
1

Lecture 4 –

Instruction Level Parallelism

Slides were used during lectures by
David Patterson, Berkeley, spring 2006

Outline
• ILP
• Compiler techniques to increase ILP
• Loop Unrolling
• Static Branch Prediction
• Dynamic Branch Prediction
• Overcoming Data Hazards with Dynamic

Scheduling
• Tomasulo Algorithm
• Conclusion

Recall from Pipelining

Pipeline CPI = Ideal pipeline CPI + Structural
Stalls + Data Hazard Stalls + Control Stalls

– Ideal pipeline CPI: measure of the maximum
performance attainable by the implementation

– Structural hazards: HW cannot support this
combination of instructions

– Data hazards: instruction depends on result of prior
instruction still in the pipeline

– Control hazards: caused by delay between the fetching
of instructions and decisions about changes in control
flow (branches and jumps)

Instruction Level Parallelism

Instruction-Level Parallelism (ILP): overlap the
execution of instructions to improve performance

Two approaches to exploit ILP:
1) Rely on hardware to help discover and exploit the parallelism

dynamically (e.g., Pentium 4, AMD Opteron, IBM Power)
2) Rely on software technology to find parallelism, statically at

compile-time (e.g., Itanium 2)

Instruction-Level Parallelism
(ILP)

• Basic Block (BB) ILP is quite small
– BB: a straight-line code sequence with no branches in except to

the entry and no branches out except at the exit
– average dynamic branch frequency 15% to 25%
⇒ 4 to 7 instructions execute between a pair of branches

– plus instructions in BB likely to depend on each other

• To obtain substantial performance enhancements,
we must exploit ILP across multiple basic blocks

• Simplest: loop-level parallelism to exploit
parallelism among iterations of a loop. E.g.,

for (i=1; i<=1000; i=i+1)
x[i] = x[i] + y[i];

Loop-Level Parallelism
• Exploit loop-level parallelism to parallelism by

“unrolling loop” either by
1. dynamic via branch prediction or
2. static via loop unrolling by compiler

(Another way is vectors, to be covered later)

• Determining instruction dependence is critical to
Loop Level Parallelism

• If 2 instructions are
– parallel, they can execute simultaneously in a pipeline of

arbitrary depth without causing any stalls (assuming no
structural hazards)

– dependent, they are not parallel and must be executed in
order, although they may often be partially overlapped

2

• InstrJ is data dependent (aka true dependence) on InstrI:
1. InstrJ tries to read operand before InstrI writes it

2. or InstrJ is data dependent on InstrK which is dependent on InstrI

• If two instructions are data dependent, they cannot
execute simultaneously or be completely overlapped

• Data dependence in instruction sequence
⇒ data dependence in source code ⇒ effect of original
data dependence must be preserved

• If data dependence caused a hazard in pipeline,
called a Read After Write (RAW) hazard

Data Dependence and Hazards

I: add r1,r2,r3
J: sub r4,r1,r3

ILP and Data Dependencies,
Hazards

• HW/SW must preserve program order:
order instructions would execute in if executed
sequentially as determined by original source program

– Dependences are a property of programs

• Presence of dependence indicates potential for a hazard,
but actual hazard and length of any stall is property of
the pipeline

• Importance of the data dependencies
1) indicates the possibility of a hazard
2) determines order in which results must be calculated
3) sets an upper bound on how much parallelism can possibly be exploited

• HW/SW goal: exploit parallelism by preserving program
order only where it affects the outcome of the program

• Name dependence: when 2 instructions use same
register or memory location, called a name, but no
flow of data between the instructions associated
with that name; two versions of name dependence

• InstrJ writes operand before InstrI reads it

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”

• If anti-dependence caused a hazard in the pipeline,
called a Write After Read (WAR) hazard

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Name Dependence #1: Anti-
dependence

Name Dependence #2: Output
dependence• InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”

• If output-dependence caused a hazard in the
pipeline, called a Write After Write (WAW) hazard

• Instructions involved in a name dependence can
execute simultaneously if name used in instructions
is changed so instructions do not conflict

– Register renaming resolves name dependence for regs
– Either by compiler or by HW

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Control Dependencies
Every instruction is control dependent on some
set of branches, and, in general, these control
dependencies must be preserved to preserve
program order
if p1 {

S1;

};

if p2 {

S2;

}

S1 is control dependent on p1, and S2 is control
dependent on p2 but not on p1.

