
1

Lecture 3 – Memory Hierarchy

Slides were used during lectures by
David Patterson, Berkeley, spring 2006

Review from last lecture
• Quantify and summarize performance

– Ratios, Geometric Mean, Multiplicative Standard Deviation
• F&P: Benchmarks age, disks fail,1 point fail danger
• Control VIA State Machines and Microprogramming
• Just overlap tasks; easy if tasks are independent
• Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler scheduling
– Control: delayed branch, prediction

• Exceptions, Interrupts add complexity

pipelined

dunpipeline

 TimeCycle
TimeCycle

CPI stall Pipeline 1

depthPipeline Speedup ×
+

=

Outline
• Review
• Memory hierarchy
• Locality
• Cache design
• Virtual address spaces
• Page table layout
• TLB design options
• Conclusion

Since 1980, CPU has outpaced DRAM ...

CPU
60% per yr
2X in 1.5 yrs

DRAM
9% per yr
2X in 10 yrs

10

DRAM

CPU

Performance
(1/latency)

100

1000

19
80

20
00

19
90

Year

Gap grew 50% per
year

Q. How do architects address this gap?
A. Put smaller, faster “cache” memories

between CPU and DRAM.
Create a “memory hierarchy”.

1977: DRAM faster than microprocessors

Apple II (1977)

Steve
WozniakSteve

Jobs

CPU: 1000 ns
DRAM: 400 ns

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms
(10,000,000 ns)

10 - 10 cents/bit-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

2

Memory Hierarchy: Apple iMac G5

iMac G5
1.6 GHz

07 Reg L1 Inst L1 Data L2 DRAM Disk

Size 1K 64K 32K 512K 256M 80G

Latency
Cycles,
Time

1,
0.6 ns

3,
1.9 ns

3,
1.9 ns

11,
6.9 ns

88,
55 ns

107,
12 ms

Let programs address a memory space that
scales to the disk size, at a speed that is
usually as fast as register access

Managed
by compiler

Managed
by hardware

Managed by OS,
hardware,
application

Goal: Illusion of large, fast, cheap memory

iMac’s PowerPC 970: All caches on-chip

(1K)

R
e
g
i
s
t
e
r
s

L2
512K

L1 (64K Instruction)

L1 (32K Data)

The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at any

instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will tend

to be referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced, items

whose addresses are close by tend to be referenced soon
(e.g., straightline code, array access)

• Last 15 years, HW relied on locality for speed

It is a property of programs which is exploited in machine design.

Programs with locality cache well ...

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for
Virtual Memory. IBM Systems Journal 10(3): 168-192 (1971)

Time

M
em

or
y

A
dd

re
ss

 (o
ne

 d
ot

 p
er

 a
cc

es
s)

Spatial
Locality

Temporal
Locality

Bad locality behavior

Memory Hierarchy: Terminology
• Hit: data appears in some block in the upper level

(example: Block X)
– Hit Rate: the fraction of memory access found in the upper level
– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the
lower level (Block Y)

– Miss Rate = 1 − (Hit Rate)
– Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on 21264!)
Lower Level

MemoryUpper Level
Memory

To Processor

From Processor
Blk X

Blk Y

Cache Measures

• Hit rate: fraction found in that level
– So high that usually talk about Miss rate
– Miss rate fallacy: as MIPS to CPU performance,

miss rate to average memory access time in memory

• Average memory-access time
= Hit time + Miss rate x Miss penalty (ns or clocks)

• Miss penalty: time to replace a block from lower level,
including time to replace in CPU

– access time:
time to lower level = f(latency to lower level)

– transfer time:
time to transfer block = f(bandwidth between upper & lower levels)

3

4 Questions for Memory Hierarchy

• Q1: Where can a block be placed in the upper level?
(Block placement)

• Q2: How is a block found if it is in the upper level?
(Block identification)

• Q3: Which block should be replaced on a miss?
(Block replacement)

• Q4: What happens on a write?
(Write strategy)

Q1: Where can a block be placed in
the upper level?

• Block 12 placed in 8 block cache:
– Fully associative, direct mapped, set associative
– S.A. Mapping = Block Number modulo #Sets

Cache

01234567
0 1 2 3

01234567

Memory

1111111111222222222233
01234567890123456789012345678901

Full Mapped Direct Mapped
(12 mod 8) = 4

2-Way Assoc
(12 mod 4) = 0

01234567
← set number
← cache block/line

number

← memory block
number

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index,
expands tag

Q2: How is a block found if it is in the
upper level?

