Spring 2007

Marcello Bonsangue

Context

Next we concentrate on model checking LTL

LTL: a recap

Syntax

 $\phi ::= \top \mid p \mid \neg \phi \mid \phi \lor \phi \mid X \phi \mid \phi U \phi$

All other connectives can be written in the above syntax

Slide 3

6/9/2008

LTL formulas as languages (I)

 $\phi = GFp$

(infinitely often p)

The execution $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \dots$ satisfies ϕ if it contains infinitely many s_{n_1} , s_{n_2} , ... at which p holds. In between there can be an arbitrary but finite number of state at which \neg p holds.

As a language $((\neg p)^*.p)^{\omega}$

 ω -regular expressions

* = an arbitrary but finite number of repetitions

 ∞ = an infinite number of repetitions

LTL formulas as languages(II)

• $\phi = FGp$ (Eventually always p)

• As ω -regular expression (p + \neg p)*.p $^{\omega}$

Slide 5

6/9/2008

Automata on finite words: a recap

- A non-deterministic finite automaton is a special kind of transition systems for recognizing languages on finite words
- <u>NF-automaton</u> $A = \langle \Sigma, S, \rightarrow, I, F \rangle$ □ Σ finite alphabet □ S finite set of states □ $\rightarrow \subseteq S \times \Sigma \times S$ transition relation □ $I \subseteq S$ initial states □ $F \subseteq S$ accepting states
- The language of an automaton A is $L(A) = \{a_1 a_2 \dots a_n \in \Sigma^* \mid \exists s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots \xrightarrow{a_3} s_n \in F \text{ with } s_1 \in I\}$

Leiden Institute of Advanced Computer Science

6/9/2008

Properties of finite languages

■ Theorem: $L(A_1 x A_2) = L(A_1) \cap L(A_2)$ $A_1 x A_2 = \langle \Sigma, S_1 x S_2, \rightarrow, I_1 x I_2, F_1 x F_2 \rangle$ where $\langle s, t \rangle \xrightarrow{a} \langle s', t' \rangle$ iff $s \xrightarrow{a}_1 s'$ and $t \xrightarrow{a}_2 t'$

Theorem: L(A) = Ø is decidable It is enough to find a path from an initial state in I to a final state in F.

6/9/2008

Automata on infinite words: Buchi

A Buchi automaton is a special kind of transition systems for recognizing languages on infinite words

Buchi automata

An infinite execution of a Buchi automaton A $s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} s_3 \xrightarrow{a_3} s_4 \dots$ is accepted by A if $\Box s_1 \in I$ \Box there exists infinitely many i > 0 such that $s_i \in F$

• The language of a Buchi automaton A is $L_{\omega}(A) = \{a_1 a_2 \dots \in \Sigma^{\omega} | \exists s_1 \xrightarrow{a_1} s_2^{a_2} \rightarrow \dots \text{ accepted by } A\}$

Example

- abccccccc... accepted
- abcbcbcbcb... accepted

6/9/2008

Properties of infinite languages

• Theorem: $L_{\omega}(A_1 \otimes A_2) = L_{\omega}(A_1) \cap L_{\omega}(A_2)$ $A_1 \otimes A_2 = \langle \Sigma, S_1 x S_2 x \{1,2\}, \rightarrow, I_1 x I_2 x \{1\}, F_1 x S_2 x \{1\} \rangle$ where $\langle s, t, i \rangle \xrightarrow{a} \langle s', t', j \rangle$ iff

```
\square s \xrightarrow{a}_{1} s' and t \xrightarrow{a}_{2} t' and i=j unless
```

 \Box i=1 and s \in F₁ in which case j = 2, or

□ i=2 and $t \in F_2$ in which case j =1.

• Theorem: $L_{\omega}(A) = \emptyset$ is decidable

It is enough to find a path from an initial state $s \in I$ to a final state $t \in F$ such that t has a path to t itself.

