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Lecture 10
Advanced Memory Hierarchy

Slides were used during lectures by 
David Patterson, Berkeley, spring 2006

Outline

• 11 Advanced Cache Optimizations
• Memory Technology and DRAM optimizations
• Virtual Machines
• Xen VM: Design and Performance
• AMD Opteron Memory Hierarchy
• Opteron Memory Performance vs. Pentium 4
• Conclusion

Why More on Memory Hierarchy?
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Review: 6 Basic Cache Optimizations

Reducing hit time
1. Giving Reads Priority over Writes 

• E.g., Read complete before earlier writes in write buffer
2. Avoiding Address Translation during Cache 

Indexing

Reducing Miss Penalty
3. Multilevel Caches

Reducing Miss Rate
4. Larger Block size (Compulsory misses)
5. Larger Cache size (Capacity misses)
6. Higher Associativity (Conflict misses)

11 Advanced Cache Optimizations

Reducing hit time
1.Small and simple 

caches
2.Way prediction
3.Trace caches

Increasing cache 
bandwidth

4.Pipelined caches
5.Multibanked caches
6.Nonblocking caches

Reducing Miss Penalty
7. Critical word first
8. Merging write buffers

Reducing Miss Rate
9. Compiler optimizations

Reducing miss penalty or 
miss rate via parallelism

10.Hardware prefetching
11.Compiler prefetching

1. Fast Hit times via Small and Simple Caches

• Index tag memory and then compare takes time
• ⇒ Small cache can help hit time since smaller memory 

takes less time to index
– E.g., L1 caches same size for 3 generations of AMD microprocessors: 

K6, Athlon, and Opteron
– Also L2 cache small enough to fit on chip with the processor avoids 

time penalty of going off chip

• Simple ⇒ direct mapping
– Can overlap tag check with data transmission since no choice

• Access time estimate for 90 nm using CACTI model 4.0
– Median ratios of access time relative to the direct-mapped caches are 

1.32, 1.39, and 1.43 for 2-way, 4-way, and 8-way caches
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2. Fast Hit times via  Way Prediction

• How to combine fast hit time of Direct Mapped and have 
the lower conflict misses of 2-way SA cache? 

• Way prediction: keep extra bits in cache to predict the 
“way”, or block within the set, of next cache access. 

– Multiplexor is set early to select desired block, only 1 tag comparison 
performed that clock cycle in parallel with reading the cache data 

– Miss ⇒ 1st check other blocks for matches in next clock cycle

• Accuracy ≈ 85%
• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles

– Used for instruction caches vs. data caches

Hit Time

Way-Miss Hit Time Miss Penalty

3. Fast Hit times via  Trace Cache                  
(Pentium 4 only; and last time?)

• Find more instruction level parallelism?
How avoid translation from x86 to microops? 

• Trace cache in Pentium 4
1. Dynamic traces of the executed instructions vs. static sequences of 

instructions as determined by layout in memory
» Built-in branch predictor

2. Cache the micro-ops vs. x86 instructions
» Decode/translate from x86 to micro-ops on trace cache miss

+ 1. ⇒ better utilize long blocks (don’t exit in middle of 
block, don’t enter at label in middle of block)

- 1. ⇒ complicated address mapping since addresses no 
longer aligned to power-of-2 multiples of word size

- 1. ⇒ instructions may appear multiple times in multiple 
dynamic traces due to different branch outcomes

4. Increasing Cache Bandwidth by Pipelining

• Pipeline cache access to maintain bandwidth, but 
higher latency

• Instruction cache access pipeline stages:
1: Pentium
2: Pentium Pro through Pentium III 
4: Pentium 4

- ⇒ greater penalty on mispredicted branches 
- ⇒ more clock cycles between the issue of the load 

and the use of the data

5. Increasing Cache Bandwidth: 
Non-Blocking Caches

• Non-blocking cache or  lockup-free cache allow data 
cache to continue to supply cache hits during a miss

