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Lecture 5 – Instruction Level 
Parallelism (cont’d)

Slides were used during lectures by 
David Patterson, Berkeley, spring 2006

Review from Last Time (1)

• Leverage Implicit Parallelism for Performance: 
Instruction Level Parallelism

• Loop unrolling by compiler to increase ILP

• Branch prediction to increase ILP

• Dynamic HW exploiting ILP
– Works when can’t know dependence at compile time
– Can hide L1 cache misses
– Code for one machine runs well on another

Review from Last Time (2)

• Reservations stations: renaming to larger set of 
registers + buffering source operands

– Prevents registers as bottleneck
– Avoids WAR, WAW hazards
– Allows loop unrolling in HW

• Not limited to basic blocks 
(integer units gets ahead, beyond branches)

• Helps cache misses as well
• Lasting Contributions

– Dynamic scheduling
– Register renaming
– Load/store disambiguation

• 360/91 descendants are Pentium 4, Power 5, AMD 
Athlon/Opteron, … 

Outline
• ILP
• Speculation
• Speculative Tomasulo Example
• Memory Aliases
• Exceptions
• VLIW
• Increasing instruction bandwidth
• Register Renaming vs. Reorder Buffer
• Value Prediction
• Limits to ILP

Speculation to greater ILP
• Greater ILP: Overcome control dependence by 

hardware speculating on outcome of branches 
and executing program as if guesses were correct
– Speculation ⇒ fetch, issue, and execute instructions as if 

branch predictions were always correct 
– Dynamic scheduling ⇒ only fetches and issues

instructions

• Essentially a data flow execution model: 
Operations execute as soon as their operands are 
available

Speculation to greater ILP
3 components of HW-based speculation:

1. Dynamic branch prediction to choose which 
instructions to execute 

2. Speculation to allow execution of instructions 
before control dependences are resolved 
+ ability to undo effects of incorrectly speculated sequence 

3. Dynamic scheduling to deal with scheduling of 
different combinations of basic blocks 
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Adding Speculation to Tomasulo
• Must separate execution from allowing 

instruction to finish or “commit”

• This additional step called instruction commit

• When an instruction is no longer speculative, 
allow it to update the register file or memory 

• Requires additional set of buffers to hold results 
of instructions that have finished execution but 
have not committed

• This reorder buffer (ROB) is also used to pass 
results among instructions that may be 
speculated

Reorder Buffer (ROB)
• In Tomasulo’s algorithm, once an instruction 

writes its result, any subsequently issued 
instructions will find result in the register file

• With speculation, the register file is not updated 
until the instruction commits 

– (we know definitively that the instruction should execute)

• Thus, the ROB supplies operands in interval 
between completion of instruction execution and 
instruction commit

– ROB is a source of operands for instructions, just as 
reservation stations (RS) provide operands in Tomasulo’s
algorithm

– ROB extends architectured registers like RS

Reorder Buffer Entry
Each entry in the ROB contains four fields: 

1. Instruction type 
• A branch (has no destination result), a store (has a memory 

address destination), or a register operation (ALU operation 
or load, which has register destinations)

2. Destination
• Register number (for loads and ALU operations) or 

memory address (for stores) where the instruction result 
should be written

3. Value
• Value of instruction result until the instruction commits

4. Ready
• Indicates that instruction has completed execution, and the 

value is ready

Reorder Buffer operation

• Holds instructions in FIFO order, exactly as issued
• When instructions complete, results placed into ROB

– Supplies operands to other instruction between execution 
complete & commit ⇒ more registers like RS

– Tag results with ROB buffer number instead of reservation station

• Instructions commit  ⇒ values at head of ROB placed in 
registers

• As a result, easy to undo 
speculated instructions 
on mispredicted branches 
or on exceptions

Reorder
BufferFP

Op
Queue

FP Adder FP Adder
Res Stations Res Stations

FP Regs

Commit path

Recall: 4 Steps of Speculative Tomasulo
Algorithm
1.Issue—get instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue instr & 
send operands & reorder buffer no. for destination (this stage 
sometimes called “dispatch”)

2.Execution—operate on operands (EX)
When both operands ready then execute; if not ready, watch 
CDB for result; when both in reservation station, execute; 
checks RAW (sometimes called “issue”)

