
1

Lecture 5 – Instruction Level
Parallelism (cont’d)

Slides were used during lectures by
David Patterson, Berkeley, spring 2006

Review from Last Time (1)

• Leverage Implicit Parallelism for Performance:
Instruction Level Parallelism

• Loop unrolling by compiler to increase ILP

• Branch prediction to increase ILP

• Dynamic HW exploiting ILP
– Works when can’t know dependence at compile time
– Can hide L1 cache misses
– Code for one machine runs well on another

Review from Last Time (2)

• Reservations stations: renaming to larger set of
registers + buffering source operands

– Prevents registers as bottleneck
– Avoids WAR, WAW hazards
– Allows loop unrolling in HW

• Not limited to basic blocks
(integer units gets ahead, beyond branches)

• Helps cache misses as well
• Lasting Contributions

– Dynamic scheduling
– Register renaming
– Load/store disambiguation

• 360/91 descendants are Pentium 4, Power 5, AMD
Athlon/Opteron, …

Outline
• ILP
• Speculation
• Speculative Tomasulo Example
• Memory Aliases
• Exceptions
• VLIW
• Increasing instruction bandwidth
• Register Renaming vs. Reorder Buffer
• Value Prediction
• Limits to ILP

Speculation to greater ILP
• Greater ILP: Overcome control dependence by

hardware speculating on outcome of branches
and executing program as if guesses were correct
– Speculation ⇒ fetch, issue, and execute instructions as if

branch predictions were always correct
– Dynamic scheduling ⇒ only fetches and issues

instructions

• Essentially a data flow execution model:
Operations execute as soon as their operands are
available

Speculation to greater ILP
3 components of HW-based speculation:

1. Dynamic branch prediction to choose which
instructions to execute

2. Speculation to allow execution of instructions
before control dependences are resolved
+ ability to undo effects of incorrectly speculated sequence

3. Dynamic scheduling to deal with scheduling of
different combinations of basic blocks

2

Adding Speculation to Tomasulo
• Must separate execution from allowing

instruction to finish or “commit”

• This additional step called instruction commit

• When an instruction is no longer speculative,
allow it to update the register file or memory

• Requires additional set of buffers to hold results
of instructions that have finished execution but
have not committed

• This reorder buffer (ROB) is also used to pass
results among instructions that may be
speculated

Reorder Buffer (ROB)
• In Tomasulo’s algorithm, once an instruction

writes its result, any subsequently issued
instructions will find result in the register file

• With speculation, the register file is not updated
until the instruction commits

– (we know definitively that the instruction should execute)

• Thus, the ROB supplies operands in interval
between completion of instruction execution and
instruction commit

– ROB is a source of operands for instructions, just as
reservation stations (RS) provide operands in Tomasulo’s
algorithm

– ROB extends architectured registers like RS

Reorder Buffer Entry
Each entry in the ROB contains four fields:

1. Instruction type
• A branch (has no destination result), a store (has a memory

address destination), or a register operation (ALU operation
or load, which has register destinations)

2. Destination
• Register number (for loads and ALU operations) or

memory address (for stores) where the instruction result
should be written

3. Value
• Value of instruction result until the instruction commits

4. Ready
• Indicates that instruction has completed execution, and the

value is ready

Reorder Buffer operation

• Holds instructions in FIFO order, exactly as issued
• When instructions complete, results placed into ROB

– Supplies operands to other instruction between execution
complete & commit ⇒ more registers like RS

– Tag results with ROB buffer number instead of reservation station

• Instructions commit ⇒ values at head of ROB placed in
registers

• As a result, easy to undo
speculated instructions
on mispredicted branches
or on exceptions

Reorder
BufferFP

Op
Queue

FP Adder FP Adder
Res Stations Res Stations

FP Regs

Commit path

Recall: 4 Steps of Speculative Tomasulo
Algorithm
1.Issue—get instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue instr &
send operands & reorder buffer no. for destination (this stage
sometimes called “dispatch”)

2.Execution—operate on operands (EX)
When both operands ready then execute; if not ready, watch
CDB for result; when both in reservation station, execute;
checks RAW (sometimes called “issue”)