– requires F/E bits on registers or out-of-order execution
– requires multi-bank memories

• “hit under miss”  reduces the effective miss penalty 
by working during miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss”  may 
further lower the effective miss penalty by overlapping 
multiple misses

– Significantly increases the complexity of the cache controller as 
there can be multiple outstanding memory accesses

– Requires multiple memory banks (otherwise cannot support)
– Pentium Pro allows 4 outstanding memory misses

Value of Hit Under Miss for SPEC (old data)

• FP programs on average: AMAT= 0.68 → 0.52 → 0.34 → 0.26
• Int programs on average: AMAT= 0.24 → 0.20 → 0.19 → 0.19
• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss, SPEC 92

Hit Under i Misses
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6. Increasing Cache Bandwidth via 
Multiple Banks

• Rather than treat the cache as a single monolithic 
block, divide into independent banks that can support 
simultaneous accesses

– E.g.,T1 (“Niagara”) L2 has 4 banks

• Banking works best when accesses naturally spread 
themselves across banks ⇒ mapping of addresses to 
banks affects behavior of memory system

• Simple mapping that works well is “sequential 
interleaving”  

– Spread block addresses sequentially across banks
– E,g, if there 4 banks, Bank 0 has all blocks whose address modulo 4

is 0; bank 1 has all blocks whose address modulo 4 is 1; …
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7. Reduce Miss Penalty: 
Early Restart and Critical Word First

• Don’t wait for full block before restarting CPU
• Early restart – As soon as the requested word of the 

block arrives, send it to the CPU and let the CPU 
continue execution

– Spatial locality ⇒ tend to want next sequential word, so not clear 
size of benefit of just early restart

• Critical Word First – Request the missed word first 
from memory and send it to the CPU as soon as it 
arrives; let the CPU continue execution while filling 
the rest of the words in the block

– Long blocks more popular today ⇒ Critical Word 1st Widely used 

block

8. Merging Write Buffer to 
Reduce Miss Penalty

• Write buffer to allow processor to continue 
while waiting to write to memory

• If buffer contains modified blocks, the 
addresses can be checked to see if address of 
new data matches the address of a valid write 
buffer entry 

• If so, new data are combined with that entry
• Increases block size of write for write-through 

cache of writes to sequential words, bytes since 
multiword writes more efficient to memory

• The Sun T1 (Niagara) processor, among many 
others, uses write merging

9. Reducing Misses by 
Compiler Optimizations

• McFarling [1989] reduced caches misses by 75% 
on 8KB direct mapped cache, 4 byte blocks in software

• Instructions
– Reorder procedures in memory so as to reduce conflict misses
– Profiling to look at conflicts (using tools they developed)

• Data
– Merging Arrays: Improve spatial locality by single array of compound 

elements vs. 2 arrays
– Loop Interchange: Change nesting of loops to access data in order 

stored in memory
– Loop Fusion: Combine 2 independent loops that have same looping 

and some variables overlap
– Blocking: Improve temporal locality by accessing “blocks” of data 

repeatedly vs. going down whole columns or rows

Merging Arrays Example

/* Before: 2 sequential arrays */

int val[SIZE];

int key[SIZE];

/* After: 1 array of stuctures */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reducing conflicts between val & key; 
improve spatial locality

Loop Interchange Example

/* Before */

for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding 
through memory every 100 words; improved 
spatial locality

Loop Fusion Example

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access; 
improve spatial locality
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Blocking Example

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{r = 0;

for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};

x[i][j] = r;

};

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row  of x[]

• Capacity Misses a function of N & Cache Size:
– 2N3 + N2 => (assuming no conflict; otherwise …)

• Idea: compute on BxB submatrix that fits

Blocking Example

/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)

{r = 0;

for (k = kk; k < min(kk+B-1,N); k = k+1) {

r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;

};

• B called Blocking Factor
• Capacity Misses from 2N3 + N2 to 2N3/B +N2

• Conflict Misses Too? 

