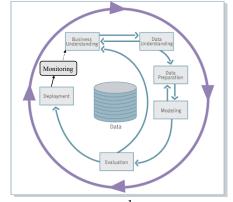
Data Preparation for Knowledge Discovery

Outline: Data Preparation

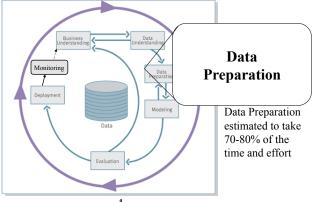
- Data Understanding
- Data Cleaning
 - Metadata
 - Missing Values
 - Unified Date Format
 - Nominal to Numeric
 - Discretization
- Field Selection and "False Predictors"
- Unbalanced Target Distribution

Knowledge Discovery Process flow, according to CRISP-DM



see www.crisp-dm.org for more information

Knowledge Discovery Process, in practice



Data Understanding: Relevance

- What data is available for the task?
- Is this data relevant?
- Is additional relevant data available?
- How much historical data is available?
- Who is the data expert ?

Data Understanding: Quantity

- Number of instances (records)
 - Rule of thumb: 5,000 or more desired
 - if less, results are less reliable; use special methods (boosting, ...)
- Number of attributes (fields)
 - Rule of thumb: for each field, 10 or more instances
 - If more fields, use feature reduction and selection

- Number of targets
 - Rule of thumb: >100 for each class
 - if very unbalanced, use stratified sampling

Data Cleaning Steps

- Data acquisition and metadata
- Missing values
- Unified date format
- Converting nominal to numeric
- Discretization of numeric data
- Data validation and statistics

Data Cleaning: Acquisition

- Data can be in DBMS
 - ODBC, JDBC protocols
- Data in a flat file
 - Fixed-column format
 - Delimited format: tab, comma ",", other
 - E.g. C4.5 and Weka "arff" use comma-delimited data
 - Attention: Convert field delimiters inside strings
- Verify the number of fields before and after

8

Data Cleaning: Example

Clean data

Data Cleaning: Metadata

- Field types:
 - binary, nominal (categorical), ordinal, numeric, ...
 - For nominal fields: tables translating codes to full descriptions

• Field role:

- input : inputs for modeling
- target : output
- id/auxiliary : keep, but not use for modeling

10

- ignore : don't use for modeling
- weight : instance weight
- ...

Field descriptions

Data Cleaning: Reformatting

Convert data to a standard format (e.g. arff or csv)

- Missing values
- Unified date format
- Binning of numeric data
- Fix errors and outliers
- Convert nominal fields whose values have order to numeric.
 - Q: Why? A: to be able to use ">" and "<" comparisons on these fields)

11

Data Cleaning: Missing Values

- Missing data can appear in several forms:
 - empty field> "0" "." "999" "NA" ...
- Standardize missing value code(s)
- Dealing with missing values:
 - ignore records with missing values
 - treat missing value as a separate value
 - Imputation: fill in with mean or median values

Data Cleaning: Unified Date Format

- We want to transform all dates to the same format internally
- Some systems accept dates in many formats
 - e.g. "Sep 24, 2003", 9/24/03, 24.09.03, etc
- dates are transformed internally to a standard value
- Frequently, just the year (YYYY) is sufficient
- For more details, we may need the month, the day, the hour, etc
- Representing date as YYYYMM or YYYYMMDD can be OK, but has problems
- Q: What are the problems with YYYYMMDD dates?

13

- A: Ignoring for now the Looming Y10K (year 10,000 crisis ...)
- YYYYMMDD does not preserve intervals:
- 20040201 20040131 /= 20040131 20040130
- This can introduce bias into models

Unified Date Format Options

- To preserve intervals, we can use
 - Unix system date: Number of seconds since 1970
 - Number of days since Jan 1, 1960 (SAS)
- Problem:
 - values are non-obvious
 - don't help intuition and knowledge discovery
 - harder to verify, easier to make an error

14

KSP Date Format

days_starting_Jan_1 - 0.5

KSP Date = YYYY + -----

365 + 1_if_leap_year

- Preserves intervals (almost)
- The year and quarter are obvious
- Sep 24, 2003 is 2003 + (267-0.5)/365= 2003.7301 (round to 4 digits)
- Consistent with date starting at noon
- Can be extended to include time