Control Dependence Ignored

• Control dependence need not be
preserved
– willing to execute instructions that should not have been

executed, thereby violating the control dependences, if
can do so without affecting correctness of the program

• Instead, two properties critical to program
correctness are
1) exception behavior and
2) data flow

3

Exception Behavior
• Preserving exception behavior
⇒ any changes in instruction execution order
must not change how exceptions are raised in
program
(⇒ no new exceptions)

• Example:
DADDU R2,R3,R4
BEQZ R2,L1
LW R1,0(R2)

L1:
– (Assume branches not delayed)

• Problem with moving LW before BEQZ?

Data Flow
• Data flow: actual flow of data values among

instructions that produce results and those that
consume them

– branches make flow dynamic, determine which instruction is
supplier of data

• Example:
DADDU R1,R2,R3
BEQZ R4,L
DSUBU R1,R5,R6
L: …
OR R7,R1,R8

• OR depends on DADDU or DSUBU?
Must preserve data flow on execution

Software Techniques -
Example

• This code, add a scalar to a vector:
for (i=1000; i>0; i=i–1)

x[i] = x[i] + s;

• Assume following latencies for all examples
– Ignore delayed branch in these examples

Instruction Instruction Latency stalls between
producing result using result in cycles in cycles
FP ALU op Another FP ALU op 4 3
FP ALU op Store double 3 2
Load double FP ALU op 1 1
Load double Store double 1 0
Integer op Integer op 1 0

FP Loop: Where are the Hazards?

Loop: L.D F0,0(R1);F0=vector element
ADD.D F4,F0,F2;add scalar from F2
S.D 0(R1),F4;store result
DADDUI R1,R1,-8;decrement pointer 8B (DW)
BNEZ R1,Loop ;branch R1!=zero

First translate into MIPS code:
-To simplify, assume 8 is lowest address

FP Loop Showing Stalls

9 clock cycles: Rewrite code to minimize stalls?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

1 Loop: L.D F0,0(R1) ;F0=vector element

2 stall

3 ADD.D F4,F0,F2 ;add scalar in F2

4 stall

5 stall

6 S.D 0(R1),F4 ;store result

7 DADDUI R1,R1,-8 ;decrement pointer 8B (DW)

8 stall ;assumes can’t forward to branch

9 BNEZ R1,Loop ;branch R1!=zero

Revised FP Loop Minimizing
Stalls

7 clock cycles, but just 3 for execution (L.D, ADD.D,S.D), 4 for
loop overhead; How make faster?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

1 Loop: L.D F0,0(R1)

2 DADDUI R1,R1,-8

3 ADD.D F4,F0,F2

4 stall

5 stall

6 S.D 88(R1),F4 ;altered offset when move DSUBUI

7 BNEZ R1,Loop

Swap DADDUI and S.D by changing address of S.D

4

Unroll Loop Four Times
(straightforward way)

Rewrite loop to
minimize stalls?1 Loop:L.D F0,0(R1)

3 ADD.D F4,F0,F2
6 S.D 0(R1),F4 ;drop DSUBUI & BNEZ
7 L.D F6,-8(R1)
9 ADD.D F8,F6,F2
12 S.D -8(R1),F8 ;drop DSUBUI & BNEZ
13 L.D F10,-16(R1)
15 ADD.D F12,F10,F2
18 S.D -16(R1),F12 ;drop DSUBUI & BNEZ
19 L.D F14,-24(R1)
21 ADD.D F16,F14,F2
24 S.D -24(R1),F16
25 DADDUI R1,R1,#-32 ;alter to 4*8
27 BNEZ R1,LOOP

27 clock cycles, or 6.75 per iteration
(Assumes R1 is multiple of 4)

1 cycle stall
2 cycles stall

Unrolled Loop That Minimizes
Stalls
1 Loop:L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 S.D 8(R1),F16 ; 8-32 = -24
14 BNEZ R1,LOOP

14 clock cycles, or 3.5 per iteration

Unrolled Loop Detail
• Do not usually know upper bound of loop

• Suppose it is n, and we would like to unroll the
loop to make k copies of the body

• Instead of a single unrolled loop, we generate a
pair of consecutive loops:

– 1st executes (n mod k) times and has a body that is the
original loop

– 2nd is the unrolled body surrounded by an outer loop that
iterates (n/k) times

• For large values of n, most of the execution time
will be spent in the unrolled loop

5 Loop Unrolling Decisions
Requires understanding how one instruction depends
on another and how the instructions can be changed
or reordered given the dependences:

