
Program correctness

Weakest preconditions

Marcello Bonsangue

Spring 2006



6/9/2008

Slide 2

Axiomatic semantics

 We have a language for asserting properties of
programs (syntax).

 We know when an assertion is true (validity).

 We have a symbolic way for deriving assertions
(proof system).

 What is the relation between validity and
provability?

6/9/2008

Slide 3

Hoare Logic

soundness and completeness

 Soundness (what can be proved is valid):

par { } c { } implies par { } c { }

 Completeness (what is valid can be proved):

par { } c { } implies par { } c { }

6/9/2008

Slide 4

Soundness

 Theorem: The proof system for partial correctness
is sound

equivalently, if par { } c { } then

,I (,I par and <c, > ’) ’,I par

Proof by induction on the length of the derivation of
the Hoare triples, reasoning about each axiom and
rule separately. (why?)

6/9/2008

Slide 5

Soundness of skip

Case: last rule used in the derivation is

{ } skip { }.

We have to prove

,I (,I par and <skip, > ’) ’,I par

Which follows because ’ = .

6/9/2008

Slide 6

Soundness of assignment

Case last rule in the derivation is { [a/x]} x := a { }

Take and I such that ,I  [a/x]. Then

< x := a, > [a/x]

We need to prove [a/x],I  , which follows from the
substitution lemma

LEMMA: ,I  [a/x] implies [a/x],I 

Proof: by induction on the structure of

6/9/2008

7

PenC - Spring 2006

Slide 7

Soundness of consequence rule

 Case last rule in the derivation is

 ’ { ’} c { ’}  ’
--

{ } c { }

 From soundness of first order logic we have

,I  ’.

Hence ,I  ’.

 From induction hypothesis we get ’,I  ’.

 From soundness of first order logic we finally obtain

’,I  ’ .

Therefore ’,I 

6/9/2008

8

PenC - Spring 2006

Slide 8

Soundness of while

 Case last rule in the derivation is

{ b} c { }
--
{ } while b do c od { b}

 Assume ,I  . We proceed by induction on the derivation of

<while b do c od, > ’

 There are two cases (we treat only one):

<b, > T <c, > ’ <while b do c od, ’> ’’
--

<while b do c od, > ’’

 We need to prove ’’,I  b

6/9/2008

9

PenC - Spring 2006

Slide 9

Soundness of while (II)

 By definition of derivation of <b, > T we obtain

,I  b

Hence ,I  b

 By induction hypothesis on derivation of { b} c { } we have

’,I 

 By induction hyp. on derivation of <while b do c od, ’> ’’

we finally obtain

’’,I  b

6/9/2008

Slide 10

Hoare Logic

 We have seen that if we can derive an

assertion in the Hoare logic then this

assertion is true (soundness).

 Next we concentrate on the opposite

direction (completeness).

6/9/2008

Slide 11

Completeness of Hoare Logic

 Can we prove that if an assertion is true then it is
derivable?

 More formally, can we prove

par{ } c { } implies par{ } c { }?

 The answer is yes, but only if the underlying logic is
complete ( implies ) and expressive enough

 This is called relative completeness.

6/9/2008

Slide 12

Idea for proving completeness

 To prove tot{ } c { } implies tot{ } c { }

1. Assume we can compute wp(c,) such that

 wp(c,) is a precondition of , i.e.

tot {wp(c,)} c { }

 wp(c,) is the weakest precondition of , i.e.

tot{ } c { } implies  wp(c,)

2. By completeness of the underlying logic and the
consequence rule we obtain

 wp(c,) tot {wp(c,)} c { }

tot { } c { }

6/9/2008

Slide 13

Weakest precondition (Dijkstra)

 Assertions can be ordered

Precondition of c implying that

holds after its execution

false true

wp(c,)

strong weak

 Thus to verify { } c { } we compute

wp(c,) and prove wp(c,)

6/9/2008

Slide 14

Weakest precondition

 The definition of the weakest precondition

follows the rules of the Hoare logic

 SKIP

{ } skip { }

wp(skip,) =

6/9/2008

Slide 15

Weakest precondition

 ASSIGNMENT

{ [a/x]} x := a { }

wp(x:=a,) = [a/x]

 SEQUENTIAL COMPOSITION

{ } c1 { } { } c2 { }

{ } c1; c2 { }

wp(c1; c2,) = wp(c1,wp(c2,))

6/9/2008

Slide 16

Weakest precondition

 CONDITIONAL

{ 1} c1 { } { 2} c2 { }

{b 1 b 2} if b then c1 else c2 fi { }

wp(if b then c1 else c2 fi,) = b wp(c1,) b wp(c2,)

6/9/2008

Slide 17

Weakest precondition

 LOOP

1. We already know that

while b do c od if b then (c;while b do c od) else skip fi

2. Let w = while b do c od and W = wp(w,). We have

W = b wp(c,W) b

3. This is a recursive equation

 We know how to solve it

 We need a complete partial order (cpo) of assertions

6/9/2008

18

PenC - Spring 2006

Slide 18

A CPO of assertions

 Refinement order:

 iff 

True is the bottom: it does not says much about a
state.

 It forms a complete partial order: the least upper
bound of every chain 1 2…  n is the
infinite conjunction /\ i

where ,I  /\ i iff ,I  i for all i

6/9/2008

19

PenC - Spring 2006

Slide 19

Weakest precondition (LOOP)

 Let F(X) = b wp(c, X) b .

 Then F is monotone and continuous. Thus it has
a least fixed point (the weakest fixed point) and

wp(while b do c od,) = /\ Fi(true)

 We need an assertion language expressive
enough to be able to write /\ Fi(true).

6/9/2008

Slide 20

Weakest precondition (LOOP)

 Define a family of preconditions wp(while b do c od,)k as
follows:

wp(while b do c od,)0 = b

wp(while b do c od,)n+1 =

b wp(c, wp(while b do c od,)n) b

Then wp(while b do c od,) = /\ wp(while b do c od,)k

 Here wp(while b do c od,)k is the weakest precondition on
which the loop - if terminated in k or less iterations -
terminates in .

6/9/2008

21

PenC - Spring 2006

Slide 21

Weakest precondition: properties

 For each command c in our language we have

 wp(c,true) = true

 if ’ then wp(c,) wp(c, ’)

 wp(c, ’) = wp(c,) wp(c, ’)

 wp(c, ’) = wp(c,) wp(c, ’)

 wp(c,false) characterizes all states in which c does

not terminate

