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Chapter 8. Mining Stream, Time-
Series, and Sequence Data

Mining data streams

Mining time-series data

Mining sequence patterns in transactional 

databases

Mining sequence patterns in biological 

data
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Mining Data Streams

What is stream data?  Why Stream Data Systems?

Stream data management systems: Issues and solutions

Stream data cube and multidimensional OLAP analysis

Stream frequent pattern analysis

Stream classification

Stream cluster analysis

Research issues
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Characteristics of Data Streams

Data Streams
Data streams—continuous, ordered, changing, fast, huge amount

Traditional DBMS—data stored in finite, persistent data setsdata sets

Characteristics
Huge volumes of continuous data, possibly infinite

Fast changing and requires fast, real-time response

Data stream captures nicely our data processing needs of today
Random access is expensive—single scan algorithm (can only have 
one look)

Store only the summary of the data seen thus far

Most stream data are at pretty low-level or multi-dimensional in 
nature, needs multi-level and multi-dimensional processing
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Stream Data Applications

Telecommunication calling records

Business: credit card transaction flows

Network monitoring and traffic engineering

Financial market: stock exchange
Engineering & industrial processes: power supply & 
manufacturing
Sensor, monitoring & surveillance: video streams, RFIDs

Security monitoring

Web logs and Web page click streams

Massive data sets (even saved but random access is too 
expensive): digital earth, Hadron collider, SETI, etc.
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DBMS versus DSMS

Persistent relations

One-time queries

Random access

“Unbounded” disk store

Only current state matters

No real-time services

Relatively low update rate

Data at any granularity

Assume precise data

Access plan determined by 
query processor, physical DB 
design

Transient streams 

Continuous queries

Sequential access

Bounded main memory

Historical data is important

Real-time requirements

Possibly multi-GB arrival rate

Data at fine granularity

Data stale/imprecise

Unpredictable/variable data 
arrival and characteristics

Ack. From Motwani’s PODS tutorial slides
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Mining Data Streams

What is stream data?  Why Stream Data Systems?

Stream data management systems: Issues and solutions

Stream data cube and multidimensional OLAP analysis

Stream frequent pattern analysis

Stream classification

Stream cluster analysis

Research issues
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Architecture: Stream Query Processing

Scratch SpaceScratch Space
(Main memory and/or Disk)(Main memory and/or Disk)

User/ApplicationUser/ApplicationUser/Application

Continuous QueryContinuous Query

Stream QueryStream Query
ProcessorProcessor

ResultsResults
Multiple streamsMultiple streams

SDMS (Stream Data 
Management System)
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Challenges of Stream Data Processing

Multiple, continuous, rapid, time-varying, ordered streams

Main memory computations

Queries are often continuous
Evaluated continuously as stream data arrives

Answer updated over time

Queries are often complex
Beyond element-at-a-time processing

Beyond stream-at-a-time processing

Beyond relational queries (scientific, data mining, OLAP)

Multi-level/multi-dimensional processing and data mining
Most stream data are at low-level or multi-dimensional in nature
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Processing Stream Queries

Query types
One-time query vs. continuous query (being evaluated 
continuously as stream continues to arrive)

Predefined query vs. ad-hoc query (issued on-line)

Unbounded memory requirements
For real-time response, main memory algorithm should be used
Memory requirement is unbounded if one will join future tuples

Approximate query answering
With bounded memory, it is not always possible to produce exact 
answers

High-quality approximate answers are desired
Data reduction and synopsis construction methods

Sketches, random sampling, histograms, wavelets, etc.
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Methodologies for Stream Data Processing

Major challenges
Keep track of a large universe, e.g., pairs of IP address, not ages

Methodology
Synopses (trade-off between accuracy and storage)
Use synopsis data structure, much smaller (O(logk N) space) than 
their base data set (O(N) space)
Compute an approximate answer within a small error range
(factor ε of the actual answer)

Major methods 
Random sampling
Histograms
Sliding windows
Multi-resolution model
Sketches
Radomized algorithms
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Stream Data Processing Methods (1)

Random sampling (but without knowing the total length in advance)

Reservoir sampling: maintain a set of s candidates in the reservoir, 
which form a true random sample of the elements seen so far in the 
stream.  As the data stream flows, every new element has a certain 
probability (s/N) of replacing an old element in the reservoir.

