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Ch. 4: (Rs) Validation

observed above:

validate versus analyze

both have:

- analysis if Rs

- evaluation of Rs

- impact of Rs

but

A&N: rough Rs

“have we got the right Rs?”

Val: polished Rs

balanced, agreed, well-formulated

“have we got the Rs right?”

(and also, self-evidently

“have we got the right Rs?”)
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typical problems appearing:

- not conform standard / quality

- badly phrased

ambiguous

sloppy language (English, Dutch)

sloppy formalism: formally incorrect

- flaws in models

form (syntax)

meaning (semantics)

- what has been missed in A&N

conflicts / consistency, completeness
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rough process model for validation

input is aggregation of

RDoc

organizational knowledge

general: form, meaning, frame

organizational standards

output is aggregation of

list of problems

agreed actions, among which:

 where to resume REprocess

if list is empty, then agreed action is:

stabilize RDoc: approve (&PHD&PUM)

validate
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4.1. Rs Review

process-like description

- plan Rv

- distribute Docs (all)

- prepare Rv

- hold Rv meeting

- if necessary:

repeat E&A&N

- check actions

- revise RDoc

more globally:

- actual validating

- if necessary:

repeat E&A&N

- settlement of validation
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similar to Fagan inspection, above & below:

rules for prepare & hold meeting

neutral chair

neutral rapporteur

boss absent

different backgrounds & stakeholders

per R:

discuss

choose action

system designers present, e.g. 3 - 10(!)

possible actions

accept / approve --> ready

clarify --> rewrite RDoc

supply --> E&A&N

solve conflict --> A&N

solidify --> A&N
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pre-review to shorten Rv:

easy form checking,

automatically done / supported

such as

standard structure

spelling

all figures, tables

references

NoToDos

2 continuations after pre-review:

- repair

- list of points, sent with the distribution
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full Rv also has a checklist

- clearness

- superfluous

- complete

- ambiguous

- consistent

- structure; similar to standard?

- relations (traceability)

resulting list

- description of each problem, with reference

- agreed action for each problem

note

one can imagine some further aggregation

before restarting E&A&N(&D)
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4.2. Prototyping

here it is similar to “program” testing

rough process description

- choose prototype testers:

(the) right people, sufficiently neutral

- develop test scenarios

i.e. build special purpose prototype

OR

extend existing E&A&N prototype

- let the testers execute the scenarios

- document problems
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spin off:

- test scenarios are

reusable for eventual system testing

- results provide material for (test) comparison

- thus extended prototype might serve as

spare system / stop-gap system

- (P)UM for prototype

can indicate how to rewrite RDoc

might be first step towards eventual UM
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4.3. Model Validation

review of model(s) is much more technical

because of

- syntax

- semantics

- consistency

within one model

between models

with reality

e.g. wrt UML

- semantics are only partially defined

- consistency is very weak,

in particular wrt dynamics

moreover:

consistency with reality always is

notoriously hard
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reformulation of models helps

- in plain living language

just for better understanding

by modeler as well as by others

- in (more) formal language(s)

just for better analysis

such as model checking, theorem proving

similarly, animation / simulation helps

is like prototype

presents scenarios

can handle more general what-ifs
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4.4. Rs Testing

scenario for testing:

a Requirement in the eventual system

developing tests thus provides

a critical Rs study

- where is R relevant

- correspondence with other Rs

- ?: one or more scenarios per R

if more, actually more than one R??

- reformulation of R:

more conforming to test scenario
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above gives rise to test record form:

- R’s identification

- corresponding Rs

- test scenario description and explanation

- testing problem --> R’s problem

- comment / recommendation

testing is less suitable / impossible for

- overall Rs:

having a system-wide characterization

a test could be done, but relation between

R and system remains unclear

as everything is involved
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- exclusive Rs:

those forbidding specific behaviour

they are non-operational, declarative

thus one has to try everything

- non-functional Rs:

such as reliability, security, evolvebility,

typically: aspect-like

cross-cutting everything

thus one has to try (nearly) everything

so we see,

- a too large test set is common

this often makes the underlying R less clear