3.Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4.Commit—update register with reorder result
When instr. at head of reorder buffer & result present, update
register with result (or store to memory) and remove instr from
reorder buffer. Mispredicted branch flushes reorder buffer
(sometimes called “graduation”)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1F0F0 LD F0,10(R2)LD F0,10(R2) NN

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

3

2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1
F10F10

F0F0
ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)
NN

NN

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)6 ADDD ROB5, R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F0F0 ADDD F0,F4,F6ADDD F0,F4,F6 NN

F4F4 LD F4,0(R3)LD F4,0(R3) NN

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

5 0+R35 0+R3

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)6 ADDD ROB5, R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F0F0
ROB5ROB5 ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
NN

NN

F4F4 LD F4,0(R3)LD F4,0(R3) NN

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from
Memory

Dest

Reorder Buffer

Registers

1 10+R21 10+R2

5 0+R35 0+R3

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F0F0
M[10]M[10] ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
YY

NN

F4F4 M[10]M[10] LD F4,0(R3)LD F4,0(R3) YY

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

2 ADDD R(F4),ROB12 ADDD R(F4),ROB1
6 ADDD M[10],R(F6)6 ADDD M[10],R(F6) 3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F0F0
M[10]M[10]

<val2><val2>
ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
YY

ExEx

F4F4 M[10]M[10] LD F4,0(R3)LD F4,0(R3) YY

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

4

F0F0
M[10]M[10]

<val2><val2>
ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
YY

ExEx

F4F4 M[10]M[10] LD F4,0(R3)LD F4,0(R3) YY

---- BNE F2,<…>BNE F2,<…> NN

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

What about memory
hazards???

Avoiding Memory Hazards
• WAW and WAR hazards through memory are

eliminated with speculation because actual
updating of memory occurs in order, when a
store is at head of the ROB, and hence, no
earlier loads or stores can still be pending

• RAW hazards through memory are maintained
by two restrictions:
1. not allowing a load to initiate the second step of its execution

if any active ROB entry occupied by a store has a Destination
field that matches the value of the A field of the load, and

2. maintaining the program order for the computation of an
effective address of a load with respect to all earlier stores.

• these restrictions ensure that any load that
accesses a memory location written to by an
earlier store cannot perform the memory access
until the store has written the data

Exceptions and Interrupts
• IBM 360/91 invented “imprecise interrupts”

– Computer stopped at this PC; its likely close to this address
– Not so popular with programmers
– Also, what about Virtual Memory? (Not in IBM 360)

• Technique for both precise interrupts/exceptions
and speculation: in-order completion and in-
order commit

– If we speculate and are wrong, need to back up and restart
execution to point at which we predicted incorrectly

– This is exactly same as need to do with precise exceptions
• Exceptions are handled by not recognizing the

exception until instruction that caused it is ready
to commit in ROB

– If a speculated instruction raises an exception, the exception
is recorded in the ROB

– This is why reorder buffers in all new processors

Getting CPI below 1
• CPI ≥ 1 if issue only 1 instruction every clock cycle
• Multiple-issue processors come in 3 flavors:

1. statically-scheduled superscalar processors,
2. dynamically-scheduled superscalar processors, and
3. VLIW (very long instruction word) processors

• 2 types of superscalar processors issue varying
numbers of instructions per clock
– use in-order execution if they are statically scheduled, or
– out-of-order execution if they are dynamically scheduled

• VLIW processors, in contrast, issue a fixed number
of instructions formatted either as one large
instruction or as a fixed instruction packet with the
parallelism among instructions explicitly indicated
by the instruction (Intel/HP Itanium)

VLIW: Very Large Instruction Word

• Each “instruction” has explicit coding for multiple
operations

– In IA-64, grouping called a “packet”
– In Transmeta, grouping called a “molecule” (with “atoms” as ops)

• Tradeoff instruction space for simple decoding
– The long instruction word has room for many operations
– By definition, all the operations the compiler puts in the long

instruction word are independent => execute in parallel
– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide
– Need compiling technique that schedules across several branches