Sliding windows
Make decisions based only on recent data of sliding window size w
An element arriving at time t expires at time t + w

Histograms
Approximate the frequency distribution of element values in a stream

Partition data into a set of contiguous buckets

Equal-width (equal value range for buckets) vs. V-optimal (minimizing 
frequency variance within each bucket)

Multi-resolution models
Popular models: balanced binary trees, micro-clusters, and wavelets
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Stream Data Processing Methods (2)
Sketches

Histograms and wavelets require multi-passes over the data but sketches 
can operate in a single pass

Frequency moments Fk of a stream A = {a1, …, aN}:
where v: the universe or domain size, mi: the frequency of i in the sequence

Given N elements and v values, sketches can approximate F0, F1, F2

in O(log v + log N) space

Randomized algorithms

Monte Carlo algorithm: bound on running time but may not return correct 
result (Note: Las Vegas algorithm correct but unbounded.) 

Chebyshev’s inequality:

Where X a random variable with mean µ and standard deviation σ

Chernoff bound: 

Where X the sum of independent Poisson trials X1, …, Xn, δ in (0, 1]

The probability decreases exponentially as we move from the mean
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Approximate Query Answering in Streams

Sliding windows
Only over sliding windows of recent stream data
Approximation but often more desirable in applications

Batched processing, sampling and synopses
Batched if update is fast but computing is slow 

Compute periodically, not very timely
Sampling if update is slow but computing is fast

Compute using sample data, but not good for joins, etc.
Synopsis data structures

Maintain a small synopsis or sketch of data
Good for querying historical data

Blocking operators, e.g., sorting, avg, min, etc.
Blocking if unable to produce the first output until seeing the entire 
input
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Projects on DSMS (Data Stream 
Management System)

Research projects and system prototypes

STREAMSTREAM (Stanford): A general-purpose DSMS

CougarCougar (Cornell): sensors 

AuroraAurora (Brown/MIT): sensor monitoring, dataflow

Hancock Hancock (AT&T): telecom streams

NiagaraNiagara (OGI/Wisconsin): Internet XML databases

OpenCQOpenCQ (Georgia Tech):  triggers, incr. view maintenance

TapestryTapestry (Xerox): pub/sub content-based filtering

TelegraphTelegraph (Berkeley): adaptive engine for sensors

TradebotTradebot (www.tradebot.com): stock tickers & streams

TribecaTribeca (Bellcore): network monitoring

MAIDS MAIDS (UIUC/NCSA): Mining Alarming Incidents in Data Streams 
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Stream Data Mining vs. Stream Querying

Stream mining — A more challenging task in many cases
It shares most of the difficulties with stream querying

But often requires less “precision”, e.g., no join, 
grouping, sorting

Patterns are hidden and more general than querying
It may require exploratory analysis

Not necessarily continuous queries
Stream data mining tasks

Multi-dimensional on-line analysis of streams
Mining outliers and unusual patterns in stream data
Clustering data streams 
Classification of stream data
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Mining Data Streams

What is stream data?  Why Stream Data Systems?

Stream data management systems: Issues and solutions

Stream data cube and multidimensional OLAP analysis

Stream frequent pattern analysis

Stream classification

Stream cluster analysis

Research issues
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Challenges for Mining Dynamics in Data 
Streams

Most stream data are at pretty low-level or multi-

dimensional in nature: needs ML/MD processing

Analysis requirements

Multi-dimensional trends and unusual patterns

Capturing important changes at multi-dimensions/levels 

Fast, real-time detection and response

Comparing with data cube: Similarity and differences

Stream (data) cube or stream OLAP: Is this feasible?