Reducing Conflict Misses by Blocking

• Conflict misses in caches not FA vs. Blocking size
– Lam et al [1991] a blocking factor of 24 had a fifth the  misses vs. 

48 despite both fit in cache

Blocking Factor   
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Summary of Compiler Optimizations to 
Reduce Cache Misses (by hand)

10. Reducing Misses by Hardware
Prefetching of Instructions & Data

• Prefetching relies on having extra memory bandwidth that can 
be used without penalty

• Instruction Prefetching
– Typically, CPU fetches 2 blocks on a miss: the requested block and the 

next consecutive block. 
– Requested block is placed in instruction cache when it returns, and 

prefetched block is placed into instruction stream buffer

• Data Prefetching
– Pentium 4 can prefetch data into L2 cache from up to 8 streams from 8 

different 4 KB pages 
– Prefetching invoked if 2 successive L2 cache misses to a page, 

if distance between those cache blocks is < 256 bytes
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11. Reducing Misses by 
Software Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)
– Cache Prefetch: load into cache 

(MIPS IV, PowerPC, SPARC v. 9)
– Special prefetching instructions cannot cause faults;

a form of speculative execution

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
– Higher superscalar reduces difficulty of issue bandwidth
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Compiler Optimization vs. 
Memory Hierarchy Search

• Compiler tries to figure out memory hierarchy 
optimizations

• New approach: “Auto-tuners” 1st run variations of 
program on computer to find best combinations of 
optimizations (blocking, padding, …) and algorithms, 
then produce C code to be compiled for that computer

• “Auto-tuner” targeted to numerical method
– E.g., PHiPAC (BLAS), Atlas (BLAS), 

Sparsity (Sparse linear algebra), Spiral (DSP), FFT-W

Reference

Best: 4x2

Mflop/s

Mflop/s

Sparse Matrix – Search for Blocking

for finite element problem [Im, Yelick, Vuduc, 2005]

Best Sparse Blocking for 8 Computers

All possible column block sizes selected for 8 computers; 
How could compiler know?

IBM 
Power 3

Intel/HP 
Itanium 2

IBM Power 4, 
Intel/HP Itanium

Sun Ultra 2, 
Sun Ultra 3, 

AMD Opteron
Intel 

Pentium M8
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column block size (c)

Needs nonblocking cache; in 
many CPUs3++Compiler-controlled 

prefetching

Many prefetch instructions; 
AMD Opteron prefetches 
data

2 instr., 
3 data++Hardware prefetching of 

instructions and data

Software is a challenge; 
some computers have 
compiler option

0+Compiler techniques to reduce 
cache misses

Widely used with write 
through1+Merging write buffer

Widely used2+Critical word first and early 
restart

Used in L2 of Opteron and 
Niagara1+Banked caches

Widely used3++Nonblocking caches

Widely used1+–Pipelined cache access

Used in Pentium 43+Trace caches 

Used in Pentium 41+Way-predicting caches 

Trivial; widely used0–+Small and simple caches

CommentHW cost/ 
complexity

Miss 
rate

Miss 
penalty

Band-
width

Hit 
TimeTechnique

Main Memory Background

• Performance of Main Memory: 
– Latency: Cache Miss Penalty

» Access Time: time between request and word arrives
» Cycle Time: time between requests

– Bandwidth: I/O & Large Block Miss Penalty (L2)

• Main Memory is DRAM: Dynamic Random Access Memory
– Dynamic since needs to be refreshed periodically (8 ms, 1% time)
– Addresses divided into 2 halves (Memory as a 2D matrix):

» RAS or Row Access Strobe
» CAS or Column Access Strobe

• Cache uses SRAM: Static Random Access Memory
– No refresh (6 transistors/bit vs. 1 transistor

