
	111.gif
	112.gif
	113.gif
	114.gif
	115.gif
	116.gif

