
Requirements Engineering, 2004, Luuk Groenewegen 5.1

Ch 5: Rs Management

!!!: change (of Rs) is normal

even after approvement !!!

but it also is

cause of serious difficulties

hence:

manage the changes

and their consequences

Requirements Engineering, 2004, Luuk Groenewegen 5.2

Rs management covers

- changes of approved Rs

- relations between Rs & other Rs

& (possible) consequences for other Rs

from changes

- relations between Rs &

& other documents / SE products

& (possible) consequences for these

docs and products from changes

why is change so normal?:

- errors / bugs (RE / SE)

- growing insight (stakeholder)

- active world (circumstances, fashion,

law, policy, clients, technology)

Requirements Engineering, 2004, Luuk Groenewegen 5.3

useful means for Rs management

traceability: ~ “connectivity & causality”

- proposed by whom

- why is it a R?

- relation with other Rs

- relation with other info

“before”:

problem domain

organisation

problem situation

stakeholder support

“after”

design

code

test

(P)UM - (Preliminary) User Manual

Requirements Engineering, 2004, Luuk Groenewegen 5.4

Rs management is heavily time consuming

- compare the short term profit

with the long term profit

- CASE tools provide support for

so-called change management

- DB for Rs

- document / report

can be starting point for filling DB

via analysis

can be extracted from DB

via generation

- traceability support: allowing different types

of trace-relationships ~ dependency

- cost of change can be “computed” (estimated)

and assessed (compared to the change’ profit)

[this is change management]

Requirements Engineering, 2004, Luuk Groenewegen 5.5

5.1. stable vs volatile Rs

!!!: Rs change

does not mean

bad Rs Engineering process

again: Rs change is normal & unavoidable

Rs change factors:

- errors, conflicts, inconsistencies:

discovered from analysis / validation on

but not only then: much later too

- evolving or growing insight or knowledge

of customer and end-user:

customers & end-users

gradually and steadily

learn / better understand

what they really want

Requirements Engineering, 2004, Luuk Groenewegen 5.6

- realizability: technical, schedule, cost:

no (good enough) solution found

taking too long

getting too expensive

- shifting priorities of customer:

new (ie changing) business situation

new market

new competitors

new staff

new management

new laws /standards

- change in (technical) system environment:

new technology, such as

platforms, OSs, DBs, network,

applications, services,

languages (programming or modelling)

integration, architecture, ...

Requirements Engineering, 2004, Luuk Groenewegen 5.7

- change of (business) organisation:

new organisational

structure, goals, strategy,

processes, style

change is inevitable indeed

but some Rs change

more often / easier than others

hence: stable Rs & volatile Rs

stable Rs: relatively fixed

they are about;

- kernel / essence of the system

- heart of problem domain

Requirements Engineering, 2004, Luuk Groenewegen 5.8

examples

- system for general practitioners:

patients, deseases, medication

- system for personel:

employee, function, career, salary

- system for stock:

article, price, sales, ordering rule

one then always has:

- the standard structure: notions, concepts, items

- the usual functionality: in line with

the normal way of working

- the usual integration / interaction: in line with

the normal way of working

Requirements Engineering, 2004, Luuk Groenewegen 5.9

volatile Rs have the following 4 categories:

- emergent Rs: appearing only on the basis of

the functioning of the system as a whole

- consequential Rs: appearing only on the basis

of the usage of the system

these 2 are rather near to each other, eg:

- presentation:

other possibilities / combinations

- performance:

additional restrictions, to make it work

- unforeseen usage

to be prevented or to be cultivated:

eg: security, authorization,

short-cut, integration

Requirements Engineering, 2004, Luuk Groenewegen 5.10

- mutable Rs: depending on organisational

and social environment

tax, term conditions, risk management,

pollution restrictions, process support

- compatibility Rs: depending on

equipment:

computers, sensors (AD), devices (DA)

software:

concrete systems, architecture rules

technical embedding:

machines, processes, materials, products

also these 2 are rather near to each other:

as both depend on environment

Requirements Engineering, 2004, Luuk Groenewegen 5.11

coping with Rs change:

anticipation

- predicting, expecting, recognizing

possible changes

this is localization of (possible) change

- localization of control / guarding

wrt such R - each R separately

Requirements Engineering, 2004, Luuk Groenewegen 5.12

5.2. Rs identification & storage

pre-requisite of Rs management is:

Rs identification

nevertheless, rather often it is absent

if done at all, normally:

numbering according to structure of RsDoc

: chapter, section, subsection, ...

drawbacks:

(a) only after RsDoc has been approved

the numbering is fixed

(b) Rs classification according to RsDoc’s

structure obscures other relationships

between Rs

Requirements Engineering, 2004, Luuk Groenewegen 5.13

alternatives:

- dynamic renumbering

~ figures etc in a text-editor

drawback (a) repaired

drawback (b) still valid

- DB key

so there is a RsDB

drawback (a) & (b) both repaired

- symbolic identification

abbreviation as classification

drawback (a) repaired

drawback (b) still valid

Requirements Engineering, 2004, Luuk Groenewegen 5.14

more properties - all drawbacks - of

storing Rs in RsDoc:

RsDoc is a file of a text-editor, so:

- separate configuration / version management

(several authors)

- separate traceability

- electronic coupling with change is absent

- different versions of 1 R implies:

different versions of RsDoc as a whole

- searching is rather restricted:

text-editors do not offer much

- navigation between related Rs:

only in the 1order offered by the RsDoc

- navigation between R and model / design /

implementation part is unclear / missing

Requirements Engineering, 2004, Luuk Groenewegen 5.15

!!! therefore: RsDB !!

main class is: REQUIREMENT

with attributes:

- identifier: key

- statement / description: txt, figure, video, ...