Size: DRAM/SRAM - 4-8, 
Cost/Cycle time: SRAM/DRAM - 8-16

Main Memory Deep Background

• “Out-of-Core”, “In-Core,” “Core Dump”?
• “Core memory”?
• Non-volatile, magnetic
• Lost to 4 Kbit DRAM (today using 512Mbit DRAM)
• Access time 750 ns, cycle time 1500-3000 ns
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DRAM logical organization (4 Mbit)

Square root of bits per RAS/CAS

Column Decoder

Sense Amps & I/O

Memory Array
(2,048 x 2,048)

A0…A10

…
11 D

Q

Word Line
Storage 
Cell

Quest for DRAM Performance

1. Fast Page mode 
– Add timing signals that allow repeated accesses to row buffer 

without another row access time
– Such a buffer comes naturally, as each array will buffer 1024 to

2048 bits for each access
2. Synchronous DRAM (SDRAM)

– Add a clock signal to DRAM interface, so that the repeated 
transfers would not bear overhead to synchronize with DRAM 
controller

3. Double Data Rate (DDR SDRAM)
– Transfer data on both the rising edge and falling edge of the 

DRAM clock signal ⇒ doubling the peak data rate
– DDR2 lowers power by dropping the voltage from 2.5 to 1.8 

volts + offers higher clock rates: up to 400 MHz
– DDR3 drops to 1.5 volts + higher clock rates: up to 800 MHz

Improved Bandwidth, not Latency

DRAM name based on Peak Chip Transfers / Sec
DIMM  name based on Peak DIMM MBytes / Sec

PC1280012800DDR3-16001600800DDR3

PC1070010664DDR3-13331333666DDR3

PC85008528DDR3-10661066533DDR3

PC64006400DDR2-800800400DDR2

PC53005336DDR2-667667333DDR2

PC43004264DDR2-533533266DDR2

PC32003200DDR400400200DDR

PC24002400DDR300300150DDR

PC21002128DDR266266133DDR

DIMM 
Name

Mbytes/s/ 
DIMM

DRAM 
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Clock Rate 
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Need for Error Correction!

• Motivation:
– Failures/time proportional to number of bits!
– As DRAM cells shrink, more vulnerable

• Went through period in which failure rate was low 
enough without error correction that people didn’t 
do correction

– DRAM banks too large now
– Servers always corrected memory systems

• Basic idea: add redundancy through parity bits
– Common configuration: Random error correction

» SEC-DED (single error correct, double error detect)
» One example: 64 data bits + 8 parity bits (11% overhead)

– Really want to handle failures of physical components as well
» Organization is multiple DRAMs/DIMM, multiple DIMMs
» Want to recover from failed DRAM and failed DIMM!
» “Chip kill” handle failures width of single DRAM chip

Outline

• 11 Advanced Cache Optimizations
• Memory Technology and DRAM optimizations
• Virtual Machines
• Xen VM: Design and Performance
• AMD Opteron Memory Hierarchy
• Opteron Memory Performance vs. Pentium 4
• Conclusion

Introduction to Virtual Machines

• VMs developed in late 1960s
– Remained important in mainframe computing over the years
– Largely ignored in single user computers of 1980s and 1990s

• Recently regained popularity due to
– increasing importance of isolation and security in modern systems, 
– failures in security and reliability of standard operating systems, 
– sharing of a single computer among many unrelated users,
– and the dramatic increases in raw speed of processors, which 

makes the overhead of VMs more acceptable
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What is a Virtual Machine (VM)?

• Broadest definition includes all emulation 
methods that provide a standard software 
interface, such as the Java VM

• “(Operating) System Virtual Machines” provide a 
complete system level environment at binary ISA

– Here assume ISAs always match the native hardware ISA
– E.g., IBM VM/370, VMware ESX Server, and Xen

• Present illusion that VM users have entire 
computer to themselves, including a copy of OS

• Single computer runs multiple VMs, and can 
support a multiple, different OSes 

– On conventional platform, single OS “owns” all HW resources 
– With a VM, multiple OSes all share HW resources

• Underlying HW platform is called the host, and 
its resources are shared among the guest VMs

Virtual Machine Monitors (VMMs)

• Virtual machine monitor (VMM) or hypervisor is 
software that supports VMs

• VMM determines how to map virtual resources to 
physical resources

• Physical resource may be time-shared, 
partitioned, or emulated in software 

• VMM is much smaller than a traditional OS; 
– isolation portion of a VMM is ≈ 10,000 lines of code

VMM Overhead?