3.Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4.Commit—update register with reorder result
When instr. at head of reorder buffer & result present, update 
register with result (or store to memory) and remove instr from 
reorder buffer. Mispredicted branch flushes reorder buffer 
(sometimes called “graduation”)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1F0F0 LD F0,10(R2)LD F0,10(R2) NN

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers
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2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1
F10F10

F0F0
ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)
NN

NN

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)6 ADDD ROB5, R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F0F0 ADDD F0,F4,F6ADDD F0,F4,F6 NN

F4F4 LD F4,0(R3)LD F4,0(R3) NN

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

5 0+R35 0+R3

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)6 ADDD ROB5, R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

----

F0F0
ROB5ROB5 ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
NN

NN

F4F4 LD F4,0(R3)LD F4,0(R3) NN

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from 
Memory

Dest

Reorder Buffer

Registers

1 10+R21 10+R2

5 0+R35 0+R3

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

----

F0F0
M[10]M[10] ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
YY

NN

F4F4 M[10]M[10] LD F4,0(R3)LD F4,0(R3) YY

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

2 ADDD R(F4),ROB12 ADDD R(F4),ROB1
6 ADDD M[10],R(F6)6 ADDD M[10],R(F6) 3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

----

F0F0
M[10]M[10]

<val2><val2>
ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
YY

ExEx

F4F4 M[10]M[10] LD F4,0(R3)LD F4,0(R3) YY

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers
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----

F0F0
M[10]M[10]

<val2><val2>
ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
YY

ExEx

F4F4 M[10]M[10] LD F4,0(R3)LD F4,0(R3) YY

---- BNE F2,<…>BNE F2,<…> NN

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

What about memory
hazards???

Avoiding Memory Hazards
• WAW and WAR hazards through memory are 

eliminated with speculation because actual 
updating of memory occurs in order, when a 
store is at head of the ROB, and hence, no 
earlier loads or stores can still be pending

• RAW hazards through memory are maintained 
by two restrictions: 
1. not allowing a load to initiate the second step of its execution

if any active ROB entry occupied by a store has a Destination 
field that matches the value of the A field of the load, and 

2. maintaining the program order for the computation of an 
effective address of a load with respect to all earlier stores.

• these restrictions ensure that any load that 
accesses a memory location written to by an 
earlier store cannot perform the memory access 
until the store has written the data

Exceptions and Interrupts
• IBM 360/91 invented “imprecise interrupts”

– Computer stopped at this PC; its likely close to this address
– Not so popular with programmers
– Also, what about Virtual Memory? (Not in IBM 360)

• Technique for both precise interrupts/exceptions 
and speculation: in-order completion and in-
order commit

– If we speculate and are wrong, need to back up and restart 
execution to point at which we predicted incorrectly

– This is exactly same as need to do with precise exceptions
• Exceptions are handled by not recognizing the 

exception until instruction that caused it is ready 
to commit in ROB

– If a speculated instruction raises an exception, the exception 
is recorded in the ROB

– This is why reorder buffers in all new processors

Getting CPI below 1
• CPI ≥ 1 if issue only 1 instruction every clock cycle 
• Multiple-issue processors come in 3 flavors: 

1. statically-scheduled superscalar processors,
2. dynamically-scheduled superscalar processors, and 
3. VLIW (very long instruction word) processors

• 2 types of superscalar processors issue varying 
numbers of instructions per clock 
– use in-order execution if they are statically scheduled, or 
– out-of-order execution if they are dynamically scheduled

• VLIW processors, in contrast, issue a fixed number 
of instructions formatted either as one large 
instruction or as a fixed instruction packet with the 
parallelism among instructions explicitly indicated 
by the instruction (Intel/HP Itanium)

VLIW: Very Large Instruction Word

• Each “instruction” has explicit coding for multiple 
operations

– In IA-64, grouping called a “packet”
– In Transmeta, grouping called a “molecule” (with “atoms” as ops)

• Tradeoff instruction space for simple decoding
– The long instruction word has room for many operations
– By definition, all the operations the compiler puts in the long 

instruction word are independent => execute in parallel
– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide
– Need compiling technique that schedules across several branches