- date-entered: first date

- date-changed: last change

alternative: history

- source(s); person(s) and/or circumstances

- rationale: why incorporated;

: txt, figure, video

- relevance / importance:

must-have, nice-to-have, ...

- status:

: proposed, reviewed, accepted, ...

or: in analysis, under review, ...

- comment: plus whatever

Requirements Engineering, 2004, Luuk Groenewegen 5.16

furthermore

rejected Rs should be kept: for future (re)use

with relationships:

- has-dependant: other Rs

- is dependent-on: the inverse of has-dependant

- model-link: towards model / design / code

Requirements Engineering, 2004, Luuk Groenewegen 5.17

note:

- multimedia DB, as video, graphics, sound, ...

- over 1000 Rs, then larger type of DB

- multi-site access: teamwork

- CASE tool / SPE (Software Process Env.)

more support change

more support during / relation with

other SE phases

design, impl., maint., ...

Requirements Engineering, 2004, Luuk Groenewegen 5.18

5.3. Change Management

actual process when changing Rs:

- step 1: change request (CR) process

towards formal CR via a CR form

- step 2: assessment

impact (based on traceability), costs, time

- step3: the actual change, controlled by

CR Board / Change Control Board

Requirements Engineering, 2004, Luuk Groenewegen 5.19

Change Management process:

analyseProblem

~ elicit + reuse of Rs formulation

assessChange ~ analyse&Negotiate

implementChange ~ document + validate +

+ remainder of SE lifecycle

analyse
Problem

assess
Change

implement
Change

identified
problem

CR:
change request

change
decision

new Rs
& design & ...

Requirements Engineering, 2004, Luuk Groenewegen 5.20

more refined assessChange process:

checkValidity

findSurely
ChangingRs

CR

findPossibly
ChangingRs

analyse&
Negotiate

assess

accept
Quotation

valid CR

list+CR

2 lists+CR

rejected CR

proposed
change

quotation:
change+cost

list!!

rejected CR

rejected CR

Requirements Engineering, 2004, Luuk Groenewegen 5.21

above process has more iteration

as well as other outcomes

note:

different stages of reject / accept:

- easy

- relatively easy

- difficult

note:

rejection handling process is relevant too !!!

in RsDB

- form of CR --> additional Requirement(s)

- status: differentiate between

a stage finished and a next stage started

- Change Control Board

checks / controls process continuation

decides where relevant

groups CRs, analyses, designs. ...

Requirements Engineering, 2004, Luuk Groenewegen 5.22

tool support for change management

- electronic CR from

eg to be filled in by various participants:

--> workflow-like

- forms fed into DB

- process support for actual

CR assessment

CR execution

- drawback: process fixed

- research:

customization of process

flexibility

without losing control / guidance

Requirements Engineering, 2004, Luuk Groenewegen 5.23

note:

embedded feedback loop pattern is applicable

- 2 concrete Primary Processes

RE process

change management process

- Management part contains

Change Control Board, relevant for

change management process

- in Environment eg remainder of SE process

- in (M)IS: RsDB and CR-DB

Requirements Engineering, 2004, Luuk Groenewegen 5.24

5.4. Traceability

rough data model for RsDB (as class diagram)

Rs

RsSources RsConsequences

forward-to forward-from

backward-from

backward-to

BusinessPlan

Stakeholder

...

Design

Code

...

RsDoc RsDB

Requirements Engineering, 2004, Luuk Groenewegen 5.25

about the direction terminology:

- forward: according to waterfall direction

- backward: inverse of forward

- to & from : Rs-centred

drawback:

traceability among Rs not covered

to include these to:

- has-dependants: ~ forward-to

- is-dependent-on: ~ backward-from

Requirements Engineering, 2004, Luuk Groenewegen 5.26

traceability tables

comparable to (in)consistency matrix

such a table is a matrix

either of Rs

or of Rs & design (etc) fragments

X is-dependent-on Y

X
Y

Requirements Engineering, 2004, Luuk Groenewegen 5.27

often: 2 lists instead of matrix

one list:

per R: those that are is-dependent-on it

the other list: is inverse list of the former

so per R: those that are dependants of it

Requirements Engineering, 2004, Luuk Groenewegen 5.28

traceability policy:

keeping traceability info up-to-date

not only the first time, but later too

- which traceability:

between which kind of Docs; directions

- matrix or list(s)

- when to collect and by whom

process description

- what if emergency / urgency

not / summary

later but when

how / what

during change management:

also discriminate between

normal, urgency, emergency, other

Requirements Engineering, 2004, Luuk Groenewegen 5.29

policy should be

- realistic

- described in a traceability manual

- it is a task

- responsibility

- “gaps” appear easier

- increase of awareness & trust

