
Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 1

Guidelines for Requirements Analysis in Students’ Projects

Information Systems Group

Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente

Introduction

This document provides guidelines about how to do a requirements analysis and how to write a

requirements specification. It gives hints about what you could do and warns you about things that

you should not do. It is not a method that you can follow step by step. Problems are different, and

what works well in one case would not be the best approach in another case. The available time can

take from a few weeks to several months. And your skills and experience also determine what are

good techniques to use. If a particular specification technique is treated in a course you haven’t taken,

then it might not be a good idea to try it out on an important job. So you have to decide for yourself

what is the best to do in your project.

These guidelines are written primarily for master and bachelor students of Business Information

Technology, but could be used by others. The document is self-contained, but refers to other sources

for detailed descriptions of techniques. Many references are given to the book used in the bachelor

course Requirements Engineering (232081), S. Lauesen: Software Requirements [Lau02]. The UT

library has a copy that is permanently available (it may not leave the library).

Outline of the Guidelines

After an introductory chapter

0. What you should know before you start

the remainder or these guidelines is structured as a series of steps that comprise an idealized life

cycle of a requirements specification:

1. Analysing the problem and the problem context

After this step, you have an understanding of the problem context and you have learnt what

should be improved and why.

2. Defining the ideal solution

After this step, you know what, in principle, the best solution to the identified problem(s) would be.

3. Defining a realistic solution

After this step, it has been defined what the system, for which you are going to do a requirements

analysis, should achieve. Moreover, relevant stakeholders agree about its mission.

4. Gathering requirements

After this step, you know what people would like the system to do and which requirements and

constraints there are.

5. Writing a requirements specification

After this step, you have a readable first version of the requirements specification that can be

discussed with involved persons. We distinguish four separate concerns

5.1. The contents of a requirements specification

5.2. Specification techniques

5.3. Readability and linguistic issues

5.4. Quality check

6. Validating the requirements specification

After this step, you have made sure that the requirements reflect what the relevant stakeholders

want from this project. This is the requirements specification that you deliver.

7. Maintaining the requirements specification

The world goes on, and new requirements may come up. This is outside the scope of most

students’ projects, but for the sake of completeness we discuss it briefly.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 2

The ideal requirements process would follow these steps in consecutive order. As you may have

guessed, the ideal requirements process does not occur in practice. But for the purpose of organising

the material, it makes sense to discuss the steps one by one.

Each chapter treats a single step in the requirements specification life cycle. An outline gives

essential questions that you should ask yourself (and others) and what to do about these. The

remainder of the chapters treat specific topics in more detail. Appendices at the end of the document

give yet more detail and references to further literature.

Not every topic is applicable in every context. Read all the outlines and study other topics as

appropriate.

About this document

These Guidelines have been compiled and are maintained by the Information Systems group at the

University of Twente.

Feedback is welcome! It helps us to improve future versions of the Guidelines.

Please contact Klaas Sikkel, room ZI 3102, email: k.sikkel@utwente.nl.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 3

Contents

0 What you should know before you start...4
0.1 The requirements process ...4
0.2 The requirements specification life cycle...4
0.3 From business problem to system specification..5
0.4 Why isn’t there a proper method? ...5

1 Analysing the problem and the problem context ..7
1.1 What is the problem?...7
1.2 Organisational context ...8
1.3 Stakeholders ..8
1.4 Interviewing..9

2 Defining the ideal solution ...10
2.1 One essential problem...10
2.2 The client’s goal vs. the project goal ...10
2.3 Business solution vs. software solution ...10

3 Defining a realistic solution ...11
3.1 Mission statement...11

4 Gathering requirements ...13
4.1 Requirements at different levels ..13
4.2 Modeling the system vs. modeling the system’s environment ..14
4.3 Types of requirements ...14
4.4 Quality factors ..15
4.5 Priorities ...15
4.6 The Requirements Shell ..15
4.7 Fit criteria ...15
4.8 Requirements elicitation vs. requirements creation...16
4.9 Techniques for requirements gathering...16
4.10 Requirements elicitation for custom-tailored or COTS systems..17

5 Writing a requirements specification..18
5.1 Contents of a requirements specification ...18

5.1.1 Free form or template? ..18
5.2 Specification techniques...19
5.3 Readability and linguistic issues ...19

5.3.1 Keep it short...19
5.3.2 Keep it simple ..20
5.3.3 Structuring text...20
5.3.4 Presenting information...21

5.4 Quality check..21
5.4.1 Quality criteria for individual requirements ..21
5.4.2 Consistency acrossrequirements ..22
5.4.3 Have you finalized the document? ..22

6 Validating a requirements spec...23
6.1 Requirements validation ..23
6.2 Requirements prioritization ..24

7 Maintaining the requirements specification...25
7.1 Requirements evolution ...25
7.2 Traceability...25

Glossary ...26
References...27
Appendix A. Context-free questions..28
Appendix B. Requirements elicitation techniques ...29
Appendix C. Volere Requirements Shell ...31
Appendix D. Volere Requirements Specification Template...32

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 4

0. What you should know before you start

The purpose of this chapter is to give you some general words of advice. You should read this before

you start your requirements analysis.

Way of thinking – What are the essential questions?

� What is a requirements specification?

� How do you obtain a requirements specification?

0.1 The requirements process

Requirements analysis is for a large part a social

activity. The requirements analyst’s job is to find

what relevant stakeholders want and lay that down

in a suitable specification (and not to invent the

requirements himself). Gause and Weinberg

[GW89] define a requirements process as

the part of [system] development in which people

attempt to discover what is desired.

In the early days of computing, it was thought that

the requirements analyst’s job is to find out what is

needed. This presupposes that there is some

objective need, and analysis will reveal what that

need is. In many projects, this is not the case.

There are various things that could be desired for

various reasons. Moreover, many relevant persons

do not have a clear picture of their own desires –

the process of requirements discovery helps them

to find out what they really want.

To make things more complicated, any project has

a number of different stakeholders with different

interests, and it is usually not feasible to incorporate

all desires of all stakeholders. Choices have to be

made and somebody has to put some effort into

making the stakeholders accept the resulting

requirements specification.

0.2 The requirements specification life
cycle

In this section we elaborate a requirements

specification life cycle of seven steps. In the next

section we will argue that it doesn’t work that way,

and in practice you won’t be able to strictly separate

these steps.

What, then, is the point of introducing this model?

It’s a reference model, describing the ideal case.

Even though you will never meet the ideal case, it

helps to keep structure and put things in the right

place. For example, if you return from a chaotic

focus group meeting which has done bits of steps 1,

2, 4, and 6 in random order, you can get some

structure in your equally chaotic notes by ordering

them according to these steps.

It’s like the waterfall model in Software Engineering

– the first thing you learn in an SE course, despite

the fact that nobody ever could make it work that

way. It’s the lucid enumeration of steps that makes

it worth knowing it.

In the generic requirements process described here

we distinguish different phases

• Finding out what the problem is, and what kind of

solution is desired (steps 1–3)

• Drawing up a requirements specification for the

desired solution (steps 4–6)

• Maintaining the requirements specification when

requirements change later on in the project (step

7)

In each phase we can distinguish four different

kinds of activities:

• Preparation: getting organized before you start,

finding out what you are going to do and whom

you may want to talk to, etc.

• Elicitation: going out and finding requirements,

by asking people, observing, reading documents,

etc.

• Engineering: putting things together: specifying

what elicited and observed, organizing and

combining things. There is always an element of

design involved.

• Negotiation and decision making. This is politics,

rather than engineering, but is an inevitable part

of getting a requirements specification accepted.

The complete life cycle model is shown in Figure 1.

The phases cycle through the different activities,

yielding our seven steps:

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 5

Figure 1: The requirements life cycle

1. Analysing the problem and the problem

context

2. Defining the ideal solution

3. Defining a realistic solution

4. Gathering requirements

5. Writing a requirements specification

6. Validating the requirements specification

7. Maintaining the requirements specification

The maintenance phase is never finished and can

cycle on forever. (But we can anticipate this).

0.3 From business problem to system
specification

Another way to look at the relation between problem

and solution is shown in Figure 2.

Business

Problem

Business

Solution

System

Solution

Specification

System

Product

Idea

Business

Supporting

System

Problem Solution

1

2,3

2,3

4,5,6

Figure 2: The Z model

We distinguish between problem and solution, and

between business and supporting (software)

system. In a perfectly rational world, a requirements

analysis process would follow the arrows in the

diagram.

In a narrow sense, requirements analysis is only

concerned with the last arrow. Somebody has

suggested that a system for a particular purpose

can be developed (or bought) and your task as a

requirements analyst is to find the requirements for

that system. However, in order to find these

requirements, it is important to know why this

system is needed, what problem it will solve –

otherwise it’s not possible to determine the

requirements.

A problem always arises in the real world. Even

when it’s clear that the system is to blame. E.g. “our

system is too slow.” It would not be a problem if

people would not depend on that system for doing

the particular job they do. In other circumstances

(e.g. the same company 5 years ago) the same

system might not be experienced as being to slow.

The idea to design, replace, or upgrade a system

doesn’t arise because having the system is a goal

in itself, the system is needed for some purpose.

It is called “business problem” because most

requirements engineering is done for systems that

have some business purpose, but it doesn’t have to

be related to commercial business.

The solution to a business problem is always a

business solution. It is possible that this solution

involves a computer system. It is tempting to think

that acquiring a new system may solve a business

problem (this is a mistake that is often made). Using

a new system can be the solution to a problem.

Acquiring the system isn’t suffficient, the system

has to fit into the way the work is done – or perhaps

the work has to be reorganised, so as to exploit the

capabilities of the new system.