• Depends on the workload
• User-level processor-bound programs (e.g., 

SPEC) have zero-virtualization overhead 
– Runs at native speeds since OS rarely invoked

• I/O-intensive workloads ⇒ OS-intensive 
⇒ execute many system calls and privileged 
instructions 
⇒ can result in high virtualization overhead 

– For System VMs, goal of architecture and VMM is to run 
almost all instructions directly on native hardware

• If I/O-intensive workload is also I/O-bound
⇒ low processor utilization since waiting for I/O 
⇒ processor virtualization can be hidden 
⇒ low virtualization overhead

Requirements of a Virtual Machine Monitor

• A VM Monitor 
– Presents a SW interface to guest software, 
– Isolates state of guests from each other, and 
– Protects itself from guest software (including guest OSes)

• Guest software should behave on a VM exactly 
as if running on the native HW 

– Except for performance-related behavior or limitations of 
fixed resources shared by multiple VMs

• Guest software should not be able to change 
allocation of real system resources directly

• Hence, VMM must control ≈ everything even 
though guest VM and OS currently running is 
temporarily using them

– Access to privileged state, Address translation, I/O, 
Exceptions and Interrupts, …

Requirements of a Virtual Machine Monitor

• VMM must be at higher privilege level than 
guest VM, which generally run in user mode 
⇒ Execution of privileged instructions handled by VMM

• E.g., Timer interrupt: VMM suspends currently 
running guest VM, saves its state, handles 
interrupt, determine which guest VM to run 
next, and then load its state 
– Guest VMs that rely on timer interrupt provided with virtual 

timer and an emulated timer interrupt by VMM
• Requirements of system virtual machines are 

≈ same as paged-virtual memory: 
1. At least 2 processor modes, system and user
2. Privileged subset of instructions available only in system 

mode, trap if executed in user mode
– All system resources controllable only via these instructions

ISA Support for Virtual Machines

• If plan for VM during design of ISA, easy to reduce 
instructions executed by VMM, speed to emulate

– ISA is virtualizable if can execute VM directly on real machine while 
letting VMM retain ultimate control of CPU: “direct execution”

– Since VMs have been considered for desktop/PC server apps only 
recently, most ISAs were created ignoring virtualization, including 
80x86 and most RISC architectures

• VMM must ensure that guest system only interacts 
with virtual resources ⇒ conventional guest OS 
runs as user mode program on top of VMM

– If guest OS accesses or modifies information related to HW resources 
via a privileged instruction—e.g., reading or writing the page table 
pointer—it will trap to VMM

• If not, VMM must intercept instruction and support 
a virtual version of sensitive information as guest 
OS expects
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Impact of VMs on Virtual Memory

• Virtualization of virtual memory if each guest OS in 
every VM manages its own set of page tables?

• VMM separates real and physical memory
– Makes real memory a separate, intermediate level between virtual

memory and physical memory
– Some use the terms virtual memory, physical memory, and 

machine memory to name the 3 levels
– Guest OS maps virtual memory to real memory via its page tables,

and VMM page tables map real memory to physical memory

• VMM maintains a shadow page table that maps 
directly from the guest virtual address space to the 
physical address space of HW

– Rather than pay extra level of indirection on every memory access
– VMM must trap any attempt by guest OS to change its page table 

or to access the page table pointer

ISA Support for VMs & Virtual Memory

• IBM 370 architecture added additional level of 
indirection that is managed by the VMM 

– Guest OS keeps its page tables as before, so the shadow 
pages are unnecessary

– (AMD Pacifica proposes same improvement for 80x86)