6/9/2008

Transition systems and Buchi automata

Any transition systems $M = \langle S, \rightarrow_M, s_0 \rangle$ with a labelling function $\ell: S \rightarrow 2^{Prop}$ can be seen as a Buchi automata $A_{M=} \langle \Sigma, S, \rightarrow, I, F \rangle$ where

 $\Sigma = 2^{Prop}$ assignment of truth values to propositions (i.e. valuations)

□Ssame states□s \xrightarrow{a} t iff s \rightarrow_M t and a = $\ell(s)$ transition relation□I = {s_0}same initial state□F = Severy state is final

Slide 13

LTL and Buchi automata

- An LTL formula denotes a set of infinite traces which satisfy that formula
- A Buchi automaton accepts a set of infinite traces
- Theorem: Given an LTL formula \u03c6, we can build a Buchi automaton

$$\mathsf{A}_{\phi} = <\Sigma, \mathsf{S}, \rightarrow, \mathsf{I}, \mathsf{F} >$$

where $\Sigma = 2^{\text{Prop}}$ consists of the subsets of (possibly negated) atomic propositions (i.e. valuations), which accepts only and all the executions satisfying the formula ϕ .

Example (1)

• ϕ = Fp eventually p

6/9/2008

Example (2) • = p U q p until q

6/9/2008

LTL and Buchi automata

Not every Buchi automaton is an LTL formula:

"p holds on every odd step"

6/9/2008

Model checking LTL: the idea

- - \Box A₆ corresponds to all allowable behavior of the system
 - A_M corresponds to all possible behavior of the system (all infinite paths of M that are potentially interesting)
 - To see whether a system satisfies a specification we need to check if every path of A_M is in A_{ϕ}

Model checking LTL

To check set inclusion note that

$$\mathsf{B} \subseteq \mathsf{A} \Leftrightarrow \mathsf{B} \ \cap \ \overline{\mathsf{A}} = \emptyset$$

• Further,
$$\overline{L_{\omega}(A_{\phi})} = L_{\omega}(A_{-\phi})$$
 thus

Every possible path is allowable is equivalent to say that *there is no path that is possible and not allowable*

that is $M, s \models \phi$ if and only if $L_{\omega}(A_M) \cap L_{\omega}(A_{\neg \phi}) = \emptyset$

The method

Problem: M,s $\vDash \phi$?

- 1. Construct a Buchi automaton $A_{\neg\phi}$ representing the negation of the desired LTL specification ϕ
- 2. Construct the automaton A_M representing the system behavior
- 3. Construct the automaton $A_M \otimes A_{\neg\phi}$
- 4. Check if $L_{\omega}(A_{M} \otimes A_{\neg \phi}) = \emptyset$
- 5. If yes then $M, s \vDash \phi$

Example (1)

• Specification: $\phi = G(p \Rightarrow XFq)$

Any occurrence of p must be followed (later) by an occurrence of q

 $\neg \phi = F(p \land XG \neg q)$

there exist an occurrence of p after which q will never be encountered again

Slide 22

Example: (3)

• The product $A_{\neg\phi} \otimes A_M$

6/9/2008

Example: (4)

• $L(A_{\neg\phi} \otimes A_M) = \emptyset$?

There is a path starting from $<s_0t_01>$ that passes infinitely often through the final states

6/9/2008

Example: (5)

Since $L(A_{\neg\phi} \otimes A_M)$ is not empty

$\mathsf{M},\mathsf{s}\nvDash\mathsf{G}(\mathsf{p}\Rightarrow\mathsf{XFq})$

The counterexample is given by the path $t_0t_1t_2t_3t_0t_1t_2t_0t_1t_2t_0...$

6/9/2008

From LTL to Buchi automata

- General approach:
 - □ Rewrite formula in normal form
 - Translate formula into generalized Buchi automata
 - Turn generalized Buchi automata into ordinary Buchi automata

Normal form

- LTL formulas with the until operator U that may contains also the next operators X
- Every formula φ can be converted into an equivalent formula ψ in normal form expressing an infinite behavior using equivalences such as:
 - □ T = T U T
 - $\Box p = p \land XT$
 - \Box F ϕ = T U ϕ

$$G \phi = \bot R \phi$$

6/9/2008

 $\Box \phi_1 R \phi_2 = \neg (\neg \phi_1 U \neg \phi_2)$

Additional simplifications

Use extra equivalences to reduce size of the formula. For example:

 $\Box \neg \neg \phi = \phi$

$$\Box X\phi_1 \lor X\phi_2 = X(\phi_1 \lor \phi_2)$$

$$\Box X\phi_1 \land X\phi_2 = X(\phi_1 \land \phi_2)$$

$$\Box X\phi_1 U X\phi_2 = X(\phi_1 U\phi_2)$$

Example:

■ G(Fp
$$\Rightarrow$$
 q) = G(¬Fp ∨ q)
= ⊥ R (¬Fp ∨ q)
= ¬ (¬ ⊥ U ¬(¬ (T U p) ∨ q))

■
$$p \land \neg q = (p \land \neg q) \land T$$

= $(p \land \neg q) \land XT$
= $(p \land \neg q) \land XGT$
= $(p \land \neg q) \land XGT$
= $(p \land \neg q) \land X(T \cup T)$

PenC - Spring 2006

Slide 29

6/9/2008

Generalized Buchi Automata

- They differ from (normal) Buchi automata only in the acceptance condition, which is a 'set of acceptance sets', i.e. *F* ⊆2^s
- The language of a generalized Buchi automaton
 A = < Σ,S,→, I, F > is

 $L(A) = \cap \{ L(A_F) \mid F \in \mathcal{F} \text{ and } A_F = <\Sigma, S, \rightarrow, I, F> \}$

that is, a path has to visit for each set of final states $F \in \mathcal{F}$ infinitely many times states from *F*.

A generalized Buchi automaton:

Every path of c's with either eventually one a or eventually one b is accepted

PenC - Spring 2006

6/9/2008

Generalized Buchi Automata

- A generalised Buchi automaton A = < Σ,S,→, I, F > can be translated back into an ordinary Buchi automata by taking the intersection of the automata A_F = < Σ,S,→, I,F> for each F ∈ F.
- If *F* = Ø then every infinite path is accepted.
 The ordinary Buchi automata of < Σ,S,→, I, Ø> is
 < Σ,S,→, I, S >

Example (cont'd)

The translation of the previous automaton into an ordinary Buchi automaton is

PenC - Spring 2006

6/9/2008

Leiden Institute of Advanced Computer Schence

Slide 33

Closure of a formula

- Given an LTL formula φ define its closure Cl(φ) to be the set of subformulas ψ of φ and of their complement.
 - $\Box \ \phi \in \mathsf{Cl}(\phi)$
 - $\Box \ \psi \in Cl(\phi) \text{ implies } \neg \psi \in Cl(\phi)$
 - $\Box \ \psi_1 \lor \psi_2 \in Cl(\phi) \text{ implies } \psi_1, \psi_2 \in Cl(\phi)$
 - $\Box X \psi \in Cl(\phi) \text{ implies } \psi \in Cl(\phi)$
 - $\Box \ \psi_1 U \psi_2 \in Cl(\phi) \text{ implies } \psi_1, \psi_2 \in Cl(\phi)$

Constructing the automata A_{ϕ} :states

- The states Sub(φ) of the automata are the maximal subsets S of Cl(φ) that have no propositional inconsitency
 - 1. For all $\psi \in Cl(\phi)$, $\psi \in S$ iff $\neg \psi \notin S$
 - 2. If $T \in Cl(\phi)$ then $T \in S$
 - 3. $\psi_1 \lor \psi_2 \in S \text{ iff } \psi_1 \in S \text{ or } \psi_2 \in S, \text{ whenever } \psi_1 \lor \psi_2 \in Cl(\phi)$
 - 4. $\neg (\psi_1 \lor \psi_2) \in S \text{ iff } \neg \psi_1 \in S \text{ and } \neg \psi_2 \in S, \text{ whenever } \neg (\psi_1 \lor \psi_2) \in Cl(\phi)$
 - 5. If $\psi_1 U \psi_2 \in S$ then $\psi_1 \in S$ or $\psi_2 \in S$
 - 6. If $\neg(\psi_1 U \psi_2) \in S$ then $\neg \psi_2 \in S$