In perfectly rational top-down design process, one

would first define a business solution to address the

business problem, then consider what kind of

system is needed to support the business solution

and finally draw up a requirements specification.

After the arrows in Figure 2, this is called the Z

model.

To make sure that we do requirements analysis for

a system that helps addressing the right problem,

we start with step 1 – identifying the problem. Steps

2 and 3 yield an idea of the solution and the system

needed to realize that solution. After that we can do

a more detailed requirements analysis in steps 4–6.

At least, that’s the theory...

0.4 Why isn’t there a proper method?

Life would be a lot easier with a method that you

could follow step by step. Unfortunately, our life

cycle model doesn’t pretend to be that kind of

method. In fact no such method exists for

requirements analysis.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 6

There is no method that addresses all cases

For each project you have to decide which issues

are important and need a lot of care, and which

issues are trivial or do not apply. These guidelines

are no substitute for thinking for yourself, and you

have to judge what is needed in your project.

Requirements analysis projects differ a lot in scope

and nature. Some examples from projects carried

out by M.Sc. students:

1. A commercial bank has a problem with customer

loyalty. Obtaining new customers by means of

marketing actions seems to work, but the bank

isn’t able to retain these customers for a long

time. Can appropriate CRM software help them

to increase the loyalty of their customer base?

The focus in this project is more on organizational

practices than on the technical support system. In

this project something was implemented in the end,

but initially it was not at all clear what the solution

should look like. But it was evident that a system

won’t help if the bank’s employees are unable or

unwilling to use it properly. Steps 1–6 were carried

out, but the emphasis was on steps 1, 4, and 6.

2. A telecom company wants to find out how it

could rent telephone services to corporate

clients, making use of VoIP (Voice over IP)

technology.

This is primarily a technical project. Not much study

has to be done about how people would use a VoIP

telephone, because it should work as a regular

telephone, and possibly clients shouldn’t even be

aware of the difference. Steps 3–6 were carried out

in this case (the result of step 2, the ideal solution,

was given as a starting point for the project) but the

emphasis was on steps 4 and 5.

3. The Police department in a region in the north of

the Netherlands has difficulties in providing

statistical material to the Ministry of Justice.

Sometimes when the Ministry asks for statistics

about a particular type of crime, they have to go

through all the database records to find the

requested numbers by hand.

The stated problem is clear, but it is a symptom of

an underlying problem that was hard to find and

harder to solve. In this project only steps 1–3 were

carried out.

The steps in a requirements analysis process
do not take place in consecutive order

Only in the ideal situation, you do step 1 first, then

step 2, and so on, without retracing your steps. In

practice you will find it hard to separate analysing

the problem (step 1) from eliciting the requirements

(step 4). Also, it makes sense to combine

requirements elicitation (step 4) with writing down

the elicited requirements (step 5).

Many projects, and some excellent requirements

analysis methods, start with step 3. If the project

goals are straightforward and you are asked to draw

up a requirements specification for a system with a

clear purpose, step 3 is a natural starting point. This

implies that somebody else has already performed

steps 1 and 2, found out what the problem and the

ideal solution was, decided to set up a project and

engage you as a requirements engineer. If this is

the case, you can – and should – find the results of

the problem analysis. If these don’t exist, e.g. if the

project is driven by a solution, rather than a

problem, you should consider doing some problem

analysis after all.

However, in many cases, including most cases in

which our students do a requirements analysis,

there is some idea about the problem, but it is not

immediately obvious what the best solution is –

otherwise they wouldn’t have asked the university.

Many systems fail, despite the fact that they fulfil

the requirements, because the problem is poorly

understood and a solution is built that doesn’t

address the real problem. For this reason we insist

that step 1 is part of the requirements analysis.

Problem-solution co-refinement

It’s a very good idea to define the problem first, and

then the solution. If it’s a difficult problem with no

easy solution, there is a complex relationshop

between problem and solution. The nature of a

possible solution determines what problems you

can solve, and if we don’t know the solution yet we

might not know exactly which problem we can

solve. Empirical studies have shown that refining

the solution and refining the problem go hand in

hand [Cro89]. That’s why you always have to do

some rework on previous steps, no matter which

method you follow.

The method does not work

You do the work. The method is just a set of

guidelines. The method is not responsible for your

work products, nor are the authors of the method.

You are responsible yourself.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 7

Step 1. Analysing the problem and the problem context

The purpose of this step is to find out what the problem is and, equally important, to understand the

situation in which the problem occurs. It is not the purpose of this step to think about possible

solutions. That comes later, after we have learnt enough about the problem.

Way of thinking – What are the essential questions?

� What are the problems (goals, desires) and what are the causes for these problems?

� Is the stated problem the real problem or it is a symptom of an underlying problem?

� Who are the stakeholders?

� What will be the impact if the problems are resolved / the goals are accomplished?

Approach – How to find answers to these questions?

It makes sense to learn something about what is going on, what are the causes for the problems and

which parties have an interest in (not) solving the problem. To that end you have to do two things:

• identify (groups of) stakeholders

• interview relevant persons

Your supervisor or the client can help you drawing up an initial list of persons you might want to speak

to (and talking to these you may become aware of other stakeholders to be considered). If there are

relevant documents about the current system, it could be worthwhile to read those first. If you know

what you’re talking about, you’ll get better results.

The list of “context-free questions” in Appendix A could be a good starting point. Some other points

are elaborated below.

Product – What do you write down?

Lay down your problem analysis in a short paper. Target audience for this paper are the stakeholders.

They should be able to find out, as easily as possible, whether you have captured their problem

appropriately. Hence it is important that the analysis is easily readable and to the point. Making it
short and readable is a lot more work than just summing up what you’ve found. But it’s well worth the

effort if you want to get feedback and gain credibility with the client and other stakeholders.

Follow-up – What do you do with this document?

• Make sure that you have a good enough version (if possible, consult your supervisors)

• Circulate it to relevant persons and ask for their feedback

• If needed: adapt it, based on the feedback

• Include the adapted version as a chapter or an appendix to your final report.

1.1 What is the problem?

How much time, effort and skill it takes to identify

the problem varies from case to case.

There are (few) projects in which the problem is

clear. Consider a project to develop a prototype for

some technologically innovative gadget. You may

find it interesting to know what people eventually

will do with it, but the prime challenge in this project

is in getting the technology working.

In some projects, finding the problem is very hard.

For example in a situation where key persons have

hidden agendas, it needs skill and tact to find out

what is going on.

In some projects, the problem appears to be clear.

But the problem that people experience is a

symptom of a deeper, underlying problem, and it

makes a lot more sense to solve the real problem

than to address the symptom.

Problems at which level?

If you ask people which problems they experience,

they often will tell you that properties of the current

system (or their absence) are a problem. This is

experienced as a problem, it directly bothers

people. The real problem, however, is that they

cannot perform some task effectively or efficiently.

Adapting the system functions they complain about

can be, but need not be the best solution. Perhaps

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 8

is it better to reorganize the work, or to replace the

whole system rather than to repair some functions.

Do not just ask what the problems are, always ask

why this is experienced as a problem. Sometimes

you have to ask “why” several times to find the real

reason behind the reason behind the reason behind

the problem.

Problem vs. solution

When you ask for problems, many people (including

most students not trained in requirements

engineering) will come up with solutions.

• A problem is a difference between what is

experienced and what is desired.

• A solution is a way to reduce a problem

These two are related, but different. It is possible

that there are different solutions for the same

problem.

If you inquire about problems you may be told, e.g.

“we need an ERP system.” What is stated here is

the absence of a solution. Again, we need to go up

one level, and ask “why”. There could be various

reasons. Perhaps implementing an ERP system is

indeed the best solution, perhaps there are also

other solutions worth considering.

How important is a problem?

Not all problems are equally important. One way to

get an indication is to ask the following questions

(costs and benefits are not only financial).

• What are the costs when this problem is solved?

• What are the benefits if this problem is solved?

• What are the costs if the problem is not solved?

• What are the benefits if the problem is not

solved?

If you want to get an idea about the urgency of a

problem, you could add

• What are the costs if the problem is solved after

one year?

• What are the benefits if the problem is solved

after one year?

More about problem analysis

A course Problem Analysis and Software

Requirements (232080) is part of the BIT master

programme.

1.2 Organisational context

How is the project positioned in the organisation?

• How does the project fit in the organisation’s

strategy?

• What does management think about this project?

• Who is responsible for the project’s funding (the

client) and who is responsible for managing the

project?

Goals

A problem is a problem because it prevents some

goal from being realized. In perfectly logical world,

you would first write down the goals and then look

for problems obstructing these goals. Eliciting goals

is a lot more difficult than making a list of problems.

Many people are not willing or able to state their

goals. Try to get some idea about the following

issues:

• What are the goals of the organisation?

• Which personal goals (which are usually hidden)

also play a role?

• What are the goals of the organisational unit?

Are these different from the goals of the

organisation as a whole?

The official goals of the organisation (typically:

running the primary process effectively and

efficiently) give some hold, and can be used in your

problem analysis to motivate why a solution is

needed. But keep an open mind for what is going

on around you.

1.3 Stakeholders

A stakeholder to a project is someone who gains or

loses something (could be functionality, revenue,

status, compliance with rules, and so on) as a result

of that project [AR04].

Stakeholders include

• the client (who pays for the system

development),

• customers,

• system developers,

• direct users (who will work with the system),

• indirect users (e.g. who will get information from

the system),

• system operators.

And there could be others, e.g.

• government bodies, having an interest that the

law is not violated.

Alexander [Ale03] gives a simple but powerful

model of stakeholder roles that can help you

discover the stakeholders for your project.