• To virtualize software TLB, VMM manages the 
real TLB and has a copy of the contents of the 
TLB of each guest VM

– Any instruction that accesses the TLB must trap
– TLBs with Process ID tags support a mix of entries from 

different VMs and the VMM, thereby avoiding flushing of the 
TLB on a VM switch

Impact of I/O on Virtual Memory

• I/O most difficult part of virtualization
– Increasing number of I/O devices attached to the computer 
– Increasing diversity of I/O device types
– Sharing of a real device among multiple VMs
– Supporting many device drivers that are required, especially if 

different guest OSes are supported on same VM system

• Give each VM generic versions of each type of 
I/O device driver, and let VMM to handle real I/O

• Method for mapping virtual to physical I/O device 
depends on the type of device:
– Disks partitioned by VMM to create virtual disks for guest VMs
– Network interfaces shared between VMs in short time slices, 

and VMM tracks messages for virtual network addresses to 
ensure that guest VMs only receive their messages

Example: Xen VM
• Xen: Open-source System VMM for 80x86 ISA 

– Project started at University of Cambridge, GNU license model
• Original vision of VM is running unmodified OS

– Significant wasted effort just to keep guest OS happy
• “paravirtualization” – small modifications to guest OS to 

simplify virtualization 

Three examples of paravirtualization in Xen:
1. To avoid flushing TLB when invoke VMM, Xen mapped 

into upper 64 MB of address space of each VM 
2. Guest OS allowed to allocate pages, just check that didn’t 

violate protection restrictions 
3. To protect the guest OS from user programs in VM, Xen 

takes advantage of 4 protection levels available in 80x86 
– Most OSes for 80x86 keep everything at privilege levels 0 or at 3.
– Xen VMM runs at the highest privilege level (0) 
– Guest OS runs at the next level (1) 
– Applications run at the lowest privilege level (3)

Xen changes for paravirtualization

• Port of Linux to Xen changed ≈ 3000 lines,                          
or ≈ 1% of 80x86-specific code 

– Does not affect application-binary interfaces of guest OS
• OSes supported in Xen 2.0

• More OSes in Xen 3.0

Yes No FreeBSD 5 
Yes No Plan 9 
Yes Yes NetBSD 3.0 
Yes No NetBSD 2.0 
Yes Yes Linux 2.6 
Yes Yes Linux 2.4 

Runs as guest OS Runs as host OSOS 

http://wiki.xensource.com/xenwiki/OSCompatibility

Xen and I/O

• To simplify I/O, privileged VMs assigned to each 
hardware I/O device: “driver domains” 

– Xen Jargon: “domains” = Virtual Machines

• Driver domains run physical device drivers, 
although interrupts still handled by VMM before 
being sent to appropriate driver domain 

• Regular VMs (“guest domains”) run simple 
virtual device drivers that communicate with 
physical devices drivers in driver domains over a 
channel to access physical I/O hardware 

• Data sent between guest and driver domains by 
page remapping
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Xen Performance

100%

97%

92%

95% 96%

99%

90%
91%
92%
93%
94%
95%
96%
97%
98%
99%

100%

SPEC INT2000 Linux build
time

PostgreSQL
Inf. Retrieval

PostgreSQL
OLTP

dbench SPEC WEB99

Pe
rf

or
m

an
ce

 re
la

tiv
e 

to
 

na
tiv

e 
Li

nu
x

• Performance relative to native Linux for Xen for 6 
benchmarks from Xen developers

• User-level processor-bound programs? I/O-
intensive workloads? I/O-Bound I/O-Intensive? 

