Concepts of programming languages: Scheme exercise

J. Kok and Jeroen de Bruin,
edited by Sander van der Maar and Thijs van Ommen

September 20, 2007

1 Scheme implementation

For this exercise, we use an Open Source [1] implementation of the Scheme language: the Free
Software Foundation’s [2] Guile ("GNU’s Ubiquitous Intelligent Language for Extension”) [3].

Version 1.8.2 of the Guile interpreter has been compiled for Linux/x86 systems, and is
available as

/home/mvommen/cvp/bin/guile

It can be used interactively, or via a script. To make a script, put your Scheme code in a file
(say foo.scm), have that file start with

#! /home/mvommen/cvp/bin/guile -s
'#

to denote the interpreter’ and make that file executable: chmod +x foo.scm

There are many other Scheme implementations available, but there may be slight differ-
ences between them. While it is perfectly alright to use one of them to develop your code, the
code you submit has to work with Guile.

2 Exercises

Scheme is not a pure functional language because it has some procedures that have side effects
(for example set-car! which is like variable assignment in an imperative language). In this
exercise, we restrict ourselves to the pure functional subset of Scheme. set-car! and other
procedures that have side-effects may not be used!

Exercise 1: Substitution

Suppose you have a (nested) list >((a (b ¢) d) a (f b)) and a list of pairs >((a z) (b
y)), that describe replacements (’a’ is replaced by 'z, 'b’ is replaced by ’y’), you can perform
substitution on the original list (resulting in > ((z (y ¢) d) z (£ y))).

Exercise 1A: Substition in Scheme

Write a Scheme function substitute that takes two arguments: the first a (possibly nested)
list (where the atoms are 1-character strings); the second a list of replacements (each describing
a 1-character string and its 1-character replacement); it should yield the list which results from
performing the substitutions specified in the list pairs on the input list.

E.g. the following should return #t:

1Unix shells read the #! /path/to/binary arguments in scripts to tell them how to invoke the relevant
interpreter; Guile regards #! ... !# as a comment (sinT'lar to C’s /* ...x/).

\ceuadl:
(substitute
’((a (b c)) a (f b))
*((a z) (by))
)
((z (yc) d) z (£ y))

Exercise 1B: Substition in C++

Write a C++ program to do the same, and compare the Scheme code to the C++ code. Your
C++ program must reflect the nature of (recursive) lists (so no quick hacks using strings).
What differences do you notice? Are these due to the difference in programming paradigm
(functional vs. imperative/object-oriented) or do they have other causes?

Exercise 2: Treewalk

Write a Scheme function treewalk that walks through a binary tree, encoded in infix order
(<left-tree> <node> <right-tree>), in breadth first order and that yields a list containing
the node contents.

E.g. the following (walking through the tree in Figure 1) should return #t:

(equal?
(treewalk
"C(b) a (((£) d (g)) ¢ (O e ()))
)
’@bcdefgh)
)

VRN

/SN
VAR
f g h

Figure 1: The example tree for the second exercise

b

3 How to submit

Your programs should be submitted together with a written report in which you explain your
programs, to Thijs van Ommen (mvommen@liacs.nl).

References

[1] http://www.opensource.org
[2] http://www.fsf.org

[3] http://www.gnu.org/software/guile/guile.html
2