In some cases you may consider an organisation or

company to be a stakeholder. It is always better to

think of concrete persons, rather than abstract

bodies. (“Mr. Smith in the procurement department”,

rather than “company A&B”). A stakeholder group is

homogeneous if all persons in that group want the

same thing. This is not always the case.

If you want to involve stakeholders in the

requirements process, you have to determine who

represents a stakeholder group. There are several

forms of representation:

• exhaustive (everybody in the group)

• representation by sample (choose the sample

carefully of the group is not homogeneous)

• representation by surrogate (somebody who

knows a group of stakeholders quite well).

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 9

Representation by surrogate (“our marketing

department knows what our customers want”) is

always risky. If you don’t have access to real users,

you must read The Inmates are Running the

Asylum [Coo99] before you attempt to write down

other people’s estimate of what the users would

desire.

Stakeholders have different problems. Even in the

unlikely event that there is only a single problem,

stakeholders will experience this problem

differently.

If you want to get clear which stakeholder has which

problem, you could make a schema as follows:

Stakeholder

Problem

A B ...

Problem 1

Problem 2

...

1.4 Interviewing
1

Interviewing is the most often used technique to

learn about problems. It works fine, if you are aware

of its limitations.

When you ask people about their daily tasks, they

have difficulties explaining what they do and why

they do things the way they do. Some people have

hidden agendas and will not give honest answers.

Make sure you have the right interview partner, and

not a surrogate. If you want to know the problems

on the shop floor, you should talk to the people who

do the work there, not to their managers.

Prepare yourself for the interview. If you know what

you’re talking about you will get a better response.

Make a list of questions. The context-free questions

in Appendix A can serve as inspiration. If you can

make these questions more specific for the

situation, that’s better.

Despite this, an interview is not a question-and-

answer session. Start with one issue, and most

likely the interviewees will cover a number of

questions when you let them talk. If they bring up

issues that are relevant, but not on your list, even

better. Use your list to check whether the issues are

covered. If something hasn’t been touched upon,

you may bring it up.

When you discuss day-to-day problems with an

unsatisfactory system, ask about critical tasks.

When does the user work under stress? When is it

important that nothing goes wrong?

As a general rule you should be polite and sensitive

to the interview partner. Some people don’t like to

admit that they have problems. There is whole

1
 largely based on [Lau02], section 8.8.2.

range of euphemism that roughly mean the same

thing: challenges, things you find hard to deal with,

concerns, issues, things that could be improved, ...

Some managers get offended if you ask “why”, as

they are not used to be questioned about their

motives. If asking “why do you do this” doesn’t

work, you may ask “when do you do this” as a

substitute.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 10

Step 2. Defining the ideal solution

Armed with sufficient knowledge of what the problems are, we can start to think about a solution.

Usually it makes sense to do that in two steps. A realistic goal – the subject of step 3 – is constrained
by practical limitations. The purpose of this step is to find out what the client would like to achieve.

Way of thinking – What are the essential questions?

� What is the essential problem?

� What would be an ideal solution to this problem?

Approach – How to find answers to these questions?

If there is a single problem and everybody agrees that this is the problem that needs to be solved,

step 2 is easy. If, however, there are various issues and different stakeholders experience different

problems, this is not trivial. It has to be decided, somehow, what the essential problem is. In that case

you have to discuss it with the client or perhaps organise a focus group with different stakeholders

(see 4.5).

Product – What do you write down?

A brief text (maximum one page, preferably half a page) describing

• the essential problem,

• the proposed solution,

• a brief explanation about the motivation of the essential problem and the choices you made.

If there was a group session, you probably have a list of other problems and possible solutions. The

explanation should make clear why this problem was chosen as the essential problem.

Follow-up – What do you do with this document?

This is not an official document (achieving the ideal solution is not an objective of the project), but it

could be the most important page in the whole project. Check informally whether relevant

stakeholders can agree with it. If they can, there is agreement about the focus of the project.

If, on the other hand, it turns out that some stakeholders have serious troubles with the choice of the

essential problem or solution, you have achieved your first success! You have shown that the matter

is more complicated and delicate than the client thought, and identified a potentially fatal risk for the

project.

2.1 One essential problem

The goal of the project is to solve, in the best

possible way, the essential problem. The solution

may partially solve other problems as well, but the

priorities must be clear. If you have multiple goals,

all equally important, then sooner or later you will

face design decisions that cannot fully satisfy these

goals simultaneously and you’ll have to favour one

goal at the expense of another.

2.2 The client’s goal vs. the project goal

There is a difference between the external goal or

client’s goal (what the client wants to achieve, e.g.

increased sales) and the project goal (what the

project intends to deliver, e.g. a system to support

the sales process). The external goal provides a

motivation for the project goal.

2.3 Business solution vs. software solution

The external goal is always to find a solution to a

business problem (see the Z model in 0.3). The

project goal could be on the software level

(otherwise you weren’t asked for a requirements

analysis).

If the project goal is to come up with a software

solution specfication, you should spend some words

on the business solution to which your software

solution will contribute.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 11

Step 3. Defining a realistic solution

The purpose of this step is to define a realistic solution and to gain acceptance for it.

Way of thinking – What are the essential questions?

� What is a realistic solution?

� What needs to be done to get support for this solution?

� How can the migration to an improved situation be accomplished?

Approach – How to find answers to these questions?

There could be all kinds of reasons why the ideal solution is not achievable. Budget limitations are a

mundane but common example.

It is not always clear whether a solution is acceptable for various parties. If an important stakeholder

strongly objects to the solution, it is not a good solution (even though you may find his reasons

irrelevant). Acceptance can be increased by involving the right persons in the right way.

If difficult choices have to be made, they are for the client, not for you to make. But you can support

the client in making the right choice by providing clear alternatives with their consequences.

Issues to think about:

• Which factors determine the success of the project?

• Which resources are available for the project?

• What is the attitude (motivation, acceptance) of the intended users?

• Which resources (funds, courses, etc.,) are available for migration?

Product – What do you write down?

Write a realistic mission statement. Desired properties that will not be realized are to be listed as

exclusions.

If you think there could be problems with the migration to a new solution, it makes sense to make an

outline of a migration plan.

Follow-up – What do you do with this document?

The mission statement is a formal document, to be incorporated in the requirements specification.

Show it to all stakeholders (which can lead to minor changes) and make sure that it is approved by

the client.

3.1 Mission statement

There are various definitions of a mission

statement. Wieringa [Wie03, Ch. 5] describes the

mission statement according to Yourdon. We use a

slightly different format; the suggested solution

need not be limited to a computer system. The

system can contain people and procedures, and

need not even involve a computer system.

A mission statement describes the following points

• A short motivation

• System boundary (is it a computer system, or a

system that includes people around the

hardware/software)

• The goal of the system (which problem will be

solved)

• Exclusions (which problems will not be solved)

• How the problem will be solved

An explanation can be added as to why certain

issues are (not) treated. This explanation is not part

of the mission statement proper.

If different stakeholders have different interests, you

could formulate alternative mission statements, and

ask the client to make a choice. As stated in 2.1 a

project should pursue one prime goal. Having a

mission statement that is a compromise between

different goals is asking for trouble later in the

project.

The final version of the mission statement should be

known, understood, and accepted by all important

stakeholders. That doesn’t mean that stakeholders

agree about what they desire and what would be

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 12

ideal. It means that they agree that this is the

mission for this project.

Example of a mission statement

The following mission statement is taken from a

recent M.Sc. project. It has five paragraphs which

could be labelled: introduction / type of system /

goal / exclusions / solution. The external goal is

given in the first paragraph as a motivation for the

project goal in the third paragraph. The system

boundary is not stated explicitly, evidently(?) it is a

software system.

The purpose of each paragraph is clear, so there is

no need to include headers.

A problem to be solved in electronic commerce is

the specification of terms of delivery in such a

way that can it can be established beyond doubt

– if necessary, in court – what these terms were

at the time the contract was made. The E-Terms

consortium wishes to address this problem by

establishing an E-Terms repository. When a

business party submits terms to the repository,

the consortium guarantees that the applicable

terms can be retrieved unaltered by any

interested party at any future moment.

In this project [student] will develop a prototype

of an E-Terms repository.

The purpose of the prototype is to serve as a

proof of concept, aimed at showing the possibility

of creating a repository and functioning as a

guide for the development towards a final

version. Furthermore, the prototype will be used

in the external promotion of the concept to

potential users, submitters and developers. It

should serve both to increase the interest in the

E-Terms service and to gather relevant feedback

from interested parties.

Efficiency and reliability requirements envisaged

for the final product need not be met by the

prototype repository.

 [Some words about the different functions to be

supported by the E-terms die door de

repository.]

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 13

Step 4. Gathering requirements

The purpose of this step is to find out what people would desire the system to do, which demands

they have, and which constraints there are.

Way of thinking – What are the essential questions?

� Which kind of requirements are needed?

� How and where can I find these requirements?

� Which questions do I ask?

� Could I have missed any important requirements?

Approach – How to find answers to these questions?

A common way to find requirements is to interview people. If you did that in step 1, you may already

have collected some requirements. With a clear project goal and mission, it could happen that you

want more specific requirements from persons you talked to earlier.

A number of other techniques are listed below. Obviously, it depends on the context and the kind of

system which technique is most suitable, and which stakeholders to involve.

We make a distinction between business-level requirements and system-level requirements

(elaborated below in Section 4.1) System-level requirements describe what the system should do.

Business-level requirements describe which tasks should be supported by the system. Traditional

software engineering has a focus on system-level requirements. However, if the main challenge is to

find out how the efficiency of a task or an organisation can be improved, it could be worthwhile to

focus on the business-level requirements.

Product – What do you write down?