Y2K issues: 2 digit Year

- 2-digit year in old data legacy of Y2K
- E.g. Q: Year 02 is it 1902 or 2002 ?
 - A: Depends on context (e.g. child birthday or year of house construction)
 - Typical approach: CUTOFF year, e.g. 30
 - if YY < CUTOFF , then 20YY, else 19YY

16

Conversion: Nominal to Numeric

 Some tools can deal with nominal values internally

15

- Other methods (neural nets, regression, nearest neighbor) require only numeric inputs
- To use nominal fields in such methods need to convert them to a numeric value
 - Q: Why not ignore nominal fields altogether?
 - A: They may contain valuable information

17

 Different strategies for binary, ordered, multivalued nominal fields

Conversion: Binary to Numeric

- Binary fields
 - E.g. Gender=M, F
- Convert to Field_0_1 with 0, 1 values
 - e.g. Gender = M \rightarrow Gender_0_1 = 0
 - Gender = F \rightarrow Gender_0_1 = 1

Gen

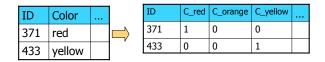
Conversion: Ordered to Numeric

- Ordered attributes (e.g. Grade) can be converted to numbers preserving *natural* order, e.g.
 - A → 4.0
 - A- → 3.7
 - B+ → 3.3
 - B → 3.0
- Q: Why is it important to preserve natural order?
- A: To allow meaningful comparisons, e.g. Grade > 3.5

19

Conversion: Nominal, Few Values

- Multi-valued, unordered attributes with small (*rule of thumb < 20*) no. of values
 - e.g. Color=Red, Orange, Yellow, ..., Violet
 - for each value v create a binary "flag" variable C_v, which is 1 if Color=v, 0 otherwise



Conversion: Nominal, Many Values

- Examples:
 - US State Code (50 values)
 - Profession Code (7,000 values, but only few frequent)
- Q: How to deal with such fields ?
- A: Ignore ID-like fields whose values are unique for each record
- For other fields, group values "naturally":
 - e.g. 50 US States → 3 or 5 regions
 - Profession select most frequent ones, group the rest

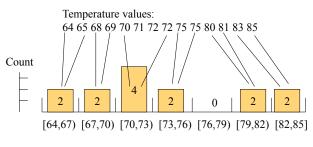
21

Create binary flag-fields for selected values

Data Cleaning: Discretization

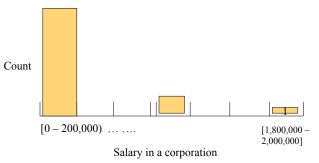
- Some methods require discrete values, e.g. most versions of Naïve Bayes, CHAID
- Discretization is very useful for generating a summary of data
- Also called "binning"

Discretization: Equal-Width



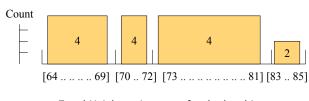
Equal Width, bins Low <= value < High

Discretization: Equal-Width may produce clumping



Discretization: Equal-Height

Temperature values: 64 65 68 69 70 71 72 72 75 75 80 81 83 85



25

Discretization: Equal-height advantages

- Generally preferred because avoids clumping
- In practice, "almost-equal" height binning is used which avoids clumping and gives more intuitive breakpoints
- Additional considerations:
 - don't split frequent values across bins
 - create separate bins for special values (e.g. 0)
 - readable breakpoints (e.g. round breakpoints)

26

Discretization: Class Dependent

Eibe – min of 3 values per bucket

64	65 6 No Yes	8 69	70	71	72	72	75	75	80	81	83	85
Yes	No Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	Yes	Yes	No
	64									85		

27

Discretization considerations

- Equal Width is simplest, good for many classes
 - can fail miserably for unequal distributions
- Equal Height gives better results
- Class-dependent can be better for classification
 - Note: decision trees build discretization on the fly
 - Naïve Bayes requires initial discretization

28

Many other methods exist ...

Outliers and Errors

- Outliers are values thought to be out of range.
- Approaches:
 - do nothing
 - enforce upper and lower bounds

29

Iet binning handle the problem

Examine Data Statistics

********************* Field 9: MILES_ACCUMULATED

Total entries = 865636 (23809 different values). Contains non-numeric values. Missing data indicated by "" (and possibly others).