1. Determine loop unrolling useful by finding that loop iterations were
independent (except for maintenance code)

2. Use different registers to avoid unnecessary constraints forced by using
same registers for different computations

3. Eliminate the extra test and branch instructions and adjust the loop
termination and iteration code

4. Determine that loads and stores in unrolled loop can be interchanged by
observing that loads and stores from different iterations are independent

• Transformation requires analyzing memory addresses and finding that they do
not refer to the same address

5. Schedule the code, preserving any dependences needed to yield the same
result as the original code

3 Limits to Loop Unrolling
1) Decrease in amount of overhead amortized with

each extra unrolling
• Amdahl’s Law

2) Growth in code size
• For larger loops, concern it increases the instruction cache

miss rate

3) Register pressure: potential shortfall in
registers created by aggressive unrolling and
scheduling
• If not be possible to allocate all live values to registers, may

lose some or all of its advantage

Loop unrolling reduces impact of branches on pipeline;
another way is branch prediction

Static Branch Prediction
• We saw scheduling code around delayed branch
• To reorder code around branches, need to predict

branch statically when compile
• Simplest scheme is to predict a branch as taken

– Average misprediction = untaken branch frequency = 34% SPEC

More accurate
scheme predicts
branches using
profile information
collected from
earlier runs, and
modify prediction
based on last run:

12%

22%

18%

11% 12%

4%
6%

9% 10%

15%

0%

5%

10%

15%

20%

25%

co
mpre

ss

eqn
tott

esp
ress

o gcc li

dod
uc

ear

hyd
ro2d

mdljd
p

su
2c

or

M
is

pr
ed

ic
tio

n
R

at
e

Integer Floating Point

5

Dynamic Branch Prediction
• Why does prediction work?

– Underlying algorithm has regularities
– Data that is being operated on has regularities
– Instruction sequence has redundancies that are artifacts of

way that humans/compilers think about problems

• Is dynamic branch prediction better than static
branch prediction?

– Seems to be
– There are a small number of important branches in programs

which have dynamic behavior

Dynamic Branch Prediction

• Performance = ƒ(accuracy, cost of misprediction)

• Branch History Table: Lower bits of PC address
index table of 1-bit values

– Says whether or not branch taken last time
– No address check

• Problem: in a loop, 1-bit BHT will cause two
mispredictions (avg is 9 iteratios before exit):

– End of loop case, when it exits instead of looping as before
– First time through loop on next time through code, when it

predicts exit instead of looping

• Solution: 2-bit scheme where change prediction
only if get misprediction twice

– Red: stop, not taken
– Green: go, taken
– Adds hysteresis to decision making process

Dynamic Branch Prediction

T

T NT

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
TakenT

NT
T

NT

BHT Accuracy
• Mispredict because either:

– Wrong guess for that branch
– Got branch history of wrong branch when index the table

• 4096 entry table:
18%

5%

12%
10% 9%

5%

9% 9%

0% 1%

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

eqn
tott

esp
ress

o gcc li
sp

ice
dod

uc
sp

ice
fpppp

matrix
30

0

nas
a7

M
is

pr
ed

ic
tio

n
R

at
e

Integer Floating Point

Correlated Branch Prediction
• Idea: record m most recently executed branches

as taken or not taken, and use that pattern to
select the proper n-bit branch history table

• In general, (m,n) predictor means record last m
branches to select between 2m history tables,
each with n-bit counters

– Thus, old 2-bit BHT is a (0,2) predictor

• Global Branch History: m-bit shift register
keeping T/NT status of last m branches.

Correlating Branches

(2,2) predictor

– Behavior of recent
branches selects
between four
predictions of next
branch, updating
just that prediction

Branch address

2-bits per branch predictor

Prediction

2-bit global branch history

4

6

0%

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

ns

0%
1%

5%
6% 6%

11%

4%

6%
5%

1%2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

Accuracy of Different
Schemes

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

na
sa

7

m
at

rix
30

0

do
du

cd

sp
ic

e

fp
pp

p

gc
c

ex
pr

es
so

eq
nt

ot
t li

to
m

ca
tv

Tournament Predictors

• Multilevel branch predictor

• Use n-bit saturating counter to choose between
predictors

• Usual choice between global and local predictors

Tournament Predictors

Tournament predictor using, say, 4K 2-bit counters
indexed by local branch address. Chooses
between:

• Global predictor
– 4K entries index by history of last 12 branches (212 = 4K)

– Each entry is a standard 2-bit predictor

• Local predictor
– Local history table: 1024 10-bit entries recording last 10

branches, index by branch address

– The pattern of the last 10 occurrences of that particular branch
used to index table of 1K entries with 3-bit saturating counters

Comparing Predictors (Fig.
2.8)