You have written notes of all the requirements you gathered and other relevant information that

people gave you.

Follow-up – What do you do with this document?

Writing an easily readable requirements specification, based on your notes, is still a lot of work. That

will be the subject of step 5.

4.1 Requirements at different levels

Consider an information system for the reception

desk at a hotel. It could have the following

requirements:

R1. The system shall allow the hotel to increase its

bookings with 15 % without adding reception

staff.

R2. The system will support the receptionist to

prepare for the arrival of a tourist bus.

R3. The system shall be able to record that a room

is occupied for repair in a specified period.

R4. The system shall record the data specified in

the Class diagram in appendix X.

We can make a distinction between business and

system and between problem and solution, as

illustrated in Figure 3. The requirements R1–R4

describe a business goal, business process, system

requirement and system design, respectively.

Figure 3 – requirements levels
2

2
 Astute readers will have noticed a difference between

figures 2 and 3. In the Z model in Figure 2, it was
suggested that the requirements specification, produced in
steps 4, 5, 6, provides a solution (bottom left corner). In
Figure 3, system requirements are stated as a problem
(bottom left corner). This paradox is caused by a

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 14

Most relevant are the business process and system

requirements – assuming that the focus of your

requirements specification is to make clear how a

proposed system can support an envisaged

business process. But we discuss each of them and

give them a name for easy reference.

• Goal-level requirements describe a business

problem, i.e., a goal that the client intends to

achieve. This is an external goal (see 2.2); the

supplier of the system can never guarantee that

goal will be achieved, hence it is not a project

goal. It could be useful to know the business

goals of the client (you want the client to be

happy with the delivered system), but goal-level

requirements are not usually part of a

requirement specification.

• Business-level requirements
3
 describe

business process: they deal with tasks to be

supported by the system – without being specific

about which system functions are needed to do

so. The normal check-in procedure in a hotel has

been designed for guests who come alone or in

small groups. If a bus with several dozens of

guests arrives, the reception will follow a different

procedure in which the administration is done in

advance, perhaps printing a list of guest names

and room numbers. Which particular solution is

to be chosen isn’t important at this stage. The

requirement in this example is that the system

allows the staff to handle the exceptional

situation in an appropriate manner.

• System-level requirements
4
 specify a software

problem, i.e. the desired behaviour of the

system: individual functions of the system

(functional requirements) and overall quality

properties of the system (quality requirements).

• Design-level requirements specify a software

solution, i.e., details about how a particular

function of the system is to be implemented.

These should be used sparingly in a

requirements specification, it is not meant to give

a detailed design of the system. But sometimes

problem and solution are hard to separate. A

class diagram is a good example: by specifying

the object classes and their relations, it becomes

difference in level of abstraction. Figure 2 takes the
perspective of the first iteration in the requirements life
cycle, steps 1, 2, 3. Defining how the system will behave
is, at that stage, a solution to the real-world problem that
needs to be solved. Figure 3 is takes the perspective of
later iterations of the life cycle: the requirements are
regarded as a problem statement, the solution is realizing
a system that meets these requirements. Problem and
solution are not absolute categories: some person’s
solution is another person’s problem. A solution at a
higher level is a problem at a lower level.
3
 Lauesen [Lau02] calls these “domain-level

requirements,” another term often found in the literature is
“user requirements.”
4
 Lauesen [Lau02] calls these “product-level

requirements.”

clearer which information can be stored in and

retrieved from the system.

In Software Engineering, the focus is on

technologically challenging projects, rather than

embedding the technology in an organizational

context. In that tradition, software requirements are

system-level requirements. In Software Engineering

handbooks, finding business-level requirements is

done in a separate, first phase of the software life

cycle, which they call system analysis or information

analysis.

In Information Systems, the biggest challenge in a

project is often to make sure that a system fits the

context in which it is to be deployed, rather than the

technical development of the system itself.

Therefore we have a broader view of requirements

analysis and explicitly include the business level.

System-level requirements tell us what the desired

properties of a system are. Business-level

requirements tell us why a system must have

certain properties.

4.2 Modeling the system vs.
modeling the system’s environment

Typically business-level requirements are about the

system’s environment, and system-level

requirements about the system itself. But the

system environment is not limited to the business

level. Systems usually have to exchange data with

other systems, which may cause requirements at

the system level and even at the design level.

A requirements specification should contain a

model of the environment, including other systems it

has to interface with. A context diagram (see, e.g.,

Lauesen [Lau02, section 3.2], Wieringa [Wie03]) is

a good high-level description of a system’s

environment.

4.3 Types of requirements

Requirements come in different types. In a

requirements specification you may find the

following categories:

• Constraints. These are global requirements that

restrict the way you produce the product. Budget

and delivery deadline are constraints. There can

also be technical constraints, e.g. that the

system should run on particular hardware or

interface with an existing legacy system.

Usually you are not at liberty to negotiate

changes to constraints.

• Data requirements. A requirements

specification could have a data model, specifying

the kind of data that have to be stored in the

system, e.g. in the form of a UML class diagram.

• Functional requirements. These describe the

functions of the system. This can be on the

system level or on the business level. In the latter

case, functional requirements describe the tasks

to be supported by the system.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 15

• Quality requirements, also called non-

functional requirements. These describe

quality properties of the system as a whole, see

4.4 below. Not all properties are relevant for

each system.

Many examples of these types of requirements are

given by Lauesen [Lau02].

4.4 Quality factors

Different sources give different classications for

quality factors, but they usually overlap. ISO 9126

distinguishes

• Functionality (accuracy, security, interoperability,

suitability, compliance)

• Reliability (maturity, fault tolerance,

recoverability)

• Usability

• Efficiency

• Maintainability (testability, changeability,

analyzability, stability)

• Portability (adaptability, installability,

conformance, replaceability)

For large, safety-critical systems there could be

requirments for all the second-level quality factors

mentioned in parentheses. Probably you need to

address only the main categories.

Usually there are trade-offs between quality factors.

Increasing the security may decrease the usability

of the system, and reversed.

In the initial stages of requirements elicitation, it is

very difficult to get measurable quality

requirements. What you really want to know,

initially, is the relative importance of various quality

factors for the project you’re working for. Is security

a really big issue, or is it only marginally relevant? If

the system would be down for half a day, what

would be the consequences for the customer?

For quality factors that really matter, you should try,

later on, to get measurable requirements – see 4.7:

fit criteria – otherwise there is no way of knowing

whether the system, when it is delivered, meets the

requirements.

4.5 Priorities

In the process of requirements gathering, you want

to get an idea how important the various

requirements are. It is possible that not all the

demands and desires can be fulfilled, so it useful to

know what could eventually be dropped. At a later

stage (step 6), when there is a complete list of

requirements, priorities can be ranked and

negotiated, if necessary. At this stage, you want a

first indication.

MoSCoW

For a rough indication you can use the so-called

MoSCoW classification:

• Must: essential requirements, the system must

meet these

• Should: requirements that the system should

meet, if possible

• Could: nice features, that could be included if it

doesn’t take too much time and effort

• Won’t: exclusions, i.e., features that some

stakeholders would consider reasonable

requirements, but, for some reason or other, will

not be included in the system

Customer satisfaction and dissatisfaction

The Volere method [RR99] suggests estimating, on

a scale of 1 to 5, customer satisfaction and

dissatisfaction.

• Customer satisfaction is a measure of how

happy the client will be if you successfully deliver

an implementation of the requirement.

• Customer dissatisfaction is a measure of how

unhappy the client will be if you do not

successfully deliver this requirement.

Customer satisfaction and dissatisfaction need not
be each other’s inverse. For example: a very nice
feature in the “could” category could make the client
really happy (satisfaction = 5), but, since it’s not
necessary for solving the essential problem, he is
not going to be deeply disappointed if it doesn’t
materialize (dissatisfaction = 3). Another example: If
a system is supposed to be online 24/7, availability
is taken for granted (satisfaction = 3), but poor
availability is problematic (dissatisfaction 5).

It is generally a good idea to ask customers for

(dis)satisfaction rates.

4.6 The Requirements Shell

In the Volere method [RR99], Suzanne and James

Robertson give a template to be filled in for each

requirement. They call it the Requirements Shell. It

is suggested that you carry cardboard copies of the

template with you when go around gathering

requirements. See Appendix C.

4.7 Fit criteria

The Volere Requirements Shell template makes a

distinction between the description of a requirement

(what you want) and the fit criterion (how to

determine whether what you want has been

achieved). A requirement with a fit criterion is

measurable: there is a way to determine objectively

whether the requirement is satisfied by a given

product.

For data and functional requirements this is not too

difficult; if the requirement is complete and

unambiguous there is no room for discussion

whether a particular solution does or does not

satisfy the requirement.

Quality requirements are usually harder in this

respect. You may have gathered some

requirements that have a description but as yet no

fit criterion. E.g.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 16

The system must respond [...] fast.

This is a clear desire, but not measurable. A fit

criterion should tell precisely how fast.

The system must respond [...] within 2 seconds

is clear enough. However, is it necessary to

guarantee that all responses are within 2 seconds

and, say, 2.2 seconds during peak load is not

acceptable, even if this would greatly increase the

cost of the system?

A typical form for such a requirement is

The system must respond [...] within 2 seconds

in 90 % of the cases and always within 5

seconds.

This is a usual form for such requirements and the

fit criterion is okay. Yet, you could ask yourself

wether these values are arbitrary (in which case

other values can be negotiated if these would cause

problems) or derived from some specific purpose.

Rationale is another slot in the requirements shell. If

you get to know why response time is an issue, but

the proper values cannot be estimated right now,

you should at least capture the rationale, e.g.

The system must respond [...] not slower than

comparable systems.