30

Numeric items = 165161, high = 418187.000, low = -95050.000 mean = 4194.557, std = 10505.109, skew = 7.000

Most frequent entries:

Value	Total				
:		7004	174	(80.9%)
0:		3274	18	(3.8%)
1:		416	(0.	0%)
2:		337	(0.	0%)
10:		321	(Ο.	0%)
8:		284	(Ο.	0%)
5:		269	(Ο.	0%)
6:		267	(Ο.	0%)
12:		262	(Ο.	0%)
7:		246	(Ο.	0%)
4:		237	(Ο.	0%)

Data Cleaning: Field Selection

First: Remove fields with no or little variability

Examine the number of distinct field values

31

- Rule of thumb: remove a field where almost all values are the same (e.g. null), except possibly in minp % or less of all records.
- minp could be 0.5% or more generally less than 5% of the number of targets of the smallest class

False Predictors or Information "Leakers"

- False predictors are fields correlated to target behavior, which describe events that happen at the same time or *after* the target behavior
- If databases don't have the event dates, a false predictor will appear as a good predictor
- Example: Service cancellation date is a leaker when predicting attriters.
- Q: Give another example of a false predictor

32

• A: e.g. student final grade, for the task of predicting whether the student passed the course

False Predictors: Find "suspects"

- Build an initial decision-tree model
- Consider very strongly predictive fields as "suspects"
 - strongly predictive if a field by itself provides close to 100% accuracy, at the top or a branch below
- Verify "suspects" using domain knowledge or with a domain expert
- Remove false predictors and build an initial model

33

(Almost) Automated False Predictor Detection

- For each field
 - Build 1-field decision trees for each field
 - (or compute correlation with the target field)
- Rank all suspects by 1-field prediction accuracy (or correlation)
- Remove suspects whose accuracy is close to 100% (Note: the threshold is domain dependent)
- Verify top "suspects" with domain expert

34

Selecting Most Relevant Fields

- If there are too many fields, select a subset that is most relevant.
- Can select top N fields using 1-field predictive accuracy as computed earlier.
- What is good N?
 - Rule of thumb -- keep top 50 fields

35

Field Reduction Improves Classification

- most learning algorithms look for non-linear combinations of fields -- can easily find many spurious combinations given small # of records and large # of fields
- Classification accuracy improves if we first reduce number of fields
- Multi-class heuristic: select equal # of fields from each class

Derived Variables

- Better to have a fair modeling method and good variables, than to have the best modeling method and poor variables.
- Insurance Example: People are eligible for pension withdrawal at age 59 ½. Create it as a separate Boolean variable!
- *Advanced methods exists for automatically examining variable combinations, but it is very computationally expensive!

Unbalanced Target Distribution

- Sometimes, classes have very unequal frequency
 - Attrition prediction: 97% stay, 3% attrite (in a month)
 - medical diagnosis: 90% healthy, 10% disease
 - eCommerce: 99% don't buy, 1% buy
 - Security: >99.99% of Americans are not terrorists
- Similar situation with multiple classes
- Majority class classifier can be 97% correct, but useless

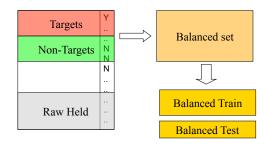
Handling Unbalanced Data

37

- With two classes: let positive targets be a minority
- Separate raw held-aside set (e.g. 30% of data) and raw train
- put aside raw held-aside and don't use it till the final model
- Select remaining positive targets (e.g. 70% of all targets) from raw train
- Join with equal number of negative targets from raw train, and randomly sort it.
- Separate randomized balanced set into balanced train and balanced test

39

Building Balanced Train Sets



Learning with Unbalanced Data

- Build models on balanced train/test sets
- Estimate the final results (lift curve) on the raw held set
- Can generalize "balancing" to multiple classes
 - stratified sampling
 - Ensure that each class is represented with approximately equal proportions in train and test

41

Data Preparation Key Ideas

- Use meta-data
- Inspect data for anomalies and errors

- Eliminate "false positives"
- Develop small, reusable software components
- Plan for verification verify the results after each step

Summary

Good data preparation is key to producing valid and reliable models