Intuition: $\psi \in S$ implies that ψ holds in S

□ The initial states are those states containing ϕ

Example

Cl(pUq) = {p,q,¬p,¬q, pUq, ¬(pUq) }

Sub(pUq) = { { p, q,pUq}, {p,¬q,pUq}, {p,¬q,¬(pUq)} {¬p,q, pUq} {¬p,q, pUq}

Slide 36

Constructing the automata: transitions

Define the transition relation by setting s \xrightarrow{a} s' iff

- 1. $X\psi \in s$ implies $\psi \in s'$
- 2. $\neg X\psi \in s \text{ implies } \neg \psi \in s'$
- 3. $\psi_1 U \psi_2 \in s \text{ and } \psi_2 \notin s \text{ implies } \psi_1 U \psi_2 \in s'$
- 4. $\neg(\psi_1 U \psi_2) \in s \text{ and } \psi_1 \in s \text{ implies } \neg(\psi_1 U \psi_2) \in s'$
- 5. a = set of all atomic propositions that hold in s

N.B.: Conditions 3. and 4. are there because

$$\begin{split} \psi_1 U \psi_2 &\equiv \psi_2 \lor (\psi_1 \land X(\psi_1 U \psi_2)) \\ \psi_1 R \psi_2 &\equiv \psi_2 \land (\psi_1 \lor X(\psi_1 R \psi_2)) \end{split}$$

Slide 37

Constructing the automata: acceptance

For each $\chi_i U \psi_i \in Cl(\phi)$ define the set of accepting states F_i by

- $\exists \quad s \in \mathsf{F}_i \text{ iff } \neg(\chi_i U \psi_i) \in s \text{ or } \psi_i \in s$
- The above means that we only accept executions for which infinitely many time $\neg(\chi_i U \psi_i) \lor \psi_i$ holds

Intuition:

For each $\chi_i U \psi_i \in Cl(\phi)$ we have to guarantee that eventually ψ_i holds.

- 1. Suppose we accept an execution for which only finitely many time $\neg(\chi_i U \psi_i) \lor \psi_i$ holds.
- 2. Then we can find a suffix such that $\neg(\chi_i U\psi_i) \lor \psi_i$ will never hold, that is $(\chi_i U\psi_i) \land \neg \psi_i$ will always hold.
- 3. Thus we have an execution for which our goal is not guaranteed

Complexity

- $A_{\neg\phi}$ has size $O(2^{|\phi|})$ in the worst case
- The product A⊗B has size O(|A|x|B|)
- We can determine if there no acceptable path in A⊗B in O(|A⊗B|) time
- Thus, model checking M,s ⊨ \u03c6 can be done in O(|M|x 2^{|\u03c6|}) time

Example: pUq

Cl(pUq) = { p, ¬p, q, ¬q, pUq, ¬(pUq) }

PenC - Spring 2006

6/9/2008

Leiden Institute of Advanced Computer Scittince

Slide 40

Example: pUq

The previous automata is equivalent to

PenC - Spring 2006

Slide 41

6/9/2008

Example II

Buchi automaton for atomic proposition p

- $\Box p = p \land X(T \cup T) = \phi$
- $\Box CI(\phi) = \{ p, \neg p, T, \neg T, TUT, \neg (T U T), X(TUT), \neg X(TUT), \phi, \neg \phi \}$
- □ Sub(ϕ) = {1,2,3} with
 - 1 ={p,T,TUT, X(TUT), φ },
 - 2 = {¬p, T,TUT, X(TUT), ¬φ}
 - 3 = {p, T,TUT, ¬X(TUT), ¬φ}}

Slide 42

Example II

Buchi automaton for atomic proposition p

PenC - Spring 2006

6/9/2008

Leiden Institute of Advanced Computer Science

Slide 43