This has no proper fit criterion yet, because it isn’t

defined what comparable systems are, but for the

time being it expresses approprately what is

desired.

Another possibility is to give a template for a fit

criterion and leave it to the system

provider/designer to suggest a reasonable value:

The system must respond [...] within __ seconds

in __% of the cases and always within __

seconds.

For a response time requirement we know at least

that time is the dimension in which a fit criterion has

to be specified. For some other quality requirements

there is not even an obvious choice for the

dimension in which quality can be measured.

Usability

Usability is one of the hardest things to quantify.

Lauesen [Lau02, Chapter 6.7] gives 9 different

ways to specify measurable usability requirements.

Some examples:

U1. Novice users shall perform tasks Q and R in 15

minutes. Experienced users complete tasks Q,

R, and S in 2 minutes.

U2. 80 % of the users shall find the system easy to

learn. 60 % shall recomment it to others.

U3. Three prototype versions shall be made and

usability tested during design.

4.8 Requirements elicitation vs.
requirements creation

Finding requirements is traditionally called

“elicitation”, which means “uncovering”. Implicitly it

is assumed that there are some objective needs,

and it is the task of the requirements engineer to

find out what those needs are. Gause and

Weinberg [GW89] made clear that in most cases

requirements are not elicited but created. The

customer usually hasn’t thought about the details,

and the requirements analysis process may help

him to explore possibilities and/or force him to

decide what he wants.

In requirements elicitation, you are like a scientist

studying the behaviour of planets: you observe what

happens but you do not influence it. Requirements

elicitation is simply writing down the requirements

as they are told to you by stakeholders. In

requirements creation, on the other hand, you work

with the customer to identify the requirements. You

join the customer in the search for goals to achieve

and problems to solve. In the first case, the

customer knows what the requirements are and you

help him or her to write these down. In the second

case, the customer does not know what the

requirements are and you work with him or her to

determine what they are. Requirements elicitation in

its pure form does not exist.

4.9 Techniques for requirements gathering

Common techniques include (but are not limited to)

the following. Lauesen [Lau02] gives some more

details. Appendix B gives a longer list with further

references.

• Interviewing. (See step 1)

• Documents. If the purpose of a project is to

replace an existing system, the documentation of

that system can give useful information, e.g. data

models. Also, if you studied documents in step 1,

for finding the goals and background of the

project, these may hint to requirements. It is

always useful to cross-check what you read in

documents with what you hear in interviews.

In an IT-intensive organisation there could be

architecture documents with guidelines and

constraints for individual applications.

• Observation. The way people work is not

necessarily the same as the way people think

they work or the way they describe how they

work. To be a good observer, you need some

skills (not taught in our courses). See Beyer &

Holtzblatt [BH98].

• Brainstorming. You should have experience

with brainstorms if you want to moderate one.

• Focus groups. In a focus group, representatives

of different stakeholder groups come together to

identify problems, needs and possible solutions.

Lauesen [Lau02, section 8.4] describes how to

organize focus groups.

If you get people to attend a focus group, they

are motivated to discuss problems, requirements,

and solutions, and you should allow for that. You

cannot limit a focus group to a single step of our

life cycle, but you can emphasise one step of our

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 17

life cycle. There is always some overlap with

other steps.

• Prototyping. Prototypes can help to imagine

what the system could be like and thus to be

more concrete about what they (don’t) want. A

prototype is typically a mock-up, in which the

functionality is faked or absent. For a very first

impression, a sketch on paper will do as well.

• Study similar companies.

4.10 Requirements elicitation for custom-
tailored or COTS systems

Most requirements analysis methods deal with the

case that a new system has to be developed, for

which requirements need to be drawn up. In many

cases, however, there is no need to develop a new

system – you can buy one. Software that you can

readily buy is called common off-the-shelf (COTS)

software.

When a COTS solution is sought, some steps in the

requirements process differ from our general

outline.

Another possibility is that a commercial system is

bought, but more work (fine-tuning, interfacing with

other systems) needs to be done in the operation

environment. This is typically the case with ERP

systems. If there is a choice of different suppliers,

this would call for a tender process.

After the project goals and mission are clear, some

alternatives to are

• Tender process. You draw up a requirements

specification of what is needed, and ask different

vendors whether they can supply this, and at

what price.

• COTS selection. If different companies sell

software packages with the same kind of service,

you have to select which one is the most

suitable. Chances are that the functionality of

these packages is rather similar (if they wouldn’t

satisfy the market requirements, i.e. the functions

that such a package ought to have, they wouldn’t

be in business). There is usually more difference

in quality issues (e.g. how good is their service?).

Hence the selection should pay due attention to

these.

If your client is a vendor of COTS software, some of

the items in these guidelines have to be

reinterpreted accordingly. It is important as ever that

the product satisfies the customer. The client will be

satisfied if the customer wants to buy it, but he is

not the most authoritative source for the customer’s

desires. See Cooper [Coo99] for learning the user’s

desires in COTS software production.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 18

Step 5. Writing a requirements specification

The purpose of this step is to write a draft version of the requirements specification. Some

requirements may change, as a result of discussing the draft with relevant persons – but in order to

engage in such discussions, you need a good document.

There are a number of different things to consider when you write the first full version of your

requirements specification. This section is split into four subsections, treating separate concerns:

5.1 What should be the contents of a requirements specification,

5.2 Specification techniques,

5.3 Readability and linguistic issues,

5.4 Quality check.

Product – What do you write down?

A complete, well-structured, readable requirements specification.

Follow-up – What do you do with this document?

Send this document to relevant stakeholders. You may ask them for written comments or discuss the

document with them. The latter is more work but yields better results.

5.1. Contents of a requirements specification

Way of thinking – What are the essential questions?

� Which subjects should be covered in the requirements specification?

� How to structure the requirements specification?

Approach – How to find answers to these questions?

In addition to a list of requirements, a requirements specification gives some information about the

reasons for the project, the context of the system, and any other issue for which you find it relevant to

provide written details. Examples of real requirements specifications are given by Lauesen’s [Lau02],

Chapters 11–15. A detailed, generic table of contents for a requirements specification from the Volere

method [RR99] is given in Appendix D. You can use it as a checklist of things you’d like to discuss in

your requirements specification. You don’t want to cover all of these (unless you’re doing

requirements for a multi-million Euro project), so you should think about what is relevant for your

project.

5.1.1 Free form or template?

Some organizations that do a lot of software

projects have their own template for requirements

specifications, with a fixed table of contents. Using

such a standardized format has the advantage that

it is easier to find particular pieces of information (if

both the writer and the reader are familiar with the

standard). The disadvantage is that the prescribed

table of contents is probably not the most suitable

for the particular project you’re working on. Kovitz

[Kov98] advocates the principle “form follows

content.” If you know what you want to say, then

choose the structure that is best suited to express

what you want to say.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 19

5.2. Specification techniques

Way of thinking – What are the essential questions?

� Which parts/aspects of the environment and the desired solution need to be specified in some

detail?

� What is the most appropriate specification technique in this context?

Approach – How to find answers to these questions?

Diagrams are more precise and less ambiguous than words. It is not uncommon to include use case

diagrams in the functional requirements and to use a class diagram for specifying data requirements
for a system. It could make sense to use an entity-relationship diagram to specify the environment of

the system and a context-diagram to specify the interaction of the system with its environment.

What is useful depends on the project – and to a certain extent on the requirements analyst.

Techniques you are familiar with work better (if they are appropriate) than techniques you have never

used before. The courses Information Systems (212010) and Requirements Engineering (232081)

provide enough technical background for bachelor students. Master students Business Information

Technology could also apply techniques from Specification of Information Systems (233030).

5.3. Readability and linguistic issues

Way of thinking – What are the essential questions?

� Who is my target audience? Can they understand it?

� Can the presentation be improved?

� Can the text be shortened?

Approach – How to find answers to these questions?

The purpose of the document you are writing is to communicate its contents to other interested

parties. In order to achieve that purpose, it pays off to make an effort to make the document well-

written and well-structured. Unfortunately, the form that is easiest accessible for the target audience is

not the easiest one to write. Some tips are given below.

5.3.1 Keep it short

5

Many requirements specifications are longer than

necessary. This has several disadvantages. Firstly,

the readers may not read the whole document. If it’s

long, people are inclined to browse through the

document, rather than read it. Secondly, it is more

difficult to find back some piece of text. This makes

it harder to use it as a reference. Thirdly, a longer

text is more difficult to comprehend than a short

one. Unfortunately, writing a short text is more

difficult than writing a long text.

5
 Sections 5.3.1-3 are primarily based on Kovitz [Kov98]

and translated from a version in Dutch compiled by
Emile de Maat.

Repetition

A prime way to make a text longer than needed is to

repeat information. Occasionally it is useful, to

repeat text, e.g. when you give an overview or an

example. Most other repetitions are not needed and

can be discarded.

Metatext

Metatext is text about the text. Again, in some

cases this is useful. It makes sense, for example, to

explain the structure of the document in the

introduction. A typical example of superfluous

metatext: “In this chapter the user interface

requirements are given” as introductory statement

in a chapter “User interface requirements”.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 20

Generalities

Generalities are pieces of text that are not specific

for the requirements that you are writing, but are

more generally applicable. Consider, for example, a

requirement

Each input screen shall fit entirely within the

window and shall use as little scrolling as

possible to display and/or retrieve information.

A good user interface designers knows this and will

try to apply it. A requirements specification is not a

proper place to teach others about good user

interface design.

Useless additions

Sometimes authors add extra text that carries no

additional information. They do so, apparently, for

fear of short texts – perhaps they are afraid that

somebody will judge these texts as insufficient

because they are short. For example:

The system should be user-friendly and have a

simple user interface

The second part is redundant.