Block
Offset

Block Address

IndexTag

Q3: Which block should be replaced
on a miss?

• Easy for Direct Mapped

• Set Associative or Fully Associative:
– LRU (Least Recently Used); appealing, but hard to implement for high

associativity
– Random; easy to implement, how well does it work?

Assoc: 2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q4: What happens on a write?

Write-Through Write-Back

Policy

Data written to cache
block

also written to lower-
level memory

Write data only to the
cache

Update lower level
when a block falls out

of the cache

Debug Easy Hard

Do read misses
produce writes? No Yes

Do repeated writes
make it to lower

level?
Yes No

Additional option: let writes to an un-cached address allocate
a new cache line (“write-allocate”).

Write Buffers for Write-Through Caches

Q. Why a write buffer ?

Processor
Cache

Write Buffer

Lower
Level

Memory

Holds data awaiting write-through to
lower level memory

A. So CPU doesn’t stall

Q. Why a buffer, why not just
one register ?

A. Bursts of writes are
common.

Q. Are Read After Write
(RAW) hazards an issue for
write buffer?

A. Yes! Drain buffer before next
read, or send read first after check
write buffers.

4

Cache misses

Cache misses can be divided into three categories

Compulsory First access miss, cold start miss.

Capacity Cache is full.

Conflict Two blocks are mapped to the
same location.

6 Basic Cache Optimizations
Reducing Miss Rate

1. Larger Block size (compulsory misses)
2. Larger Cache size (capacity misses)
3. Higher Associativity (conflict misses)

Reducing Miss Penalty
4. Multilevel Caches

Reducing hit time
5. Giving Reads Priority over Writes

E.g., Read complete before earlier writes in write buffer
6. Avoiding Address Translation during Indexing of the Cache

Outline
• Review
• Memory hierarchy
• Locality
• Cache design
• Virtual address spaces
• Page table layout
• TLB design options
• Conclusion

The Limits of Physical Addressing

CPU Memory
A0-A31 A0-A31

D0-D31 D0-D31

“Physical addresses” of memory locations

Data

• All programs share one address space: The physical
address space

• Machine language programs must be aware of the
machine organization

• No way to prevent a program from accessing any
machine resource

Solution: Add a Layer of Indirection

CPU Memory

A0-A31 A0-A31

D0-D31 D0-D31

Data

“Physical addresses”

Address
Translation

Virtual Physical

“Virtual Addresses”

• User programs run in a standardized virtual
address space

• Address Translation hardware managed by the
operating system (OS) maps virtual address to
physical memory

• Hardware supports “modern” OS features:
Protection, Translation, Sharing

Three Advantages of Virtual Memory
• Translation:

– Program can be given consistent view of memory, even though
physical memory is scrambled

– Makes multithreading reasonable (now used a lot!)
– Only the most important part of program (“Working Set”) must be in

physical memory.
– Contiguous structures (like stacks) use only as much physical

memory as necessary yet still grow later.

• Protection:
– Different threads (or processes) protected from each other.
– Different pages can be given special behavior

» (Read Only, Invisible to user programs, etc).
– Kernel data protected from User programs
– Very important for protection from malicious programs

• Sharing:
– Can map same physical page to multiple users (“Shared memory”)

5

Page tables encode virtual address spaces

A machine usually
supports

pages of a few sizes
(MIPS R4000):

A virtual address space is divided into
blocks of memory called pages

Valid page table entry codes physical
memory “frame” address for the page

Physical
Address Space

frame

frame

frame

frame

Page table is indexed by a virtual address

virtual
address

Page table

OS manages the page table

• Page table maps virtual page numbers to physical
frames (“PTE” = Page Table Entry)

• Virtual memory => treat memory ≈ cache for disk

Details of Page Table

Virtual Address

Page Table

index
into
page
table

Page Table
Base Reg

V Access
Rights PA

V page no. offset
12

table located
in physical
memory

P page no. offset
12

Physical Address

Physical
Memory Space

frame

frame

frame

frame

virtual
address

Page Table

Page tables may not fit in memory!

A table for 4KB pages for a 32-bit address space has 1M entries

Each process needs its own address space!