Can we implement it efficiently?
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Multi-Dimensional Stream Analysis: 
Examples

Analysis of Web click streams
Raw data at low levels: seconds, web page addresses, user IP 
addresses, …

Analysts want: changes, trends, unusual patterns, at reasonable 
levels of details

E.g., Average clicking traffic in North America on sports in the last 
15 minutes is 40% higher than that in the last 24 hours.”

Analysis of power consumption streams
Raw data: power consumption flow for every household, every 
minute 

Patterns one may find: average hourly power consumption surges 
up 30% for manufacturing companies in Chicago in the last 2 
hours today than that of the same day a week ago
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A Stream Cube Architecture

A tilted time frame
Different time granularities

second, minute, quarter, hour, day, week, …

Critical layers
Minimum interest layer (m-layer)
Observation layer (o-layer)

User: watches at o-layer and occasionally needs to drill-down down 
to m-layer

Partial materialization of stream cubes
Full materialization: too space and time consuming
No materialization: slow response at query time

Partial materialization: what do we mean “partial”?
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A Tilted Time Model

Natural tilted time frame:
Example: Minimal: quarter, then 4 quarters → 1 hour, 24 hours →
day, …

Logarithmic tilted time frame:
Example: Minimal: 1 minute, then 1, 2, 4, 8, 16, 32, …

Time
t8t 4t 2t t16t32t64t

4 qtrs24 hours31 days12 months
time
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A Tilted Time Model (2)

Pyramidal tilted time frame:
Example: Suppose there are 6 frames and each takes 
maximal 3 snapshots
Given a snapshot number N, if N mod 2d = 0, insert 
into the frame number d (=0, …, 5).  If there are more 
than 3 snapshots, “kick out” the oldest one. 

64 325

48 164

56 40 243

68 60 522

70 66 621

69 67 650

Snapshots (by clock time)Frame no.
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Two Critical Layers in the Stream Cube

(*, theme, quarter)

(user-group, URL-group, minute)

m-layer (minimal interest)

(individual-user, URL, second)
(primitive) stream data layer

o-layer (observation)
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On-Line Partial Materialization vs. 
OLAP Processing

On-line materialization

Materialization takes precious space and time
Only incremental materialization (with tilted time frame) 

Only materialize “cuboids” of the critical layers?

Online computation may take too much time
Preferred solution:

popular-path approach: Materializing cuboids along the 
popular drilling paths

H-tree structure: Such cuboids can be computed and stored 
efficiently using the H-tree structure

Online aggregation vs. query-based computation

Online computing while streaming: aggregating stream cubes

Query-based computation: using computed cuboids
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Stream Cube Structure: From m-layer to o-layer

(A1, *, C1)

(A1, *, C2) (A1, B1, C1) (A2, *, C1)

(A1, B1, C2) (A1, B2, C1) (A2, *, C2) (A2, B1, C1)

(A1, B2, C2) (A2, B2, C1)

(A2, B2, C2)

 (A2, B1, C2)

m-layer

o-layer
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An H-Tree Cubing Structure

Minimal int. layer

root

Chicago Urbana Springfield

.com .edu .com .gov

Elec Chem Elec Bio

Observation layer

6:00AM-7:00AM 156
7:00AM-8:00AM 201
8:00AM-9:00AM 235
……
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Benefits of H-Tree and H-Cubing

H-tree and H-cubing 

Developed for computing data cubes and ice-berg cubes

J. Han, J. Pei, G. Dong, and K. Wang,  “Efficient Computation 
of Iceberg Cubes with Complex Measures”, SIGMOD'01

Fast cubing, space preserving in cube computation

Using H-tree for stream cubing

Space preserving

Intermediate aggregates can be computed incrementally and 

saved in tree nodes

Facilitate computing other cells and multi-dimensional analysis

H-tree with computed cells can be viewed as stream cube
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Mining Data Streams

What is stream data?  Why Stream Data Systems?

