Requirements Engineering, 2004, Luuk Groenewegen 4.1

Ch. 4: (Rs) Validation

observed above:

validate versus analyze

- both have: - analysis if Rs
- evaluation of Rs
- impact of Rs

but

A&N: rough Rs "have we got the right Rs?"

Val: polished Rs balanced, agreed, well-formulated "have we got the Rs right?" (and also, self-evidently "have we got the right Rs?")

Requirements Engineering, 2004, Luuk Groenewegen 4.4 Rs Review

41

process-like description

- plan Rv
- distribute Docs (all)
- prepare Rv
- hold Rv meeting
- if necessary: repeat E&A&N
- check actions
- revise RDoc

more globally:

- actual validating
- if necessary:
- repeat E&A&N
- settlement of validation

uirements Engineering, 2004, Luuk Groenewegen

typical problems appearing:

- not conform standard / quality

- badly phrased ambiguous sloppy language (English, Dutch) sloppy formalism: formally incorrect
- flaws in models form (syntax) meaning (semantics)
- what has been missed in A&N conflicts / consistency, completeness

Requirements Engineering, 2004, Luuk Groenewegen 4.5 similar to Fagan inspection, above & below:

rules for prepare & hold meeting

neutral chair neutral rapporteur boss absent different backgrounds & stakeholders per R: discuss choose action system designers present, e.g. 3 - 10(!)

possible actions

accept / approve --> clarify --> supply --> solve conflict --> solidify -->

readv rewrite RDoc E&A&N A&N A&N

Requirements Engineering, 2004,

4.2

4.3

4.6

rough process model for validation

- validate \$
- input is aggregation of RDoc organizational knowledge general: form, meaning, frame organizational standards
- output is aggregation of list of problems agreed actions, among which: where to resume REprocess
- if list is empty, then agreed action is: stabilize RDoc: approve (&PHD&PUM)

Requirements Engineering, 2004, Luuk Groenewegen

pre-review to shorten Rv:

easy form checking, automatically done / supported

such as

standard structure spelling all figures, tables references NoToDos

2 continuations after pre-review:
- repair
- list of points, sent with the distribution

Requirements Engineering, 2004,	Luuk Groenewegen	4.7	Requirements Engineering, 20	04, Luuk Groenewegen	4.8	Requirements Engineering, 2004,	Luuk Groenewegen	4.9
full Rv also has a check	clist		4.2.	Prototyping		spin off:		
- clearness								
- superfluous		here it is similar to "program" testing			- test scenarios are			
- complete					reusable for eventual system testing			
- ambiguous								
- consistent			rough process description					
- structure; similar to standard?						- results provide material for (test) comparison		
- relations (traceability)			- choose prototype testers:					
			(the) right p	eople, sufficiently neutral				
resulting list						- thus extended prototy	pe might serve as	
- description of each problem, with reference		- develop test scenarios			spare system / sto	p-gap system		
- agreed action for each problem		i.e. build special purpose prototype						
			OR					
			extend exist	ing E&A&N prototype		- (P)UM for prototype		
note						can indicate how	to rewrite RDoc	
one can imagine some further aggregation		- let the testers execute the scenarios		might be first step	towards eventual U	М		
before restarting E&A&	&N(&D)							

- document problems

Requirements Engineering, 2004, Luuk Groenewegen Requirements Engineering, 2004, Luuk Groenewegen Requirements Engineering, 2004, Luuk Groenewegen 4.10 4.11 4.3. Model Validation reformulation of models helps 4.4. Rs Testing - in plain living language review of model(s) is much more technical just for better understanding scenario for testing: by modeler as well as by others a Requirement in the eventual system because of - in (more) formal language(s) just for better analysis developing tests thus provides - syntax such as model checking, theorem proving a critical Rs study - semantics - consistency within one model between models - where is R relevant with reality similarly, animation / simulation helps is like prototype - correspondence with other Rs e.g. wrt UML presents scenarios - semantics are only partially defined can handle more general what-ifs - ?: one or more scenarios per R - consistency is very weak, if more, actually more than one R?? in particular wrt dynamics - reformulation of R: more conforming to test scenario moreover: consistency with reality always is notoriously hard Requirements Engineering, 2004, Luuk Groenewegen 4.13 Requirements Engineering, 2004, Luuk Groenewegen 4.14 above gives rise to test record form: - exclusive Rs: those forbidding specific behaviour - R's identification they are non-operational, declarative - corresponding Rs thus one has to try everything - test scenario description and explanation - testing problem --> R's problem - comment / recommendation - non-functional Rs: such as reliability, security, evolvebility, typically: aspect-like testing is less suitable / impossible for cross-cutting everything thus one has to try (nearly) everything - overall Rs: having a system-wide characterization

4.12

a test could be done, but relation between R and system remains unclear as everything is involved

so we see, - a too large test set is common this often makes the underlying R less clear