Another useless addition is upgrading a short piece

of text to a separate section. E.g.

3.3 Performance

Downtime should be limited to one day per year.

If this is all there is in Section 3.3, it could have

been merged with another section.

The use of a template with a standard table of

contents leads to sections like 3.3 above or, even

worse,

3.4 Hardware constraints

There are no hardware constraints

5.3.2 Keep it simple

Requirements specifications often are hard to

understand. Usually this is not because the

requirements are inherently complicated, they are

just specified in a complicated way. We discuss

some causes for this.

Use short sentences

Many authors write too long sentences. This is often

caused by the desire to provide complete and

precise information. It is good to be aware,

however, that all this information does not have to

be captured in a single sentence. Long sentences

can be made more understandable by dividing them

into smaller sentences. For example

In this document the requirements are given for a

system that Wertor will design for Myriad.

This not a really complicated sentence. But it could

be replaced by

Wertor will design a system for Myriad. This

document gives the requirements for this system.

Use clear and consistent terminology

When you elicit requirements, different persons may

use different terms to describe the same concept.

This can easily be carried over into the

requirements specification, but it is confusing for the

reader. It pays to make the extra effort to ensure

consistent terminology. Make a glossary and make

sure that the text is consistent with your glossary.

Also, the author may use a term that is known to his

professional colleagues (or even worse, invent a

new term) but not understood by the readers of the

document. If you must use an unfamiliar term, make

sure that you define it.

Avoid overspecification

Requirements should be complete and

unambiguous. This is generally true, but it can be

carried too far. Consider the following requirement

for an inventory system

Every object in the store that is meant for sale

has a unique identification code

The store contains objects that are not for sale:

shelves, fork-lift trucks, etc. These do not need a

unique ID in the inventory system, but in the domain

of inventory systems that is quite obvious. Hence

the following, easier requirement will do

Every object in the store has a unique

identification code

5.3.3 Structuring text

The structure of a document can contribute a lot to

its readability. Structure tells the reader what to

expect where, and helps him understanding the

text. In a well-structured document it is easy to find

back pieces of information. This makes it suitable

as a reference document.

Structuring a document is done in three steps

1. Make a list of all subjects to be treated

2. Group these into coherent groups

3. Decide upon an order in which to present them.

Most difficult is step 2. There are different ways to

group subjects, and usually each of them poses

some problem for presenting them in a linear order.

Choose the grouping that seems most suitable and

solve the ordering problems by appropriate cross-

references. Make sure that you always treat one

subject at the time.

Examples of different structuring principles:

• Group requirements by type of requirement

• Group requirements by stakeholder

• Group requirements by subsystem.

• Group requirements by priority, first state the

“must”, then the “should”

• Order the subjects from general to specific

• Order the subjects from important to unimportant

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 21

• Order the subjects from easy to difficult, so that

the reader can increase his understanding along

the way.

• and so on ...

Whatever structure you choose, it is important that

you support it in text and lay-out.

5.3.4 Presenting information

Whatever specification techniques you have used,

there will be a lot of natural language in the

document. If this contains factual information, it is

advisable to present this in the form of lists and

tables. Lists offer more structure, and people can

use them as checklists.

A table is in fact a two-dimensional list. Information

suitable for a table is hard to present in flat text.

Tables are easier to read, but also easier to write.

5.4. Quality check

Way of thinking – What are the essential questions?

� Are all requirements unambiguous and complete?

� Is there a fit criterion for each requirement?

� Do we know for each requirement why it is in the specification?

� Are there conflicting requirements?

� Is the document as a whole properly finished?

Approach – How to find answers to these questions?

Below you find some quality criteria that should be applied to each requirement to determine whether

it is a good requirement.

Finally, before you deliver the document, make sure that there are no loose ends, that cross-

references are correct and that spelling errors, typos, and word processing errors have been

eliminated.

5.4.1 Quality criteria for individual

requirements

Robertson and Robertson [RR99] say that any

requirement that does not satisfy all the quality

criteria is, at best, a potential requirement. In the

final version of the specification there should not be

a single requirement of insufficient quality. But what

we are working on here is still a draft version. For a

draft version, it could make sense to include

potential requirements – with an annotation of the

defects yet to be solved – if these requirements

were raised and should not be forgotten.

Complete?

In step 4.6 we introduced Volere’s Requirements

Shell [RR99], a template to be filled in for each

requirement, see Appendix C. Are any components

for the template not filled in? Perhaps there is

nothing to fill in. For example, if there are no

supporting materials, then the Shell should say

“Supporting materials: None” (rather than leaving it

blank). Other things might not have been clear at

the time the requirement was elicited. For example,

at the moment you don’t know about dependencies

or conflicts. Or perhaps you would need the

customer to assess (dis)satisfaction values but you

didn’t have a chance to talk to him after the

requirement was raised. It is likely that you do not

yet have a fit criterion for each requirement.

If some of the questions cannot be answered right

now, we have to live with that for the time being.

You could indicate in the document specifically to

which questions you still need answers. What you

should never do is guessing the answers in order to

complete the specification.

Precise, unambiguous and meaningful to all
stakeholders?

Check whether the requirements can be

misunderstood and interpreted differently from what

you wanted to say.

Could possible ambiguity be reduced by stating

more precisely what you mean? For example

“Supporting Material: Information plan of

company X”

is unambiguous only if there is a single version of

this information plan. Therefore

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 22

“Supporting Material: Information plan of

company X d.d. 22 December 2005”

is better.

Consistent terminology (see 5.3.2) is a precondition

for precise, unambiguous and meaningful

requirements.

Fit criterion?

Does each requirement has a fit criterion (see 4.7),

i.e. it is possible, when the system will be delivered,

to establish objectively whether the requirement has

been satisfied?

Relevant to the system’s purpose?

Sometimes people get great ideas about what a

system could also do. In the mission statement we

have clearly laid down the purpose of the system. If

a requirement does not contribute to the purpose, it

is in the nice-to-have (“could”) category. If it is

included in the requirements specification, it must

be made clear that it is not an essential

requirement.

Unnecessary requirements are typically those with

high customer satisfaction rating and low customer

dissatisfaction rating.

Viable within constraints?

Does the project have the time and budget to satisfy

the requirement? If not, it’s not a good requirement,

and should be discarded. (Or the time and budget

should be adapted. If neither is acceptable the

project should probably be abandoned!)

5.4.2 Consistency across requirements

In 5.4.1 and 5.4.2 we have scrutinized each

requirement individually. Similar questions can be

asked about the whole set of requirements. There

could be

• redundant requirements;

• incompatible requirements (i.e. it is not possible

to satisfy all at the same time);

• missing requirements.

Obviously there is no fail-safe way to discover

missing requirements. An important way to get

these is to get feedback from relevant stakeholders

on the draft requirements specfication (see 6.1,

validation). However, there are some consistency

checks that you can do before the draft specification

is finalized.

All tasks / use cases covered?

If there are task descriptions or use cases for the

system, check that all actions have been covered.

System administration and support covered?

Most computer systems offer two kinds of functions:

primary functions that serve the purpose of the

system (users can do something useful) and

secondary functions to allow the system to be

operated (e.g. adding new users, maintaining the

system’s data). Are these secondary functions

covered?

CRUD check

If there is a data model, check whether each

attribute is Created and Read, and, if applicable,

can be Updated and Deleted.

5.4.3 Have you finalized the document?

There are various natural roles that people can

have when they work in a team (called Belbin roles,

after the person who discovered them). Experience

shows that the role completer/finisher is poorly

represented among our students. Before submitting

a document, such a person would scrutinize every

detail to make sure that

• everything is numbered correctly,

• cross-references are correct,

• figures and tables appear in the right place,

• citations and references are marked

appropriately in the text

• literature references in the reference section are

complete,

• the lay-out is consistent,

• the names of the author(s) and other contributors

are mentioned appropriately, and

• the document carries the right date and version

number

If you have no such person on your team, or if you

are working alone, you should force yourself to do

this. This gives the document a professional

appearance.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 23

Step 6. Validating a requirements spec

The purpose of this step it to ensure that a solution that satisfies the requirement specification

achieves the goals laid down in the mission statement.

Way of thinking – What are the essential questions?

� Does the specification reflect the desires and needs of the stakeholders?

� Do the stakeholders agree on the priorities, when there are conflicting requirements or when not

all requirements can be met?

� Is it technically possible to meet the requirements?

� Which requirements have not passed the quality test?

Approach – How to find answers to these questions?

Validation means that you make sure that you have specified the right solution, i.e. that a product

satisfying these requirements will meet the goal that was laid down in the mission statement. The

persons who can decide that are the stakeholders, not the requirements analyst. (And In order to

decide that, they have to be able to understand the draft specification – that is why we spent so much

effort on step 5).

In situations where a complex and technically challenging system is proposed, it is wise to consult the

software architects who will be involved in the design. The can warn you about requirements that are

hard or impossible to realize.

If there are conflicting requirements, or if not all the requirements can be met, tough decisions have to

be made. There are two things you can do: engage some stakeholders in ranking essential

requirements according to importance, or ask the client to decide (or one after the other).

At the same time, when you are going back to the stakeholders with the draft requirements

specification, this could be an opportunity to elicit missing elements of the requirements shell, e.g. fit

criteria. You can put gentle pressure on them by explaining that, ultimately, an incomplete

requirement cannot be included in the final specification.

Product –What do you write down?

The final version of the requirements specification.

Follow-up – what do you do with this document?

Deliver the specification. The requirements analysis has been completed.

6.1 Requirements validation

There are several way in which you can get

feetback on the draft requirements specification.