Stream data management systems: Issues and solutions

Stream data cube and multidimensional OLAP analysis

Stream frequent pattern analysis

Stream classification

Stream cluster analysis

Research issues
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Frequent Patterns for Stream Data

Frequent pattern mining is valuable in stream applications

e.g., network intrusion mining (Dokas, et al’02)

Mining precise freq. patterns in stream data: unrealistic

Even when stored in a compressed form, such as FPtree

How to mine frequent patterns with good approximation?

Approximate frequent patterns (Manku & Motwani VLDB’02)

Keep only current frequent patterns?  No changes can be detected

Mining evolution freq. patterns (C. Giannella, J. Han, X. Yan, P.S. Yu, 2003)

Use tilted time window frame 

Mining evolution and dramatic changes of frequent patterns

Space-saving computation of frequent and top-k elements (Metwally, Agrawal, 

and El Abbadi, ICDT'05)
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Mining Approximate Frequent Patterns

Mining precise freq. patterns in stream data: unrealistic

Even when stored in a compressed form, such as FPtree

Approximate answers are often sufficient (e.g., trend/pattern analysis)

Example: a router is interested in all flows:

whose frequency is at least 1% (σ) of the entire traffic stream 
seen so far 

and feels that a 1/10 of σ (ε = 0.1%) error is comfortable 

How to mine frequent patterns with good approximation?

Lossy Counting Algorithm (Manku & Motwani, VLDB’02)

Major ideas: not tracing items until they become frequent

Advantage: guaranteed error bound

Disadvantage: keep a large set of traces
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Lossy Counting for Frequent Items

Bucket 1 Bucket 2 Bucket 3

Divide Stream into ‘Buckets’ (bucket size is 1/ ε = 1000) 
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First Bucket of Stream

Empty
(summary) +

At bucket boundary, decrease all counters by 1
to get the new updated summary.
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Next Bucket of Stream

+

At bucket boundary, decrease all counters by 1
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Approximation Guarantee

Given: 
support threshold σ

error threshold ε

stream length N

Output: items that remain with frequency counts exceeding (σ – ε) N
How much do we undercount?

If             stream length seen so far        = N  

and                bucket-size                      = 1/ε
then       frequency count error ≤≤ #buckets  passed thus far = εN

Approximation guarantee

No false negatives (discarded items have frequency < (σ–ε)N)

False positives have true frequency count at least (σ–ε)N
Frequency count underestimated by at most εN
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Lossy Counting For Frequent Itemsets

Divide Stream into ‘Buckets’ as for frequent items
But fill as many buckets as possible in main memory one time

Bucket 1 Bucket 2 Bucket 3

If we put 3 buckets of data into main memory one time,
Then decrease each frequency count by 3
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Update of Summary Data Structure

2

2

1

2

1
1

1

summary data 3 bucket data
in memory

4

4

10

2
2

0

+

3

3

9

summary data

Itemset (    ) is deleted.
That’s why we choose a large number of buckets 
=> delete more

item set   freq
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Pruning Itemsets – Apriori Rule

If we find itemset (      ) is not a frequent itemset,
then we do not need to consider its superset.

3 bucket data
in memory

1

+

summary data

2
2

1

1
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Summary of Lossy Counting

Strength
A simple idea
Can be extended to frequent itemsets

Weakness:
Space Bound is not good
For frequent itemsets, they do scan each record many 
times
The output is based on all previous data. But 
sometimes, we are only interested in recent data

A space-saving method for stream frequent item mining

Metwally, Agrawal and El Abbadi, ICDT'05
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Mining Evolution of Frequent Patterns for 
Stream Data

Approximate frequent patterns (Manku & Motwani VLDB’02)