• Detailed performance analysis: see book

Xen Performance, Part II

• Subsequent study noticed Xen experiments based 
on 1 Ethernet network interfaces card (NIC), and 
single NIC was a performance bottleneck
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Xen Performance, Part III

1. > 2X instructions for guest VM + driver VM
2. > 4X L2 cache misses
3. 12X – 24X Data TLB misses
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Xen Performance, Part IV

1. > 2X instructions: page remapping and page 
transfer between driver and guest VMs and due to 
communication between the 2 VMs over a channel

2. 4X L2 cache misses: Linux uses zero-copy 
network interface that depends on ability of NIC to 
do DMA from different locations in memory 
– Since Xen does not support “gather DMA” in its virtual network 

interface, it can’t do true zero-copy in the guest VM

3. 12X – 24X Data TLB misses: 2 Linux optimizations
– Superpages for part of Linux kernel space, and 4MB pages 

lowers TLB misses versus using 1024 4 KB pages.  Not  in Xen
– PTEs marked global are not flushed on a context switch, and 

Linux uses them for its kernel space. Not  in Xen

Future Xen may address 2. and 3., but 1. inherent?

Protection and Instruction Set Architecture

• Example Problem: 80x86 POPF instruction loads 
flag registers from top of stack in memory
– One such flag is Interrupt Enable (IE)
– In system mode, POPF changes IE 
– In user mode, POPF simply changes all flags except IE 
– Problem: guest OS runs in user mode inside a VM, so it expects 

to see changed a IE, but it won’t

• Historically, IBM mainframe HW and VMM took 3 
steps:
1. Reduce cost of processor virtualization

» Intel/AMD proposed ISA changes to reduce this cost
2. Reduce interrupt overhead cost due to virtualization
3. Reduce interrupt cost by steering interrupts to proper VM directly 

without invoking VMM

2. and 3. not yet addressed by Intel/AMD; in the future?

80x86 VM Challenges

18 instructions cause problems for virtualization:
1. Read control registers in user model that reveal 

that the guest operating system in running in a 
virtual machine (such as POPF), and 

2. Check protection as required by the segmented 
architecture but assume that the operating 
system is running at the highest privilege level

Virtual memory: 80x86 TLBs do not support 
process ID tags ⇒ more expensive for VMM and 
guest OSes to share the TLB 
– each address space change typically requires a TLB flush
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Intel/AMD address 80x86 VM Challenges

• Goal is direct execution of VMs on 80x86
• Intel's VT-x

– A new execution mode for running VMs 
– An architected definition of the VM state 
– Instructions to swap VMs rapidly 
– Large set of parameters to select the circumstances 

where a VMM must be invoked
– VT-x adds 11 new instructions to 80x86

• Xen 3.0 plan proposes to use VT-x to run Windows on Xen 
• AMD’s Pacifica makes similar proposals

– Plus indirection level in page table like IBM VM 370
• Ironic adding a new mode

– If OS start using mode in kernel, new mode would cause performance 
problems for VMM since ≈ 100 times too slow

Outline

• 11 Advanced Cache Optimizations
• Memory Technology and DRAM optimizations
• Virtual Machines
• Xen VM: Design and Performance
• AMD Opteron Memory Hierarchy
• Opteron Memory Performance vs. Pentium 4
• Conclusion

AMD Opteron Memory Hierarchy

• 12-stage integer pipeline yields a maximum clock rate of 2.8 
GHz and fastest memory PC3200 DDR SDRAM

• 48-bit virtual and 40-bit physical addresses
• I and D cache: 64 KB, 2-way set associative, 64-B block, LRU
• L2 cache: 1 MB, 16-way, 64-B block, pseudo LRU
• Data and L2 caches use write back, write allocate 
• L1 caches are virtually indexed and physically tagged
• L1 I TLB and L1 D TLB: fully associative, 40 entries 

– 32 entries for 4 KB pages and 8 for 2 MB or 4 MB pages 

• L2 I TLB and L1 D TLB: 4-way, 512 entities of 4 KB pages
• Memory controller allows up to 10 cache misses

– 8 from D cache and 2 from I cache

Opteron Memory Hierarchy Performance

• For SPEC2000
– I cache misses per instruction is 0.01% to 0.09% 
– D cache misses per instruction are 1.34% to 1.43% 
– L2 cache misses per instruction are 0.23% to 0.36% 

• Commercial benchmark (“TPC-C-like”)
– I cache misses per instruction is 1.83%  (100X!)
– D cache misses per instruction are 1.39% (≈ same)
– L2 cache misses per instruction are 0.62% (2X to 3X)

• How compare to ideal CPI of 0.33?

