
Requirements Engineering, 2004, Luuk Groenewegen 4.1

Ch. 4: (Rs) Validation

observed above:

validate versus analyze

both have:

- analysis if Rs

- evaluation of Rs

- impact of Rs

but

A&N: rough Rs

“have we got the right Rs?”

Val: polished Rs

balanced, agreed, well-formulated

“have we got the Rs right?”

(and also, self-evidently

“have we got the right Rs?”)

Requirements Engineering, 2004, Luuk Groenewegen 4.2

typical problems appearing:

- not conform standard / quality

- badly phrased

ambiguous

sloppy language (English, Dutch)

sloppy formalism: formally incorrect

- flaws in models

form (syntax)

meaning (semantics)

- what has been missed in A&N

conflicts / consistency, completeness

Requirements Engineering, 2004, Luuk Groenewegen 4.3

rough process model for validation

input is aggregation of

RDoc

organizational knowledge

general: form, meaning, frame

organizational standards

output is aggregation of

list of problems

agreed actions, among which:

 where to resume REprocess

if list is empty, then agreed action is:

stabilize RDoc: approve (&PHD&PUM)

validate

Requirements Engineering, 2004, Luuk Groenewegen 4.4

4.1. Rs Review

process-like description

- plan Rv

- distribute Docs (all)

- prepare Rv

- hold Rv meeting

- if necessary:

repeat E&A&N

- check actions

- revise RDoc

more globally:

- actual validating

- if necessary:

repeat E&A&N

- settlement of validation

Requirements Engineering, 2004, Luuk Groenewegen 4.5

similar to Fagan inspection, above & below:

rules for prepare & hold meeting

neutral chair

neutral rapporteur

boss absent

different backgrounds & stakeholders

per R:

discuss

choose action

system designers present, e.g. 3 - 10(!)

possible actions

accept / approve --> ready

clarify --> rewrite RDoc

supply --> E&A&N

solve conflict --> A&N

solidify --> A&N

Requirements Engineering, 2004, Luuk Groenewegen 4.6

pre-review to shorten Rv:

easy form checking,

automatically done / supported

such as

standard structure

spelling

all figures, tables

references

NoToDos

2 continuations after pre-review:

- repair

- list of points, sent with the distribution

Requirements Engineering, 2004, Luuk Groenewegen 4.7

full Rv also has a checklist

- clearness

- superfluous

- complete

- ambiguous

- consistent

- structure; similar to standard?

- relations (traceability)

resulting list

- description of each problem, with reference

- agreed action for each problem

note

one can imagine some further aggregation

before restarting E&A&N(&D)

Requirements Engineering, 2004, Luuk Groenewegen 4.8

4.2. Prototyping

here it is similar to “program” testing

rough process description

- choose prototype testers:

(the) right people, sufficiently neutral

- develop test scenarios

i.e. build special purpose prototype

OR

extend existing E&A&N prototype

- let the testers execute the scenarios

- document problems

Requirements Engineering, 2004, Luuk Groenewegen 4.9

spin off:

- test scenarios are

reusable for eventual system testing

- results provide material for (test) comparison

- thus extended prototype might serve as

spare system / stop-gap system

- (P)UM for prototype

can indicate how to rewrite RDoc

might be first step towards eventual UM



Requirements Engineering, 2004, Luuk Groenewegen 4.10

4.3. Model Validation

review of model(s) is much more technical

because of

- syntax

- semantics

- consistency

within one model

between models

with reality

e.g. wrt UML

- semantics are only partially defined

- consistency is very weak,

in particular wrt dynamics

moreover:

consistency with reality always is

notoriously hard

Requirements Engineering, 2004, Luuk Groenewegen 4.11

reformulation of models helps

- in plain living language

just for better understanding

by modeler as well as by others

- in (more) formal language(s)

just for better analysis

such as model checking, theorem proving

similarly, animation / simulation helps

is like prototype

presents scenarios

can handle more general what-ifs

Requirements Engineering, 2004, Luuk Groenewegen 4.12

4.4. Rs Testing

scenario for testing:

a Requirement in the eventual system

developing tests thus provides

a critical Rs study

- where is R relevant

- correspondence with other Rs

- ?: one or more scenarios per R

if more, actually more than one R??

- reformulation of R:

more conforming to test scenario

Requirements Engineering, 2004, Luuk Groenewegen 4.13

above gives rise to test record form:

- R’s identification

- corresponding Rs

- test scenario description and explanation

- testing problem --> R’s problem

- comment / recommendation

testing is less suitable / impossible for

- overall Rs:

having a system-wide characterization

a test could be done, but relation between

R and system remains unclear

as everything is involved

Requirements Engineering, 2004, Luuk Groenewegen 4.14

- exclusive Rs:

those forbidding specific behaviour

they are non-operational, declarative

thus one has to try everything

- non-functional Rs:

such as reliability, security, evolvebility,

typically: aspect-like

cross-cutting everything

thus one has to try (nearly) everything

so we see,

- a too large test set is common

this often makes the underlying R less clear