Advantage of tournament predictor is ability to
select the right predictor for a particular branch
– Particularly crucial for integer benchmarks.
– A typical tournament predictor will select the global predictor

almost 40% of the time for the SPEC integer benchmarks
and less than 15% of the time for the SPEC FP benchmarks

Pentium 4 Misprediction Rate
(per 1000 instructions, not per
branch)

11

13

7

12

9

1
0 0 0

5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

164.g
zip

175.v
pr

176.g
cc

181.m
cf

186.c
ra

fty

168.w
upwise

171.s
wim

172.m
grid

173.a
pplu

177.m
esa

B
ra

n
ch

 m
is

p
re

d
ic

ti
o

n
s

p
e
r

1
0

0
0

 I
n

st
ru

ct
io

n
s

SPECint2000 SPECfp2000

≈6% misprediction rate per branch SPECint
(19% of INT instructions are branch)

≈2% misprediction rate per branch SPECfp
(5% of FP instructions are branch)

• Branch target calculation is costly and stalls the
instruction fetch.

• BTB stores PCs the same way as caches.

• The PC of a branch is sent to the BTB.

• When a match is found the corresponding
Predicted PC is returned.

• If the branch was predicted taken, instruction
fetch continues at the returned predicted PC.

Branch Target Buffers (BTB)

7

Branch Target Buffers
Dynamic Branch Prediction
Summary

• Prediction becoming important part of execution

• Branch History Table: 2 bits for loop accuracy

• Correlation: Recently executed branches correlated with
next branch

– Either different branches (GA)
– Or different executions of same branches (PA)

• Tournament predictors take insight to next level, by using
multiple predictors

– usually one based on global information and one based on local
information, and combining them with a selector

– In 2006, tournament predictors using ≈ 30K bits are in processors like the
Power5 and Pentium 4

• Branch Target Buffer: include branch address & prediction

break

Outline
• ILP
• Compiler techniques to increase ILP
• Loop Unrolling
• Static Branch Prediction
• Dynamic Branch Prediction
• Overcoming Data Hazards with Dynamic

Scheduling
• Tomasulo Algorithm
• Conclusion

Advantages of Dynamic
Scheduling
• Dynamic scheduling - hardware rearranges the

instruction execution to reduce stalls while
maintaining data flow and exception behavior

• It handles cases when dependences unknown at
compile time

– it allows the processor to tolerate unpredictable delays such
as cache misses, by executing other code while waiting for
the miss to resolve

• It allows code that compiled for one pipeline to
run efficiently on a different pipeline

• It simplifies the compiler
• Hardware speculation, a technique with

significant performance advantages, builds on
dynamic scheduling (next lecture)

HW Schemes: Instruction
Parallelism

• Key idea: Allow instructions behind stall to proceed
DIVD F0,F2,F4
ADDD F10,F0,F8
SUBD F12,F8,F14

• Enables out-of-order execution and allows out-of-
order completion (e.g., SUBD)

– In a dynamically scheduled pipeline, all instructions still pass
through issue stage in order (in-order issue)

• Will distinguish when an instruction begins execution
and when it completes execution; between 2 times,
the instruction is in execution

• Note: Dynamic execution creates WAR and WAW
hazards and makes exceptions harder

8

Dynamic Scheduling Step 1
• Simple pipeline had 1 stage to check both

structural and data hazards: Instruction
Decode (ID), also called Instruction Issue

• Split the ID pipe stage of simple 5-stage
pipeline into 2 stages:
1) Issue—Decode instructions, check for structural

hazards
2) Read operands—Wait until no data hazards, then

read operands

A Dynamic Algorithm:
Tomasulo’s

• For IBM 360/91 (before caches!)
⇒ Long memory latency

• Goal: High Performance without special compilers

• Small number of floating point registers (4 in 360)
prevented interesting compiler scheduling of operations

– This led Tomasulo to try to figure out how to get more effective
registers — renaming in hardware!

• Why Study 1966 Computer?