CPI breakdown for Integer Programs
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• CPI above base attributable to memory ≈ 50%
• L2 cache misses ≈ 25% overall (50% memory CPI)

– Assumes misses are not overlapped with the execution pipeline 
or with each other, so the pipeline stall portion is a lower bound

CPI breakdown for FP Programs

• CPI above base attributable to memory ≈ 60%
• L2 cache misses ≈ 40% overall (70% memory CPI)

– Assumes misses are not overlapped with the execution pipeline 
or with each other, so the pipeline stall portion is a lower bound
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Pentium 4 vs. Opteron Memory Hierarchy

200 MHz x 128 bits200 MHz x 64 bitsMemory

1 stream to L28 streams to L2Prefetch

8-way associative, 
2 MB, 128B block

8-way associative, 16 
KB, 64B block, 
inclusive in L2

Trace Cache 
(8K micro-ops)

Pentium 4 (3.2 GHz*)

16-way associative, 
1 MB, 64B block

2-way associative, 
64 KB, 64B block, 
exclusive to L2

2-way associative, 
64 KB, 64B block

Opteron (2.8 GHz*)CPU
Instruction 
Cache

L2 cache

Data 
Cache

*Clock rate for this comparison in 2005; faster versions existed

Misses Per Instruction: Pentium 4 vs. Opteron

-

1

2

3

4

5

6

7

gz
ip vp

r

gc
c

m
c f

c r
af

ty

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

R
at

io
 o

f M
P

I: 
P

en
tiu

m
 4

/O
pt

er
on

D cache:   P4/Opteron
L2 cache: P4/Opteron

SPECint2000 SPECfp2000

↑Opteron better

↓Pentium better

• D cache miss: P4 is 2.3X to 3.4X vs. Opteron
• L2 cache miss: P4 is 0.5X to 1.5X vs. Opteron
• Note: Same ISA, but not same instruction count

2.3X
3.4X

0.5X

1.5X

Fallacies and Pitfalls

• Not delivering high memory bandwidth in a cache-based system
– 10 Fastest computers at Stream benchmark [McCalpin 2005]
– Only 4/10 computers rely on data caches, and their memory BW 

per processor is 7X to 25X slower than NEC SX7
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And in Conclusion [1/2] …

• Memory wall inspires optimizations since so much 
performance lost there

– Reducing hit time: Small and simple caches, Way prediction, 
Trace caches

– Increasing cache bandwidth: Pipelined caches, Multibanked 
caches, Nonblocking caches

– Reducing Miss Penalty: Critical word first, Merging write buffers
– Reducing Miss Rate: Compiler optimizations
– Reducing miss penalty or miss rate via parallelism: Hardware 

prefetching, Compiler prefetching

• “Auto-tuners” search replacing static compilation 
to explore optimization space?

• DRAM – Continuing Bandwidth innovations: Fast 
page mode, Synchronous, Double Data Rate

And in Conclusion [2/2] …

• VM Monitor presents a SW interface to guest 
software, isolates state of guests, and protects itself 
from guest software (including guest OSes)

• Virtual Machine Revival
– Overcome security flaws of large OSes
– Manage Software, Manage Hardware
– Processor performance no longer highest priority

• Virtualization challenges for processor, virtual 
memory, and I/O

– Paravirtualization to cope with those difficulties
• Xen as example VMM using paravirtualization

– 2005 performance on non-I/O bound, I/O intensive apps: 
80% of native Linux without driver VM, 34% with driver VM

• Opteron memory hierarchy still critical to 
performance

Reading

• This lecture: 
– chapter 5: Memory Hierarchy Design

• Next lecture: 
– chapter 6: Storage Systems