Recall: Unrolled Loop that Minimizes 
Stalls for Scalar

1 Loop: L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles
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Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
L.D F0,0(R1) L.D F6,-8(R1) 1
L.D F10,-16(R1) L.D F14,-24(R1) 2
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3
L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5
S.D 0(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 6
S.D -16(R1),F12 S.D -24(R1),F16 7
S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI  R1,R1,#48 8
S.D -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency
Note: Need more registers in VLIW (15 vs. 6 in SS)

Problems with 1st Generation VLIW

• Increase in code size
– generating enough operations in a straight-line code fragment 

requires ambitiously unrolling loops
– whenever VLIW instructions are not full, unused functional 

units translate to wasted bits in instruction encoding

• Operated in lock-step; no hazard detection HW
– a stall in any functional unit pipeline caused entire processor 

to stall, since all functional units must be kept synchronized
– Compiler might prediction function units, but caches hard to 

predict

• Binary code compatibility
– Pure VLIW => different numbers of functional units and unit 

latencies require different versions of the code

Intel/HP IA-64 “Explicitly Parallel 
Instruction Computer (EPIC)”

• IA-64: instruction set architecture
• 128 64-bit integer regs + 128 82-bit floating point regs

– Not separate register files per functional unit as in old VLIW

• Hardware checks dependencies 
(interlocks => binary compatibility over time)

• Predicated execution (select 1 out of 64 1-bit flags) 
=> 40% fewer mispredictions?

• Itanium™ was first implementation (2001)
– Highly parallel and deeply pipelined hardware at 800Mhz
– 6-wide, 10-stage pipeline at 800Mhz on 0.18 µ process

• Itanium 2™ is name of 2nd implementation (2005)
– 6-wide, 8-stage pipeline at 1666Mhz on 0.13 µ process
– Caches: 32 KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3

Increasing Instruction Fetch Bandwidth

• Predicts next 
instruct address, 
sends it out 
before decoding 
instruction

• PC of branch 
sent to BTB

• When match is 
found, Predicted 
PC is returned

• If branch 
predicted taken, 
instruction fetch 
continues at 
Predicted PC

Branch Target Buffer (BTB)

IF BW: Return Address Predictor

• Small buffer of 
return addresses 
acts as a stack

• Caches most 
recent return 
addresses

• Call ⇒ Push a 
return address 
on stack

• Return ⇒ Pop an 
address off stack & 
predict as new PC

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 4 8 16
Return address buffer entries

M
is

p
re

d
ic

ti
o

n
 f

re
q

u
e

n
c
y

go

m88ksim

cc1

compress

xlisp

ijpeg

perl

vortex

More Instruction Fetch Bandwidth

• Integrated branch prediction Branch predictor is 
part of instruction fetch unit and is constantly 
predicting branches

• Instruction prefetch Instruction fetch units prefetch 
to deliver multiple instruct. per clock, integrating it 
with branch prediction

• Instruction memory access and buffering Fetching 
multiple instructions per cycle:

– May require accessing multiple cache blocks 
(prefetch to hide cost of crossing cache blocks) 

– Provides buffering, acting as on-demand unit to 
provide instructions to issue stage as needed 
and in quantity needed
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Speculation: Register Renaming vs. ROB

• Alternative to ROB is a larger physical set of 
registers combined with register renaming

– Extended registers replace function of both ROB and 
reservation stations

• Instruction issue maps names of architectural 
registers to physical register numbers in 
extended register set

– On issue, allocates a new unused register for the destination 
(which avoids WAW and WAR hazards)

– Speculation recovery easy because a physical register 
holding an instruction destination does not become the 
architectural register until the instruction commits

• Most Out-of-Order processors today use 
extended registers with renaming

Value Prediction

• Attempts to predict value produced by instruction
– E.g., Loads a value that changes infrequently

• Value prediction is useful only if it significantly 
increases ILP

– Focus of research has been on loads; so-so 
results, no processor uses value prediction

• Related topic is address aliasing prediction
– RAW for load and store or WAW for 2 stores

• Address alias prediction is both more stable and 
simpler since need not actually predict the address 
values, only whether such values conflict

– Has been used by a few processors

(Mis) Speculation on Pentium 4

39%
43%

24%

45%

24%

3% 1% 1% 0%

20%

0%

5%

10%
15%

20%

25%

30%
35%

40%

45%

% of micro-ops not used

Floating PointInteger

Perspective
• Interest in multiple-issue because wanted to improve 

performance without affecting uniprocessor 
programming model

• Taking advantage of ILP is conceptually simple, but 
design problems are amazingly complex in practice