• The descendants of this have flourished!
– Alpha 21264, Pentium 4, AMD Opteron, Power 5, …

Tomasulo Algorithm
• Control & buffers distributed with Function Units (FU)

– FU buffers called “reservation stations”; have pending operands

• Registers in instructions replaced by values or pointers to
reservation stations(RS); called register renaming ;

– Renaming avoids WAR, WAW hazards
– More reservation stations than registers, so can do optimizations compilers

cannot

• Results to FU from RS, not through registers, over Common Data
Bus that broadcasts results to all FUs

– Avoids RAW hazards by executing an instruction only when its operands are
available

• Load and Stores treated as FUs with RSs as well

• Integer instructions can go past branches (predict taken), allowing
FP ops beyond basic block in FP queue

Tomasulo Organization

FP
adders

Add1
Add2
Add3

FP
multipliers

Mult1
Mult2

From Mem FP Registers

Reservation
Stations

Common Data Bus (CDB)

To Mem

FP Op
Queue

Load Buffers

Store
Buffers

Load1
Load2
Load3
Load4
Load5
Load6

Reservation Station Components

Op: Operation to perform in the unit (e.g., + or –)
Vj, Vk: Value of Source operands

– Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source
registers (value to be written)

– Note: Qj,Qk=0 => ready
– Store buffers only have Qi for RS producing result

Busy: Indicates reservation station or FU is busy

Register result status—Indicates which functional unit
will write each register, if one exists. Blank when no
pending instructions that will write that register.

Three Stages of Tomasulo
Algorithm
1. Issue—get instruction from FP Op Queue

If reservation station free (no structural hazard),
control issues instr & sends operands (renames registers).

2. Execute—operate on operands (EX)
When both operands ready then execute;
if not ready, watch Common Data Bus for result

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting units;
mark reservation station available

• Normal data bus: data + destination (“go to” bus)

• Common data bus: data + source (“come from” bus)
– 64 bits of data + 4 bits of Functional Unit source address
– Write if matches expected Functional Unit (produces result)
– Does the broadcast

• Example speed:
3 clocks for Fl .pt. +,-; 10 for * ; 40 clks for /

9

Tomasulo Example
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 L o ad 1 N o
L D F 2 4 5 + R 3 L o ad 2 N o
M U L T D F 0 F 2 F 4 L o ad 3 N o
S U B D F 8 F 6 F 2
D IV D F1 0 F 0 F 6
A D D D F 6 F 8 F 2

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A d d 1 N o
A d d 2 N o
A d d 3 N o
M u lt1 N o
M u lt2 N o

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

0 F U

Clock cycle
counter

FU count
Down

Instruction stream

3 Load/Buffers

3 FP Adder R.S.
2 FP Mult R.S.

Tomasulo Example Cycle 1
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 1 L o ad 1 Y es 3 4 + R 2
L D F 2 4 5 + R 3 L o ad 2 N o
M U L T D F 0 F 2 F 4 L o ad 3 N o
S U B D F 8 F 6 F 2
D IV D F1 0 F 0 F 6
A D D D F 6 F 8 F 2

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A d d 1 N o
A d d 2 N o
A d d 3 N o
M u lt1 N o
M u lt2 N o

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

1 F U L o ad 1

Note: Can have multiple loads outstanding

Tomasulo Example Cycle 2
Instruction status: Exec W rite

In struction j k Issue C om p Result B usy A ddress
L D F6 34+ R 2 1 L oad1 Y es 34+R 2
L D F2 45+ R 3 2 L oad2 Y es 45+R 3
M U L T D F0 F2 F4 L oad3 N o
SU B D F8 F6 F2
D IV D F1 0 F0 F6
A D D D F6 F8 F2

R eserva tion Stations: S1 S2 R S RS
Tim e N a m e Busy O p Vj Vk Q j Q k

A dd1 N o
A dd2 N o
A dd3 N o
M ult1 N o
M ult2 N o

R egister result sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

2 F U L oad2 L oad1

Tomasulo Example Cycle 3
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 1 3 L o ad 1 Y es 3 4 + R 2
L D F 2 4 5 + R 3 2 L o ad 2 Y es 4 5 + R 3
M U L T D F 0 F 2 F 4 3 L o ad 3 N o
S U B D F 8 F 6 F 2
D IV D F1 0 F 0 F 6
A D D D F 6 F 8 F 2

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A d d 1 N o
A d d 2 N o
A d d 3 N o
M u lt1 Y es M U L T D R (F4) L o ad 2
M u lt2 N o

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

3 F U M u lt1 L o ad 2 L o ad 1

• Note: registers names are removed (“renamed”) in
Reservation Stations; MULT issued

• Load1 completing; what is waiting for Load1?

Tomasulo Example Cycle 4
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 1 3 4 L o ad 1 N o
L D F 2 4 5 + R 3 2 4 L o ad 2 Y es 4 5 + R 3
M U L T D F 0 F 2 F 4 3 L o ad 3 N o
S U B D F 8 F 6 F 2 4
D IV D F1 0 F 0 F 6
A D D D F 6 F 8 F 2

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A d d 1 Y es S U B D M (A 1) L o ad 2
A d d 2 N o
A d d 3 N o
M u lt1 Y es M U L T D R (F4) L o ad 2
M u lt2 N o

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

4 F U M u lt1 L o ad 2 M (A 1) A d d 1

Load2 completing; what is waiting for Load2?