Recall: Unrolled Loop that Minimizes
Stalls for Scalar

1 Loop: L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles

5

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
L.D F0,0(R1) L.D F6,-8(R1) 1
L.D F10,-16(R1) L.D F14,-24(R1) 2
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3
L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5
S.D 0(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 6
S.D -16(R1),F12 S.D -24(R1),F16 7
S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI R1,R1,#48 8
S.D -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency
Note: Need more registers in VLIW (15 vs. 6 in SS)

Problems with 1st Generation VLIW

• Increase in code size
– generating enough operations in a straight-line code fragment

requires ambitiously unrolling loops
– whenever VLIW instructions are not full, unused functional

units translate to wasted bits in instruction encoding

• Operated in lock-step; no hazard detection HW
– a stall in any functional unit pipeline caused entire processor

to stall, since all functional units must be kept synchronized
– Compiler might prediction function units, but caches hard to

predict

• Binary code compatibility
– Pure VLIW => different numbers of functional units and unit

latencies require different versions of the code

Intel/HP IA-64 “Explicitly Parallel
Instruction Computer (EPIC)”

• IA-64: instruction set architecture
• 128 64-bit integer regs + 128 82-bit floating point regs

– Not separate register files per functional unit as in old VLIW

• Hardware checks dependencies
(interlocks => binary compatibility over time)

• Predicated execution (select 1 out of 64 1-bit flags)
=> 40% fewer mispredictions?

• Itanium™ was first implementation (2001)
– Highly parallel and deeply pipelined hardware at 800Mhz
– 6-wide, 10-stage pipeline at 800Mhz on 0.18 µ process

• Itanium 2™ is name of 2nd implementation (2005)
– 6-wide, 8-stage pipeline at 1666Mhz on 0.13 µ process
– Caches: 32 KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3

Increasing Instruction Fetch Bandwidth

• Predicts next
instruct address,
sends it out
before decoding
instruction

• PC of branch
sent to BTB

• When match is
found, Predicted
PC is returned

• If branch
predicted taken,
instruction fetch
continues at
Predicted PC

Branch Target Buffer (BTB)

IF BW: Return Address Predictor

• Small buffer of
return addresses
acts as a stack

• Caches most
recent return
addresses

• Call ⇒ Push a
return address
on stack

• Return ⇒ Pop an
address off stack &
predict as new PC

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 4 8 16
Return address buffer entries

M
is

p
re

d
ic

ti
o

n
 f

re
q

u
e

n
c
y

go

m88ksim

cc1

compress

xlisp

ijpeg

perl

vortex

More Instruction Fetch Bandwidth

• Integrated branch prediction Branch predictor is
part of instruction fetch unit and is constantly
predicting branches

• Instruction prefetch Instruction fetch units prefetch
to deliver multiple instruct. per clock, integrating it
with branch prediction

• Instruction memory access and buffering Fetching
multiple instructions per cycle:

– May require accessing multiple cache blocks
(prefetch to hide cost of crossing cache blocks)

– Provides buffering, acting as on-demand unit to
provide instructions to issue stage as needed
and in quantity needed

6

Speculation: Register Renaming vs. ROB

• Alternative to ROB is a larger physical set of
registers combined with register renaming

– Extended registers replace function of both ROB and
reservation stations

• Instruction issue maps names of architectural
registers to physical register numbers in
extended register set

– On issue, allocates a new unused register for the destination
(which avoids WAW and WAR hazards)

– Speculation recovery easy because a physical register
holding an instruction destination does not become the
architectural register until the instruction commits

• Most Out-of-Order processors today use
extended registers with renaming

Value Prediction

• Attempts to predict value produced by instruction
– E.g., Loads a value that changes infrequently

• Value prediction is useful only if it significantly
increases ILP

– Focus of research has been on loads; so-so
results, no processor uses value prediction

• Related topic is address aliasing prediction
– RAW for load and store or WAW for 2 stores

• Address alias prediction is both more stable and
simpler since need not actually predict the address
values, only whether such values conflict

– Has been used by a few processors

(Mis) Speculation on Pentium 4

39%
43%

24%

45%

24%

3% 1% 1% 0%

20%

0%

5%

10%
15%

20%

25%

30%
35%

40%

45%

% of micro-ops not used

Floating PointInteger

Perspective
• Interest in multiple-issue because wanted to improve

performance without affecting uniprocessor
programming model

• Taking advantage of ILP is conceptually simple, but
design problems are amazingly complex in practice