P1 index P2 index Page Offset
31 12 11 02122

32 bit virtual address

Top-level table wired in main memory

Subset of 1024 second-level tables in main
memory; rest are on disk or unallocated

Two-level Page Tables

VM and Disk: Page replacement policy

...

Page Table

1 0
useddirty

1 0
0 1
1 1
0 0Set of all pages

in Memory Tail pointer:
Clear the used
bit in the
page table

Head pointer
Place pages on free
list if used bit
is still clear.
Schedule pages with
dirty bit set to
be written to disk.

Freelist

Free Pages

Dirty bit: page written

Used bit: set to 1 on
any reference

Architect’s role:
support setting dirty

and used bits

TLB Design Concepts

MIPS Address Translation: How does it work?

“Physical
Addresses”

CPU Memory
A0-A31 A0-A31

D0-D31 D0-D31

Data

Virtual Physical

“Virtual Addresses”

Translation
Look-Aside

Buffer
(TLB)

Translation Look-Aside Buffer (TLB)
– A small fully-associative cache of mappings from virtual to physical

addresses
– TLB also contains protection bits for virtual address
– Fast common case: Virtual address is in TLB, process has

permission to read/write it.

6

V=0 pages either
reside on disk or have
not yet been allocated.
OS handles V=0
“Page fault”

Physical and virtual
pages must be the

same size!

The TLB caches page table entries

TLB

Page Table

2

0

1
3

virtual address

page off

2
frame page

2
50

physical address

page off

TLB caches
page table

entries

MIPS handles TLB misses in
software (random replacement).
Other machines use hardware.

Physical
frame

address

Can TLB and caching be overlapped?

Index Byte Select

Valid

Cache Block

Cache Block

Cache Tags Cache Data

Data out

Virtual Page Number Page Offset

=

Hit

Cache Tag

This works, but ...

Q. What is the downside?
A. Inflexibility. Size of cache

limited by page size.

Virtual

Physical

Translation
Look-Aside

Buffer
(TLB)

Problems With Overlapped TLB Access
Overlapped access only works as long as the address bits used to

index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
n-way set associative caches if you want a large cache

Example: suppose everything the same except that the cache is
increased to 8 K bytes instead of 4 K: 11 2

00

virt page # disp
20 12

cache
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Solutions:
go to 8K byte page sizes;
go to 2 way set associative cache;
or SW guarantee VA[13]=PA[13]

1K
4 4

10
2 way set assoc cache

Use virtual addresses for cache?

Only use TLB on a cache miss !

A. Synonym problem. If two address spaces share a
physical frame, data may be in cache twice.
Maintaining consistency is a nightmare.

Main Memory

“Physical
Addresses”

CPU

A0-A31 A0-A31

D0-D31 D0-D31

Translation
Look-Aside

Buffer
(TLB)

Virtual Physical

“Virtual Addresses”

Cache
Virtual

D0-D31

Downside: a subtle, fatal problem. What is it?

Summary #1/3: The Cache Design Space
• Several interacting dimensions

– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back
– write allocation

• The optimal choice is a compromise
– depends on access characteristics

» workload
» use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

Summary #2/3: Caches

• The Principle of Locality:
– Program access a relatively small portion of the address space at any

instant of time.
» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start misses.
– Capacity Misses: increase cache size
– Conflict Misses: increase cache size and/or associativity.

Nightmare Scenario: ping pong effect!

• Write Policy: Write Through vs. Write Back

• Today CPU time is a function of (ops, cache misses) vs. just f(ops):
affects Compilers, Data structures, and Algorithms

7

Summary #3/3: TLB, Virtual Memory
• Page tables map virtual address to physical address

• TLBs are important for fast translation

• TLB misses are significant in processor performance
– funny times, as most systems can’t access all of 2nd level cache without TLB

misses!

• Caches, TLBs, Virtual Memory all understood by examining how
they deal with 4 questions:
1) Where can block be placed?
2) How is block found?
3) What block is replaced on miss?
4) How are writes handled?

• Today VM allows many processes to share single memory without
having to swap all processes to disk; today VM protection is more
important than memory hierarchy benefits, but computers insecure

Reading

• This lecture: appendix C Memory Hierarchy

• Next lecture: chapter 2 Instruction-Level Parallelism