Tomasulo Example Cycle 5
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 1 3 4 L o ad 1 N o
L D F 2 4 5 + R 3 2 4 5 L o ad 2 N o
M U L T D F 0 F 2 F 4 3 L o ad 3 N o
S U B D F 8 F 6 F 2 4
D IV D F1 0 F 0 F 6 5
A D D D F 6 F 8 F 2

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

2 A d d 1 Y es S U B D M (A 1) M (A 2)
A d d 2 N o
A d d 3 N o

1 0 M u lt1 Y es M U L T D M (A 2) R (F4)
M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

5 F U M u lt1 M (A 2) M (A 1) A d d 1 M u lt2

Timer starts down for Add1, Mult1

10

Tomasulo Example Cycle 6
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 1 3 4 L o ad 1 N o
L D F 2 4 5 + R 3 2 4 5 L o ad 2 N o
M U L T D F 0 F 2 F 4 3 L o ad 3 N o
S U B D F 8 F 6 F 2 4
D IV D F1 0 F 0 F 6 5
A D D D F 6 F 8 F 2 6

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

1 A d d 1 Y es S U B D M (A 1) M (A 2)
A d d 2 Y es A D D D M (A 2) A d d 1
A d d 3 N o

9 M u lt1 Y es M U L T D M (A 2) R (F4)
M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

6 F U M u lt1 M (A 2) A d d 2 A d d 1 M u lt2

Issue ADDD here despite name dependency on F6?

Tomasulo Example Cycle 7
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 1 3 4 L o ad 1 N o
L D F 2 4 5 + R 3 2 4 5 L o ad 2 N o
M U L T D F 0 F 2 F 4 3 L o ad 3 N o
S U B D F 8 F 6 F 2 4 7
D IV D F1 0 F 0 F 6 5
A D D D F 6 F 8 F 2 6

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

0 A d d 1 Y es S U B D M (A 1) M (A 2)
A d d 2 Y es A D D D M (A 2) A d d 1
A d d 3 N o

8 M u lt1 Y es M U L T D M (A 2) R (F4)
M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

7 F U M u lt1 M (A 2) A d d 2 A d d 1 M u lt2

Add1 (SUBD) completing; what is waiting for it?

Tomasulo Example Cycle 8
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 1 3 4 L o ad 1 N o
L D F 2 4 5 + R 3 2 4 5 L o ad 2 N o
M U L T D F 0 F 2 F 4 3 L o ad 3 N o
S U B D F 8 F 6 F 2 4 7 8
D IV D F1 0 F 0 F 6 5
A D D D F 6 F 8 F 2 6

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A d d 1 N o
2 A d d 2 Y es A D D D (M -M) M (A 2)

A d d 3 N o
7 M u lt1 Y es M U L T D M (A 2) R (F4)

M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

8 F U M u lt1 M (A 2) A d d 2 (M -M) M u lt2

Tomasulo Example Cycle 9
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 1 3 4 L o ad 1 N o
L D F 2 4 5 + R 3 2 4 5 L o ad 2 N o
M U L T D F 0 F 2 F 4 3 L o ad 3 N o
S U B D F 8 F 6 F 2 4 7 8
D IV D F1 0 F 0 F 6 5
A D D D F 6 F 8 F 2 6

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A d d 1 N o
1 A d d 2 Y es A D D D (M -M) M (A 2)

A d d 3 N o
6 M u lt1 Y es M U L T D M (A 2) R (F4)

M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

9 F U M u lt1 M (A 2) A d d 2 (M -M) M u lt2

Tomasulo Example Cycle 10
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 1 3 4 L o ad 1 N o
L D F 2 4 5 + R 3 2 4 5 L o ad 2 N o
M U L T D F 0 F 2 F 4 3 L o ad 3 N o
S U B D F 8 F 6 F 2 4 7 8
D IV D F1 0 F 0 F 6 5
A D D D F 6 F 8 F 2 6 1 0

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A d d 1 N o
0 A d d 2 Y es A D D D (M -M) M (A 2)

A d d 3 N o
5 M u lt1 Y es M U L T D M (A 2) R (F4)

M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

10 F U M u lt1 M (A 2) A d d 2 (M -M) M u lt2

Add2 (ADDD) completing; what is waiting for it?