You can circulate the specification to the

stakeholders and discuss it with each stakeholder

individually, or you can organise a validation

meeting.

If you want to know what people really think about

the requirements specification, you must make sure

that they understand it. That is why it is worthwhile

to make the draft spec a complete, legible,

accessible document, rather than circulating a

premature version.

If a prototype was made for requirements gathering,

you could show (an updated version of) the

prototype in addition to the specification document.

Validation meeting

At a validation meeting, a selection of relevant

stakeholders is present. The participants at this

meeting must have enough knowledge of the

application domain and the context in which the

system is going to be used (the organisation for

which the system is developed). Also at least one

end user must be present.

The purpose of a validation meeting is to draw up a

list of problems with the requirements specification,

and possibly an agreed list of actions to address

these problems. (It is not the purpose of the

meeting to solve the problems here and now).

See Kotonya and Sommerville [KS89, Chapter 4]

for a more elaborate description of validation

meetings.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 24

6.2 Requirements prioritization

Sometimes it’s impossible to satisfy all the

requirements. A finite budget is the most mundane

and the most frequent reason to scale down your

desires. But it could be the case that requirements

are at odds with each other. Higher security may

imply lower user-friendliness, and reversed. Also, if

you buy an existing system or a COTS product, you

have to choose from what is available, which may

not be exactly what you want.

Section 4.5 discussed the MoSCoW classification

and customer (dis)satisfaction values. These are

absolute values, to give a first indication of what is

important. When it comes to making tough

decisions – what to discard, or to postpone to a

future release – absolute values aren’t good enough

(usually too many things are important).

What is needed, then, is to assign priorities. These

are relative values: is a requirement A more

important or less important than requirement B?

In order to reach an optimal decision, one should

• establish relative values for all requirements

• estimate the cost of implementing the

requirement

A formal method for this, based on the Analytic

Hierarchy Process (AHP), is presented by Karlsson

and Ryan [KR97].

Such a method yields an optimal decision, if the

costs estimates are accurate and if there is no

disagreement among the stakeholders (or if only the

prime stakeholder, the client, matters).

When different stakeholders with different desires

are important to a project, there is a political

element in prioritizing requirements. When some

get all their priorities granted, and others get none,

the project is in for trouble.

Informal ways to assign priorities include

• Ask persons to assign a total of 100 points to

different requirements in any way they want.

(could be done by different stakeholder

representatives as a starting point for a meeting

to decide the priorities)

• Get a meeting of stakeholder representatives to

agree on the 10 most important requirements. (If

politics are really troublesome this could be done

without further ranking among the top 10).

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 25

Step 7. Maintaining the requirements specification

The purpose of this step is to ensure that in all steps of the system’s life cycle there is an accurate

requirements specification for the current version of the system.

Way of thinking – what are the essential questions?

� How do you manage new requirements that arise during system development?

� How do you maintain requirements traceability and keep the requirements specification consistent

when requirements change?

Approach – How to find answers to these questions?

In nearly all cases where students do a requirements analysis, the students are no longer involved in

the later stages of project development. Chances are that you will not be asked to maintain the

requirements specification that you delivered. Nevertheless we briefly mention some issues,

completing the requirements specification life cycle.

7.1 Requirements evolution

In the ideal case, all stakeholders agree that your

final requirements specification accurately descibes

their requirements for the new system – at this

moment. There are many reasons why

requirements may change in the future:

• Testing and operation of the system may reveal

defects. That is, some essential requirements

were missed after all.

• Stakeholders may come up with new desires for

additional features.

• The world changes, which my lead to new

business requirements, or may require the

system to interact with new (versions of) systems

in its environment

While the system is still under development, some

care should be taken in allowing new requirements

to come up. Goldplating is a well-known software

engineering risk: additional requirements continue

to be added, where each requirement in itself may

seem harmless, but the overall result is that it

becomes impossible to build the system on time

and within budget. A related risk is feature creep: at

little extra effort (so it seems) a function can be

added that would be nice to have. This may lead to

a system with more capabilities than required – but

at a later date and with a higher cost.

On the other hand, errors will be found and

unforeseen circumstances may demand new

requirements. In order to balance these concerns,

any large project will have an explicit procedure for

handling change requests.

7.2 Traceability

Traceability supports the maintenance of a system.

The (evolving) requirements specification should on

the one hand reflect the business needs and

stakeholders’ demands, and on the other hand

specify the system’s behaviour. This leads to 4

traceability relations:

• From business/stakeholders to requirements: It

should be verified that the business goals of the

system are covered. Essentially, the

requirements should enable the mission

statement (see 3.1) to be fulfilled.

• From requirements to business/stakeholders: For

each requirement, there should be a business

reason why the requirement is included in the

specification (otherwise the requirement should

be deleted).

• From requirements to system: For each

requirement it should be known which pieces of

code / parts of the system make sure that the

requirement is satisfied

• From system to requirements: For each piece of

code / part of the system it should be clear which

requirements depend on it. (otherwise, it serves

no purpose).

Hence, if a change is proposed, it can be easily

determined which parts of the system are affected

and what the effort will be to implement the change.

For any sizeable project, a specialzed tool, e.g.

DOORS
6
, is needed for implementing traceability.

Currently, traceability is not used a lot in practice,

because it brings additional cost in the development

phase, whereas most of the savings take place in

the maintenance phase. (Note that on average

maintenance accounts for 70 % of the total software

life cycle costs). However, in future it may become a

standard practice in software engineering, due to

new legislation. Quality standards like the higher

CMM levels enforce traceability.

6
 http://www.telelogic.com/corp/products/doors/

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 26

Glossary7

Client. The person who pays for the development of the system. (see also customer)

Constraint. A global requirement that restricts the way the system can be produced. The project

budget is an example of a constraint. Usually constraint are not subject to negotiation.

Customer. The person who buys the system. This could be the same as the client. If the product is to

be sold, the customer and client are different.

Data requirement. A specification of the kind of data and the relation between data elements to be

stored in the system.

Business-level requirement. A description of a task to be supported by the system, without

specifying what exactly the system will do.

External goal or Client’s goal. Something the client hopes to achieve as a result of the project. The

project carries no responsibility for an external goal. Nevertheless, if the external goal will not be
achieved, the client may consider the project a failure. (see also project goal)

Fit criterion. A quantification or measurement of a requirement such that it is possible to determine

whether a system satisfies this requirement.

Functional requirement. Something that the system must do, a description of the behaviour of a

system

Goal. See external goal and project goal.

Migration. The path of change leading from the current situation to a new situation, in which a new

system is deployed and effectively used.

Problem. A difference between what is experienced and what is desired.

Project. Throughout the text it is assumed that there is a project to deliver some system, and you are

doing the requirements analysis for this project.

Project goal. Something that should be realized by the project (and for which the project manager

can be held responsible). (see also external goal)

System-level requirement. A desired property of the system. In previous times, requirements was

considered to be equivalent with system-level requirements.

Quality requirement. An overall property of the system, describing how well the system performs its

functions.

Requirement. See contraint, data requirement, functional requirement, quality requirement.

Requirements process. The part of system development in which people attempt to discover what is

desired.

Solution. A way to reduce a problem.

Stakeholder. Someone who gains or loses something (could be functionality,revenue, status,

compliance with rules, and so on) as a result of that project.

7
 Some definitions are taken directly from other sources ([AR04], [GW89], [Lau02], [RR99]). References are given where a term

is introduced in the text.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 27

References

[BCN92] C. Batini. S. Ceri and S.B. Navathe (1992). Database Design: An Entity-Relationship
Approach. Benjamin/Cummings.

[Ale03] I. Alexander. Stakeholders – Who is Your System For?
http://easyweb.easynet.co.uk/%7Eiany/consultancy/stakeholders/stakeholders.htm

[AR04] I. Alexander, S. Robertson (2004). Understanding Project Sociology by Modeling
Stakeholders. IEEE Software, January/February 2004.

[Cro89] N. Cross. (1989). Engineering Design Methods. Wiley, Chichester, UK.

[Che81] P.B. Checkland (1981). Systems Thinking, Systems Practice. Wiley.

[BH98] H. Beyer and K. Holtzblatt (1998). Contextual design: Defining Customer-Centered
Systems. Morgan Kaufmann.

[Coo99] A. Cooper (1999). The inmates are running the asylum. Macmillan Computer Publishing,
Indianapolis, IN.

[GW89] D.C. Gause, G.M. Weinberg (1989). Exploring Requirements: Quality Before Design. Dorset
House, New York, NY.

[HC88] J.R. Hause, D. Clausing (1988). The house of quality. Harvard Business Review, 66(3), 63–
73.

[KK92] K.E. Kendall and J.E. Kendall (1992). Systems Analysis and Design. Second
edition.Prentice-Hall.

[KR97] J. Karlsson, K. Ryan. A Cost-Value Approach for Prioritizing Requirements. IEEE Software
14(5), 67–74.

[KS98] G .Kotonya and I. Sommerville (1998). Requirements Engineering. Wiley, Chichester, UK.

[Kov98] B.L. Kovitz (1999). Practical Software Requirements: A Manual of Content and Style.
Manning Publications, Greenwich, CT.

[Lau98] S. Lauesen (1988).Software Requirements: Styles and Techniques. Samfundslitteratur,
Frederiksberg, Denemarken.

[Lau02] S. Lauesen (2002). Software Requirements: Styles and Techniques. Addison-Wesley,
Harlow, UK.

[Lun81] M. Lundeberg, G. Goldkuhl and A. Nilsson (1981). Information Systems Development: A
Systematic Approach. Prentice-Hall, Englewood Cliffs, NJ.

[Mac96] L. Macaulay (1996). Requirements Engineering. Springer Verlag, New York, NY.