• Conservative in ideas, just faster clock and bigger
• Processors of last 5 years (Pentium 4, IBM Power 5, 

AMD Opteron) have the same basic structure and 
similar sustained issue rates (3 to 4 instructions per 
clock) as the 1st dynamically scheduled, multiple-
issue processors announced in 1995

– Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many 
renaming registers, and 2X as many load-store units
⇒ performance 8 to 16X

• Peak v. delivered performance gap increasing

In Conclusion …

• Interrupts and Exceptions either interrupt the current 
instruction or happen between instructions

– Possibly large quantities of state must be saved before interrupting

• Machines with precise exceptions provide one single 
point in the program to restart execution

– All instructions before that point have completed
– No instructions after or including that point have completed 

• Hardware techniques exist for precise exceptions even 
in the face of out-of-order execution!

– Important enabling factor for out-of-order execution

break
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Limits to ILP

• Conflicting studies of amount
– Benchmarks (vectorized Fortran FP vs. integer C programs)
– Hardware sophistication
– Compiler sophistication

• How much ILP is available using existing 
mechanisms with increasing HW budgets?

• Do we need to invent new HW/SW 
mechanisms to keep on processor 
performance curve?

– Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
– Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock
– Motorola AltaVec: 128 bit ints and FPs
– Supersparc Multimedia ops, etc.

Overcoming Limits

• Advances in compiler technology + 
significantly new and different hardware 
techniques may be able to overcome 
limitations assumed in studies

• However, unlikely such advances when 
coupled with realistic hardware will 
overcome these limits in near future 

Limits to ILP

Initial HW Model here; MIPS compilers. 
Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers 
=> all register WAW & WAR hazards are avoided
2. Branch prediction – perfect; no mispredictions
3. Jump prediction – all jumps perfectly predicted 
(returns, case statements)
2 & 3 ⇒ no control dependencies; perfect speculation 
& an unbounded buffer of instructions available
4. Memory-address alias analysis – addresses known 
& a load can be moved before a store provided 
addresses not equal; 1&4 eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions 
(FP *,/); unlimited instructions issued/clock cycle; 

64KI, 32KD, 1.92MB 
L2, 36 MB L3

PerfectCache

2% to 6% 
misprediction
(Tournament 
Branch Predictor)

PerfectBranch Prediction

??PerfectMemory Alias 
Analysis

4InfiniteInstructions Issued 
per clock

200InfiniteInstruction Window 
Size

48 integer + 
40 Fl. Pt.

InfiniteRenaming 
Registers

Power 5Model

Limits to ILP HW Model comparison

Upper Limit to ILP: Ideal Machine
Figure 3.1
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Limits to ILP HW Model comparison
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Limits to ILP (1)
• Doubling issue rates above today’s 3-6 

instructions per clock, say to 6 to 12 instructions, 
probably requires a processor to 

– issue 3 or 4 data memory accesses per cycle, 
– resolve 2 or 3 branches per cycle, 
– rename and access more than 20 registers per cycle, and 
– fetch 12 to 24 instructions per cycle. 

• The complexities of implementing these 
capabilities is likely to mean sacrifices in the 
maximum clock rate 

– E.g.,  widest issue processor is the Itanium 2, but it also has 
the slowest clock rate, despite the fact that it consumes the 
most power!

Limits to ILP (2)
• Most techniques for increasing performance 

increase power consumption 
• The key question is whether a technique is energy 

efficient: does it increase power consumption 
faster than it increases performance? 

• Multiple issue processors techniques all are 
energy inefficient:
1. Issuing multiple instructions incurs some overhead in 

logic that grows faster than the issue rate grows
2. Growing gap between peak issue rates and sustained 

performance
• Number of transistors switching = f(peak issue 

rate), and performance = f(sustained rate), 
growing gap between peak and sustained 
performance 
⇒ increasing energy per unit of performance
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Reading

• This lecture: 
– chapter 2 ILP
– chapter 3: 3.1-3.4 Limits to ILP

• Next lecture: 
– chapter 3: 3.5-3.8 Simultaneous Multithreading (SMT)

• No class on Wed Oct 31st

• Wed Nov 14th 11.15-13.00h & 13.45-15.30h, room 402