Keep only current frequent patterns—No changes can be detected

Mining  evolution and dramatic changes of frequent patterns

(Giannella, Han, Yan, Yu, 2003)

Use tilted time window frame 

Use compressed form to store significant (approximate) frequent 

patterns and their time-dependent traces

Note: To mine precise counts, one has to trace/keep a fixed (and 

small) set of items
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Two Structures for Mining Frequent 
Patterns with Tilted-Time Window

FP-Trees store Frequent Patterns, rather than Transactions
Tilted-time major: An FP-tree for each tilted time frame
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Frequent Pattern & Tilted-Time Window (2)

The second data structure:
Observation: FP-Trees of different time units are similar

Pattern-tree major: 

each node is associated with a tilted-time window

on insert all the tilt windows can be updated
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Mining Data Streams

What is stream data?  Why Stream Data Systems?

Stream data management systems: Issues and solutions

Stream data cube and multidimensional OLAP analysis

Stream frequent pattern analysis

Stream classification

Stream cluster analysis

Research issues
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Classification for Dynamic Data Streams

Decision tree induction for stream data classification

VFDT (Very Fast Decision Tree)/CVFDT  (Domingos, Hulten, 
Spencer, KDD00/KDD01)

Is decision-tree good for modeling fast changing data, e.g., stock 
market analysis?

Other stream classification methods
Instead of decision-trees, consider other models 

Naïve Bayesian

Ensemble (Wang, Fan, Yu, Han. KDD’03)

K-nearest neighbors (Aggarwal, Han, Wang, Yu. KDD’04)
Tilted time framework, incremental updating, dynamic 
maintenance, and model construction

Comparing of models to find changes
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Hoeffding Tree

With high probability, classifies tuples the same
Only uses small sample

Based on Hoeffding Bound principle
Hoeffding Bound (Additive Chernoff Bound)
r a random variable
R the range of r
n the # independent observations
Mean of r is at least ravg – ε, with probability 1 – δ

n
R

2
)/1ln(2 δε =
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Hoeffding Tree Algorithm

Hoeffding Tree Input
S the sequence of examples
X the attributes
G( ) the evaluation function (for determining similarity)
D the desired accuracy

Hoeffding Tree Algorithm
for each example in S

retrieve G(Xa) and G(Xb) //two highest G(Xi)
if ( G(Xa) – G(Xb) > ε )

split on Xa

recurse to next node
break
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yes no

Packets > 10

Protocol = http

Protocol = ftp

yes

yes no

Packets > 10

Bytes > 60K

Protocol = http

Data Stream

Data Stream

Ack. From Gehrke’s SIGMOD tutorial slides

Decision-Tree Induction with Data 
Streams
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Hoeffding Tree: Strengths and Weaknesses

Strengths 
Scales better than traditional methods

Sublinear with sampling
Very small memory utilization

Incremental
Make class predictions in parallel
New examples are added as they come

Weakness
Could spend a lot of time with ties
Memory used with tree expansion
Number of candidate attributes
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VFDT (Very Fast Decision Tree)

Modifications to Hoeffding Tree
Near-ties broken more aggressively
G computed every nmin

Deactivates certain leaves to save memory
Poor attributes dropped
Initialize with traditional learner (helps learning curve)

Compare to Hoeffding Tree: Better time and memory
Compare to traditional decision tree

Similar accuracy
Better runtime with 1.61 million examples

21 minutes for VFDT
24 hours for C4.5

Still does not handle concept drift
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CVFDT (Concept-adapting VFDT)

Concept Drift
Time-changing data streams
Incorporate new and eliminate old

CVFDT
Increments count with new example
Decrement old example

Sliding window
Nodes assigned monotonically increasing IDs

Grows alternate subtrees
When alternate more accurate => replace old
O(w) better runtime than VFDT-window
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Ensemble of Classifiers Algorithm

H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining Concept-
Drifting Data Streams using Ensemble Classifiers”, 
KDD'03.