Tomasulo Example Cycle 11
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 1 3 4 L o ad 1 N o
L D F 2 4 5 + R 3 2 4 5 L o ad 2 N o
M U L T D F 0 F 2 F 4 3 L o ad 3 N o
S U B D F 8 F 6 F 2 4 7 8
D IV D F1 0 F 0 F 6 5
A D D D F 6 F 8 F 2 6 1 0 1 1

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A d d 1 N o
A d d 2 N o
A d d 3 N o

4 M u lt1 Y es M U L T D M (A 2) R (F4)
M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

11 F U M u lt1 M (A 2) (M -M + M(M -M) M u lt2

• Write result of ADDD here?
• All quick instructions complete in this cycle!

11

Tomasulo Example Cycle 12
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 1 3 4 L o ad 1 N o
L D F 2 4 5 + R 3 2 4 5 L o ad 2 N o
M U L T D F 0 F 2 F 4 3 L o ad 3 N o
S U B D F 8 F 6 F 2 4 7 8
D IV D F1 0 F 0 F 6 5
A D D D F 6 F 8 F 2 6 1 0 1 1

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A d d 1 N o
A d d 2 N o
A d d 3 N o

3 M u lt1 Y es M U L T D M (A 2) R (F4)
M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

12 F U M u lt1 M (A 2) (M -M + M(M -M) M u lt2

Tomasulo Example Cycle 13
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 1 3 4 L o ad 1 N o
L D F 2 4 5 + R 3 2 4 5 L o ad 2 N o
M U L T D F 0 F 2 F 4 3 L o ad 3 N o
S U B D F 8 F 6 F 2 4 7 8
D IV D F1 0 F 0 F 6 5
A D D D F 6 F 8 F 2 6 1 0 1 1

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A d d 1 N o
A d d 2 N o
A d d 3 N o

2 M u lt1 Y es M U L T D M (A 2) R (F4)
M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

13 F U M u lt1 M (A 2) (M -M + M(M -M) M u lt2

Tomasulo Example Cycle 14
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 1 3 4 L o ad 1 N o
L D F 2 4 5 + R 3 2 4 5 L o ad 2 N o
M U L T D F 0 F 2 F 4 3 L o ad 3 N o
S U B D F 8 F 6 F 2 4 7 8
D IV D F1 0 F 0 F 6 5
A D D D F 6 F 8 F 2 6 1 0 1 1

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A d d 1 N o
A d d 2 N o
A d d 3 N o

1 M u lt1 Y es M U L T D M (A 2) R (F4)
M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

14 F U M u lt1 M (A 2) (M -M + M(M -M) M u lt2

Tomasulo Example Cycle 15
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 1 3 4 L o ad 1 N o
L D F 2 4 5 + R 3 2 4 5 L o ad 2 N o
M U L T D F 0 F 2 F 4 3 1 5 L o ad 3 N o
S U B D F 8 F 6 F 2 4 7 8
D IV D F1 0 F 0 F 6 5
A D D D F 6 F 8 F 2 6 1 0 1 1

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A d d 1 N o
A d d 2 N o
A d d 3 N o

0 M u lt1 Y es M U L T D M (A 2) R (F4)
M u lt2 Y es D IV D M (A 1) M u lt1

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

15 F U M u lt1 M (A 2) (M -M + M(M -M) M u lt2

Mult1 (MULTD) completing; what is waiting for it?

Tomasulo Example Cycle 16
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 1 3 4 L o ad 1 N o
L D F 2 4 5 + R 3 2 4 5 L o ad 2 N o
M U L T D F 0 F 2 F 4 3 1 5 1 6 L o ad 3 N o
S U B D F 8 F 6 F 2 4 7 8
D IV D F1 0 F 0 F 6 5
A D D D F 6 F 8 F 2 6 1 0 1 1

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A d d 1 N o
A d d 2 N o
A d d 3 N o
M u lt1 N o

4 0 M u lt2 Y es D IV D M * F 4 M (A 1)

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

16 F U M * F4 M (A 2) (M -M + M(M -M) M u lt2

Just waiting for Mult2 (DIVD) to complete

Faster than light computation
(skip a couple of cycles)

12

Tomasulo Example Cycle 55
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 1 3 4 L o ad 1 N o
L D F 2 4 5 + R 3 2 4 5 L o ad 2 N o
M U L T D F 0 F 2 F 4 3 1 5 1 6 L o ad 3 N o
S U B D F 8 F 6 F 2 4 7 8
D IV D F1 0 F 0 F 6 5
A D D D F 6 F 8 F 2 6 1 0 1 1