[RE95] N.F.M. Roozenburg and J. Eekels (1995) Product design: Fundamentals and Methods.
Wiley, Chichester, UK.

[Ret94] M. Rettig (1994). Prototyping for tiny fingers. Communications of the ACM, 37(4), 21–27.

[RR99] S. Robertson, J. Robertson (1999). Mastering the Requirements Process. Addison-Wesley,
Harlow, UK.

[Wie03] R.J. Wieringa (2003). Design Methods for Reactive Systems: Youdon, Statemate, and the
UML. Morgan Kaufmann Publishers, San Francisco, CA.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 28

Appendix A. Context-free questions

When you first enter an organization for which you

are to do requirements work you may be

overwhelmed by the number of potentially relevant

people, departments, systems, goals and problems.

This appendix lists some simple questions that you

can always start with. They are called “context-free”

because they apply to all kinds of problems,

independent of the particular problem context. The

following list is largely from Gause and Weinberg

[GW89]. The problem identification and analysis

questions are from ISAC [Lun81].

The business

• What kind of business is this?

• What is the structure of the business?

• Which departments of the business are involved

in the system?

• What are the mission and goals of the business

and its relevant departments?

• Are there any related projects?

Problems

• What are the problems?

• For each problem:

• What is the real reason for wanting to solve

this problem?

• Can a solution to this problem be obtained

elsewhere?

• Which organizational goal is served by solving

this problem?

• How bad is the problem? (Quantify if possible)

• How urgent is it?

Stakeholders

• Who are the stakeholders?

• For each stakeholder:

• What is his/her relation to the system?

• What are the responsibility relations between

the stakeholders?

• Who is responsible for improving the system?

• Is management committed to improving the

system?

Problem analysis

• Which stakeholders have which problems?

• For each stakeholder/problem combination:

• How much is it worth to this stakeholder to

solve the problem?

• How bad is it for the stakeholder if the

problem is not solved?

• How urgently should this problem be solved?

• How bad is it if this problem is solved one year

later?

• What is the trade-off between time and value?

The current system

• Who is using the current system and in support

of which business activity?

• What problems are solved by the current

system? For whom?

• What problems are introduced by the current

system? For whom?

• Does the system fit into the business strategy?

• Is the system mission-critical?

• How bad is it if the system breaks down?

• Does the system interface with legacy systems?

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 29

Appendix B. Requirements elicitation techniques

During requirements work, you must find the goals,

desires and wishes of the stakeholders. This

appendix lists some techniques that you can use for

this.

It is important to distinguish requirements elicitation

from requirements creation.

Finding out about current environment and

its goals, and about the current system.

The following techniques are useful for fact-finding.

They are closer to elicitation than to creation.

• Interviews. Asking stakeholders what they

currently do and how they would like to change

this. Kendall and Kendall [KK92] give a useful

introduction to interview techniques for

information analysis.

• Observation of current work. Observing what

stakeholders actually do, as opposed to what

they say they do. Beyer and Holtzblatt [BH98]

give an excellent survey of models to make when

observing stakeholders at work (models of flow,

sequence, artifacts, culture and the physical

situation), how to make them and how to create

requirements from them.

• Participation in current work to actually

experience what the current environment does.

There is no literature on this: Just join the

stakeholders in doing their work. Take your time

doing this.

• Questionnaires. Sending out forms with

questions to stakeholders about the current

environment. Kendall and Kendall [KK92] give a

useful introduction to the construction of

questionnaires for information analysis.

• Study current system documentation. There is

no literature on this. Brace yourself to digest a

mountain of information.

• Study current forms (paper forms, screen

forms). Analyzing forms in use by the current

system to discover data structures and work

procedures hidden in them. Batini, Ceri and

Navathe [BCN92] give a useful introduction to

uncovering data structures from forms.

Problem Analysis

The following techniques help you to analyze

problems identified during fact-finding.

• Soft Systems Methodology (SSM). A method

defined by Checkland [Che81] to analyze

exceptionally vague problems (problems where

the problem is that the problem is not known).

Macaulay [Mac96] gives a handy introduction.

• Stakeholder analysis. Set off stakeholders

against problems and analyze each problem on

severity (quantify!) and urgency. Gause and

Weinberg [GW89] give useful hints.

Creating requirements for new system

The following techniques can be used to create new

ideas about possible solutions to problems.

• Brainstorm. Generating wild ideas in a group

without criticizing any idea, followed by a

rationalization of the ideas. Roozenburg and J.

Eekels [RE95] give a very useful introduction to

brainstorming for product design, including its

variations, such as brainwriting (in which

participants anonymously submit their ideas in

writing).

• Focus groups. Let a group of users discuss

requirements with each other. Macaulay [Mac96]

gives a short introduction to the use of focus

groups for requirements engineering.

• JAD workshops. Bring stakeholders from the

customer and developer sides together and let

them jointly do the design. Macaulay [Mac96]

gives a short introduction to the use of JAD

workshops for requirements engineering.

• Visiting similar companies. Visit companies

with similar problems to get an idea about the

desirable properties of solutions to these

problems.

• Quality Function Deployment (QFD). Maintain

traceability tables that match user requirements

with system requirements. Attach weights to

indicate priorities, and indicate conflicts between

requirements that. Discuss with all stakeholders

and agree on choices based on this traceability

information. Hausaer and Clausing [HC88] give

a good introduction and Macaulay [Mac96]

provides a very short summary.

• Goal-means analysis. Make a goal tree.

Indicate for each requirement the goals that it

serves, and indicate for each goal the desired

system properties that would help reaching that

goal. Lauesen [Lau98] gives an example.

Techniques for refining system

requirements and corresponding

environment models

The following techniques all assume that you

alrerady have some idea about system

requirements and allow you to improve them.

• Collecting supplier information. Collect

documentation from suppliers, let them give

demos in order to get an idea of which system

requirements can actually be realized with

current commercially available technology.

• Throw-away prototypes. Constructing a

software system that implements a few of the

system requirements, and letting users

experiment with it to give them the occasion to

form more concrete ideas about what they really

want. After experimenting, the improved

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 30

requirements are written down and the prototype

is thrown away. Any software engineering book

contains a section about throw-away prototyping.

Ince [Inc92] is one of the many overviews. Less

well-known is a description of low-tech

prototyping, involving pencil, paper, glue, and

role playing, described by Rettig [Ret94], that in

many cases is more efficient and at least as

effective as high-tech prototyping.

• Pilot project. Implement the system in a part of

the organization where it is not critical, in order to

get experience with real use of the system. This

should lead to improved requirements.

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 31

Appendix C. Volere Requirements Shell

In the Volere method [RR99], Suzanne and James

Robertson give a template to be filled in for each

requirement – see Figure C1. They call it the

Requirements Shell. It is suggested that you carry

copies of the template with you when go around

gathering requirements.

Filling in the template for each requirement reminds

you of what you want to ask the person(s) you’re

talking with. The slots have the following purpose

• Requirement #: unique ID for each requirement

• Requirement type: constraint / data / functional

/ quality

(or refer to section in requirements specification

template in Appendix C)

• Event/use case # : If use cases or an event list

has been specified, refer to its number

• Description: A one-sentence statement of the

intention of this requirement

• Rationale: Why is this requirement considered

important or necessary?

• Source: Who raised this requirement?

• Fit criterion: A quantification of the requirement

used to determine whether the solution meets

the requirement (not always easy to determine

up front. If no sensible criterion can be found

when the requirement is raised, we suggest to

leave it open for the time being.)

• Customer (dis)satisfaction: Measures for the

(un)happiness of the customer if this

requirement is (not) implemented. See section

4.5

• Dependencies: Dependencies between this

requirement and others.

• Conflicts: Requirements that contradict this one

• Supporting Materials: Pointer to supporting

information

• History: Changes to this requirement (and

reasons why)

Figure C1: Volere Requirements Shell

Guidelines for Requirements Analysis version 2.11 – 01.08.2006

University of Twente, Information Systems group 32

Appendix D. Volere Requirements Specification Template

The Volere method [RR99] provides a template for

the contents of a requirements specification. Here

we only give the contents with some bits of

explanation. An extensive description of the

template can be downloaded from

www.volere.co.uk. It is very thorough and complete,

and for a small project there is probably no need

write a requirements specification with 27 chapters.

But you may use this as a checklist.

Project Drivers

1. The purpose of the project

2. Client, customer and other stakeholders.

The client is the person paying for the

development, and owner of the delivered

product. The customer is the person buying the

software. Client and customer are the same for

in-house developments but different when the

system to be developed will be sold to others.

3. Users of the product

Project Constraints

4. Mandated constraints. Constraints that the

project must satisfy. Includes development time

and budget.

5. Naming conventions and definitions

6. Relevant facts and assumptions

Functional requirements

7. The scope of the work. Describes the domain.

Could include a context diagram.

8. The scope of the product. Could include use

case diagram.

9. Functional and data requirements

Non-functional requirements

10. Look and feel requirements

11. Usability and humanity requirements

12. Performance requirements

13. Operational requirements. Expected physical

environment, hardware, and software

applications with which the system should

interface.

14. Maintainability and support requirements

15. Security requirements

16. Cultural and political requirements

17. Legal issues

Project issues

18. Open issues. Issues that have been raised

and do not yet have a conclusion.

19. Off-the-shelf solutions. Ready-made software

products or components that can be used

20. New problems. Problems that may result from

introducing the system.

21. Tasks. A stepwise description of system

development, delivery, and implementation

22. Cutover. Issues related to the migration to the

new system.

23. Risks

24. Costs

25. User documentation and training

26. Waiting room. Requirements that will not be

part of the agreed system, but could be

included in future versions.

27. Ideas for solutions