Method (derived from the ensemble idea in classification)

train K classifiers from K chunks

for each subsequent chunk

train a new classifier

test other classifiers against the chunk

assign weight to each classifier

select top K classifiers
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Mining Data Streams

What is stream data?  Why Stream Data Systems?

Stream data management systems: Issues and solutions

Stream data cube and multidimensional OLAP analysis

Stream frequent pattern analysis

Stream classification

Stream cluster analysis

Research issues
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Clustering Data Streams [GMMO01]

Based on the k-median method
Data stream points from metric space
Find k clusters in the stream s.t. the sum of distances 
from data points to their closest center is minimized

Constant factor approximation algorithm
In small space, a simple two step algorithm:

1. For each set of M records, Si, find O(k) centers in  
S1, …, Sl

Local clustering: Assign each point in Si to its closest 
center

2. Let S’ be centers for S1, …, Sl with each center 
weighted by number of points assigned to it

Cluster S’ to find k centers
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Hierarchical Clustering Tree

data points

level-i medians

level-(i+1) medians
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Hierarchical Tree and Drawbacks

Method:
maintain at most m level-i medians

On seeing m of them, generate O(k) level-(i+1)
medians of weight equal to the sum of the weights of 
the intermediate medians assigned to them

Drawbacks:

Low quality for evolving data streams (register only k
centers)

Limited functionality in discovering and exploring 
clusters over different portions of the stream over time
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Clustering for Mining Stream Dynamics

Network intrusion detection: one example

Detect bursts of activities or abrupt changes in real time—by on-

line clustering 

Our methodology (C. Agarwal, J. Han, J. Wang, P.S. Yu, VLDB’03)

Tilted time frame work: o.w. dynamic changes cannot be found

Micro-clustering: better quality than k-means/k-median 

incremental, online processing and maintenance)

Two stages: micro-clustering and macro-clustering

With limited “overhead” to achieve high efficiency, scalability,

quality of results and power of evolution/change detection
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CluStream: A Framework for Clustering 
Evolving Data Streams

Design goal

High quality for clustering evolving data streams with greater 
functionality

While keep the stream mining requirement in mind

One-pass over the original stream data

Limited space usage and high efficiency

CluStream: A framework for clustering evolving data streams

Divide the clustering process into online and  offline components

Online component: periodically stores summary statistics about 
the stream data

Offline component: answers various user questions based on 
the stored summary statistics
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The CluStream Framework

......1 kXX ......1 kTT

( )diii xxX ...1=

( )nCFCFCFCF ttxx ,1,2,1,2

Micro-cluster

Statistical information about data locality
Temporal extension of the cluster-feature vector

Multi-dimensional points             with time stamps 

Each point contains d dimensions, i.e., 

A micro-cluster for n points is defined as a (2.d + 3) 
tuple

Pyramidal time frame
Decide at what moments the snapshots of the 
statistical information are stored away on disk
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CluStream: Pyramidal Time Frame

Pyramidal time frame

Snapshots of a set of micro-clusters are stored 
following the pyramidal pattern

They are stored at differing levels of granularity 
depending on the recency

Snapshots are classified into different orders 
varying from 1 to log(T)

The i-th order snapshots occur at intervals of αi

where α ≥ 1

Only the last (α + 1) snapshots are stored 
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CluStream: Clustering On-line Streams

Online micro-cluster maintenance
Initial creation of q micro-clusters 

q is usually significantly larger than the number of natural 
clusters

Online incremental update of micro-clusters

If new point is within max-boundary, insert into the micro-
cluster

Otherwise, create a new cluster
May delete obsolete micro-cluster or merge two closest ones

Query-based macro-clustering
Based on a user-specified time-horizon h and the number of 
macro-clusters K, compute macroclusters using the k-means 
algorithm 
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Mining Data Streams

What is stream data?  Why SDS?