• Conservative in ideas, just faster clock and bigger
• Processors of last 5 years (Pentium 4, IBM Power 5,

AMD Opteron) have the same basic structure and
similar sustained issue rates (3 to 4 instructions per
clock) as the 1st dynamically scheduled, multiple-
issue processors announced in 1995

– Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many
renaming registers, and 2X as many load-store units
⇒ performance 8 to 16X

• Peak v. delivered performance gap increasing

In Conclusion …

• Interrupts and Exceptions either interrupt the current
instruction or happen between instructions

– Possibly large quantities of state must be saved before interrupting

• Machines with precise exceptions provide one single
point in the program to restart execution

– All instructions before that point have completed
– No instructions after or including that point have completed

• Hardware techniques exist for precise exceptions even
in the face of out-of-order execution!

– Important enabling factor for out-of-order execution

break

7

Limits to ILP

• Conflicting studies of amount
– Benchmarks (vectorized Fortran FP vs. integer C programs)
– Hardware sophistication
– Compiler sophistication

• How much ILP is available using existing
mechanisms with increasing HW budgets?

• Do we need to invent new HW/SW
mechanisms to keep on processor
performance curve?

– Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
– Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock
– Motorola AltaVec: 128 bit ints and FPs
– Supersparc Multimedia ops, etc.

Overcoming Limits

• Advances in compiler technology +
significantly new and different hardware
techniques may be able to overcome
limitations assumed in studies

• However, unlikely such advances when
coupled with realistic hardware will
overcome these limits in near future

Limits to ILP

Initial HW Model here; MIPS compilers.
Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers
=> all register WAW & WAR hazards are avoided
2. Branch prediction – perfect; no mispredictions
3. Jump prediction – all jumps perfectly predicted
(returns, case statements)
2 & 3 ⇒ no control dependencies; perfect speculation
& an unbounded buffer of instructions available
4. Memory-address alias analysis – addresses known
& a load can be moved before a store provided
addresses not equal; 1&4 eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions
(FP *,/); unlimited instructions issued/clock cycle;

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectCache

2% to 6%
misprediction
(Tournament
Branch Predictor)

PerfectBranch Prediction

??PerfectMemory Alias
Analysis

4InfiniteInstructions Issued
per clock

200InfiniteInstruction Window
Size

48 integer +
40 Fl. Pt.

InfiniteRenaming
Registers

Power 5Model

Limits to ILP HW Model comparison

Upper Limit to ILP: Ideal Machine
Figure 3.1

Programs

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doducd tomcatv

54.8
62.6

17.9

75.2

118.7

150.1

Integer: 18 - 60

FP: 75 - 150

In
st

ru
ct

io
ns

 P
er

 C
lo

ck

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

Memory
Alias

Branch
Prediction

Renaming
Registers

Instruction
Window Size

Instructions
Issued per
clock

4InfiniteInfinite

200InfiniteInfinite, 2K, 512,
128, 32

??PerfectPerfect

2% to 6%
misprediction
(Tournament Branch
Predictor)

PerfectPerfect

48 integer +
40 Fl. Pt.

InfiniteInfinite

Power 5ModelNew Model

Limits to ILP HW Model comparison

8

55
63

18

75

119

150

36 41

15

61 59 60

10 15 12

49

16

45

10 13 11

35

15

34

8 8 9
14

9
14

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doduc tomcatv

In
st

ru
ct

io
ns

 P
er

 C
lo

ck

Infinite 2048 512 128 32

More Realistic HW: Window Impact
Figure 3.2 Change from Infinite

window 2048, 512, 128, 32 FP: 9 - 150

Integer: 8 - 63

IP
C

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

Memory
Alias

Branch
Prediction

Renaming
Registers

Instruction
Window Size

Instructions
Issued per
clock

4Infinite64

200Infinite2048

??PerfectPerfect

2% to 6%
misprediction
(Tournament Branch
Predictor)

PerfectPerfect vs. 8K
Tournament vs.
512 2-bit vs.
profile vs. none

48 integer +
40 Fl. Pt.