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A d d 1 N o
A d d 2 N o
A d d 3 N o
M u lt1 N o

1 M u lt2 Y es D IV D M * F 4 M (A 1)

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

55 F U M * F4 M (A 2) (M -M + M(M -M) M u lt2

Tomasulo Example Cycle 56
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 1 3 4 L o ad 1 N o
L D F 2 4 5 + R 3 2 4 5 L o ad 2 N o
M U L T D F 0 F 2 F 4 3 1 5 1 6 L o ad 3 N o
S U B D F 8 F 6 F 2 4 7 8
D IV D F1 0 F 0 F 6 5 5 6
A D D D F 6 F 8 F 2 6 1 0 1 1

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A d d 1 N o
A d d 2 N o
A d d 3 N o
M u lt1 N o

0 M u lt2 Y es D IV D M * F 4 M (A 1)

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

56 F U M * F4 M (A 2) (M -M + M(M -M) M u lt2

Mult2 (DIVD) is completing; what is waiting for it?

Tomasulo Example Cycle 57
Instruction sta tus: Exec W rite

In s tru ctio n j k Issue C om p Resu lt B usy A ddress
L D F 6 3 4 + R 2 1 3 4 L o ad 1 N o
L D F 2 4 5 + R 3 2 4 5 L o ad 2 N o
M U L T D F 0 F 2 F 4 3 1 5 1 6 L o ad 3 N o
S U B D F 8 F 6 F 2 4 7 8
D IV D F1 0 F 0 F 6 5 5 6 5 7
A D D D F 6 F 8 F 2 6 1 0 1 1

R eserva tion S ta tions: S1 S2 R S RS
T im e N a m e Busy O p Vj Vk Q j Q k

A d d 1 N o
A d d 2 N o
A d d 3 N o
M u lt1 N o
M u lt2 Y es D IV D M * F 4 M (A 1)

R eg ister resu lt sta tus:
C lock F 0 F 2 F 4 F 6 F 8 F 10 F 12 ...

56 F U M * F4 M (A 2) (M -M + M(M -M) R esu lt

Once again: In-order issue, out-of-order execution and
out-of-order completion.

Why can Tomasulo overlap loop
iterations?
• Register renaming

– Multiple iterations use different physical destinations for
registers (dynamic loop unrolling).

• Reservation stations
– Permit instruction issue to advance past integer control flow

operations
– Also buffer old values of registers - totally avoiding the WAR

stall

• Other perspective: Tomasulo building data
flow dependency graph on the fly

Tomasulo s scheme
offers
two major advantages
1. Distribution of the hazard detection logic

– distributed reservation stations and the CDB
– If multiple instructions waiting on single result, & each

instruction has other operand, then instructions can be
released simultaneously by broadcast on CDB

– If a centralized register file were used, the units would
have to read their results from the registers when
register buses are available

2. Elimination of stalls for WAW and WAR
hazards

Tomasulo Drawbacks
• Complexity

– delays of 360/91, MIPS 10000, Alpha 21264,
IBM PPC 620 in CA: AQA 2/e, but not in silicon!

• Many associative stores (CDB) at high speed

• Performance limited by Common Data Bus
– Each CDB must go to multiple functional units
⇒ high capacitance, high wiring density

– Number of functional units that can complete per cycle
limited to one!

» Multiple CDBs ⇒ more FU logic for parallel assoc stores

• Non-precise interrupts!
– We will address this later

13

And In Conclusion … (1)
• Leverage Implicit Parallelism for Performance:

Instruction Level Parallelism

• Loop unrolling by compiler to increase ILP

• Branch prediction to increase ILP

• Dynamic HW exploiting ILP
– Works when can’t know dependence at compile time
– Can hide L1 cache misses
– Code for one machine runs well on another

And In Conclusion … (2)
• Reservations stations: renaming to larger set of

registers + buffering source operands
– Prevents registers as bottleneck
– Avoids WAR, WAW hazards
– Allows loop unrolling in HW

• Not limited to basic blocks (integer units gets ahead,
beyond branches)

• Helps cache misses as well

• Lasting Contributions
– Dynamic scheduling
– Register renaming
– Load/store disambiguation

• 360/91 descendants are Intel Pentium 4, IBM Power 5,
AMD Athlon/Opteron, …

Reading

• This lecture: chapter 2 Instruction-Level Parallelism

• Next week: no class, Oct 3rd

• Next class, Oct 10th: ILP (cont’d)

• This afternoon: introduction on assignment 2;
highly recommended!