Stream data management systems: Issues and 
solutions

Stream data cube and multidimensional OLAP 
analysis

Stream frequent pattern analysis

Stream classification

Stream cluster analysis

Research issues
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Stream Data Mining: Research Issues

Mining sequential patterns in data streams

Mining partial periodicity in data streams

Mining notable gradients in data streams

Mining outliers and unusual patterns in data streams

Stream clustering

Multi-dimensional clustering analysis?

Cluster not confined to 2-D metric space, how to incorporate 

other features, especially non-numerical properties

Stream clustering with other clustering approaches?

Constraint-based cluster analysis with data streams?
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Summary: Stream Data Mining

Stream data mining: A rich and on-going research field
Current research focus in database community: 

DSMS system architecture, continuous query processing, 
supporting mechanisms 

Stream data mining and stream OLAP analysis 
Powerful tools for finding general and unusual patterns

Effectiveness, efficiency and scalability: lots of open problems

Our philosophy on stream data analysis and mining
A multi-dimensional stream analysis framework

Time is a special dimension: Tilted time frame

What to compute and what to save?—Critical layers

partial materialization and precomputation
Mining dynamics of stream data 
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Chapter 8. Mining Stream, Time-
Series, and Sequence Data

Mining data streams

Mining time-series data
Mining sequence patterns in transactional 

databases

Mining sequence patterns in biological 

data
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Time-Series and Sequential Pattern 
Mining

Regression and trend analysis—A 

statistical approach

Similarity search in time-series analysis

Sequential Pattern Mining

Markov Chain

Hidden Markov Model
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Mining Time-Series Data

Time-series database

Consists of sequences of values or events changing 
with time

Data is recorded at regular intervals
Characteristic time-series components

Trend, cycle, seasonal, irregular

Applications

Financial: stock price, inflation

Industry: power consumption
Scientific: experiment results

Meteorological: precipitation
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A time series can be illustrated as a time-series graph 
which describes a point moving with the passage of time
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Categories of Time-Series Movements

Categories of Time-Series Movements 
Long-term or trend movements (trend curve) (T): general direction in 
which a time series is moving over a long interval of time
Cyclic movements or cycle variations (C): long term oscillations about a 
trend line or curve

e.g., business cycles, may or may not be periodic
Seasonal movements or seasonal variations (S)

i.e, almost identical patterns that a time series appears to follow 
during corresponding months of successive years.

Irregular or random movements (I)
Time series analysis: decomposition of a time series into these four basic 
movements

Additive Modal: TS = T + C + S + I
Multiplicative Modal: TS = T × C × S × I
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Estimation of Trend Curve

The freehand method

Fit the curve by looking at the graph

Costly and barely reliable for large-scaled data mining

The least-square method

Find the curve minimizing the sum of the squares of 

the deviation of points on the curve from the 

corresponding data points

The moving-average method
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Moving Average

Moving average of order n

Smoothes the data

Eliminates cyclic, seasonal and irregular movements

Loses the data at the beginning or end of a series

Sensitive to outliers (can be reduced by weighted 

moving average)
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Trend Discovery in Time-Series (1):
Estimation of Seasonal Variations

Seasonal index

Set of numbers showing the relative values of a variable during 
the months of the year

E.g., if the sales during October, November, and December are 
80%, 120%, and 140% of the average monthly sales for the 
whole year, respectively, then 80, 120, and 140 are seasonal 
index numbers for these months

Deseasonalized data

Data adjusted for seasonal variations for better trend and cyclic 
analysis

Divide the original monthly data by the seasonal index numbers 
for the corresponding months
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Seasonal Index
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Raw data from 
http://www.bbk.ac.uk/man
op/man/docs/QII_2_2003
%20Time%20series.pdf
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Trend Discovery in Time-Series (2)

Estimation of cyclic variations

If (approximate) periodicity of cycles occurs, cyclic 
index can be constructed in much the same manner as 
seasonal indexes

Estimation of irregular variations

By adjusting the data for trend, seasonal and cyclic 
variations

With the systematic analysis of the trend, cyclic, seasonal, 
and irregular components, it is possible to make long- or 
short-term predictions with reasonable quality
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Time-Series & Sequential Pattern Mining

Regression and trend analysis—A 

statistical approach

Similarity search in time-series analysis

Sequential Pattern Mining

Markov Chain

Hidden Markov Model
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Similarity Search in Time-Series Analysis

Normal database query finds exact match 
Similarity search finds data sequences that differ only 
slightly from the given query sequence
Two categories of similarity queries

Whole matching: find a sequence that is similar to the 
query sequence
Subsequence matching: find all pairs of similar 
sequences

Typical Applications
Financial market
Market basket data analysis
Scientific databases
Medical diagnosis
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Data Transformation

Many techniques for signal analysis require the data to 
be in the frequency domain

Usually data-independent transformations are used

The transformation matrix is determined a priori

discrete Fourier transform (DFT)

discrete wavelet transform (DWT)

The distance between two signals in the time domain is 
the same as their Euclidean distance in the frequency 
domain
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Discrete Fourier Transform

DFT does a good job of concentrating energy in the first 
few coefficients
If we keep only the first few coefficients in the DFT, we 
can compute the lower bounds of the actual distance
Feature extraction: keep the first few coefficients (F-index) 
as representative of the sequence
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DFT (continued)

Parseval’s Theorem

The Euclidean distance between two signals in the time 
domain is the same as their distance in the frequency 
domain

Keep the first few (say, 3) coefficients underestimates the 
distance and there will be no false dismissals!
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Multidimensional Indexing in Time-Series

Multidimensional index construction

Constructed for efficient accessing using the first few 
Fourier coefficients

Similarity search

Use the index to retrieve the sequences that are at 
most a certain small distance away from the query 
sequence

Perform post-processing by computing the actual 
distance between sequences in the time domain and 
discard any false matches

November 17, 2009 Data Mining: Concepts and Techniques 82

Subsequence Matching

Break each sequence into a set of 
pieces of window with length w
Extract the features of the 
subsequence inside the window
Map each sequence to a “trail” in 
the feature space
Divide the trail of each sequence 
into “subtrails” and represent each 
of them with minimum bounding 
rectangle
Use a multi-piece assembly 
algorithm to search for longer 
sequence matches
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Analysis of Similar Time Series
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Enhanced Similarity Search Methods

Allow for gaps within a sequence or differences in offsets 
or amplitudes
Normalize sequences with amplitude scaling and offset 
translation
Two subsequences are considered similar if one lies within 
an envelope of ε width around the other, ignoring outliers
Two sequences are said to be similar if they have enough 
non-overlapping time-ordered pairs of similar 
subsequences 
Parameters specified by a user or expert: sliding window 
size, width of an envelope for similarity, maximum gap, 
and matching fraction
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Steps for Performing a Similarity Search

Atomic matching

Find all pairs of gap-free windows of a small length that 
are similar

Window stitching

Stitch similar windows to form pairs of large similar 
subsequences allowing gaps between atomic matches

Subsequence Ordering

Linearly order the subsequence matches to determine 
whether enough similar pieces exist
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Similar Time Series Analysis

VanEck International Fund Fidelity Selective Precious Metal and Mineral Fund

Two similar mutual funds in different fund groups
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Query Languages for Time Sequences

Time-sequence query language

Should be able to specify sophisticated queries like

Find all of the sequences that are similar to some sequence in class 
A, but not similar to any sequence in class B

Should be able to support various kinds of queries: range queries, 
all-pair queries, and nearest neighbor queries

Shape definition language

Allows users to define and query the overall shape of time 
sequences 
Uses human readable series of sequence transitions or macros

Ignores the specific details

E.g., the pattern up, Up, UP can be used to describe 
increasing degrees of rising slopes (~ Paerson’s code)
Macros: spike, valley, etc.
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