InfiniteInfinite

Power 5ModelNew Model

Limits to ILP HW Model comparison

35

41

16

61
58

60

9

12
10

48

15

6
7 6

46

13

45

6 6 7

45

14

45

2 2 2

29

4

19

46

0

10

20

30

40

50

60

gcc espresso li fpppp doducd tomcatv

Program

Perfect Selective predictor Standard 2-bit Static None

More Realistic HW: Branch Impact
Figure 3.3

Change from Infinite
window to examine to 2048
and maximum issue of 64
instructions per clock cycle

ProfileBHT (512)TournamentPerfect No prediction

FP: 15 - 45

Integer: 6 - 12

IP
C

Misprediction Rates

1%

5%

14%
12%

14%
12%

1%

16%
18%

23%

18%

30%

0%
3% 2% 2%

4%
6%

0%

5%

10%

15%

20%

25%

30%

35%

tomcatv doduc fpppp li espresso gcc

M
is

pr
ed

ic
tio

n
R

at
e

Profile-based 2-bit counter Tournament

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

Memory
Alias

Branch
Prediction

Renaming
Registers

Instruction
Window Size

Instructions
Issued per
clock

4Infinite64

200Infinite2048

PerfectPerfectPerfect

Tournament Branch
Predictor

Perfect8K 2-bit

48 integer +
40 Fl. Pt.

InfiniteInfinite v. 256,
128, 64, 32, none

Power 5ModelNew Model

Limits to ILP HW Model comparison

11

15

12

29

54

10

15

12

49

16

10
13

12

35

15

44

9 10 11

20

11

28

5 5 6 5 5
7

4 4
5

4
5 5

59

45

0

10

20

30

40

50

60

70

gcc espresso li fpppp doducd tomcatv

Program

Infinite 256 128 64 32 None

More Realistic HW:
Renaming Register Impact (N int + N fp)
Figure 3.5

Change 2048 instr
window, 64 instr
issue, 8K 2 level
Prediction

64 None256Infinite 32128

Integer: 5 - 15

FP: 11 - 45

IP
C

9

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

Memory
Alias

Branch
Prediction

Renaming
Registers

Instruction
Window Size

Instructions
Issued per
clock

4Infinite64

200Infinite2048

PerfectPerfectPerfect v. Stack
v. Inspect v.
none

TournamentPerfect8K 2-bit

48 integer +
40 Fl. Pt.

Infinite256 Int + 256 FP

Power 5ModelNew Model

Limits to ILP HW Model comparison

Program

0

5

10

15

20

25

30

35

40

45

50

gcc espresso li fpppp doducd tomcatv

10

15

12

49

16

45

7 7
9

49

16

4
5 4 4

6 5
3

5
3 3 4 4

45

Perfect Global/stack Perfect Inspection None

More Realistic HW:
Memory Address Alias Impact
Figure 3.6

Change 2048 instr
window, 64 instr
issue, 8K 2 level
Prediction, 256
renaming registers

NoneGlobal/Stack perf;
heap conflicts

Perfect Inspec.
Assem.

FP: 4 - 45
(Fortran,
no heap)

Integer: 4 - 9

IP
C

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

Memory
Alias

Branch
Prediction

Renaming
Registers

Instruction
Window Size

Instructions
Issued per
clock

4Infinite64 (no
restrictions)

200InfiniteInfinite vs. 256,
128, 64, 32

PerfectPerfectHW
disambiguation

TournamentPerfect1K 2-bit

48 integer +
40 Fl. Pt.

Infinite64 Int + 64 FP

Power 5ModelNew Model

Limits to ILP HW Model comparison

Program

0

10

20

30

40

50

60

gcc expresso li fpppp doducd tomcatv

10

15

12

52

17

56

10

15

12

47

16

10

13
11

35

15

34

9
10 11

22

12

8 8 9

14

9

14

6 6 6
8

7
9

4 4 4 5 4
6

3 2 3 3 3 3

45

22

Infinite 256 128 64 32 16 8 4

Realistic HW: Window Impact
Figure 3.7

Perfect disambiguation
(HW), 1K Selective
Prediction, 16 entry
return, 64 registers,
issue as many as
window

64 16256Infinite 32128 8 4

Integer: 6 - 12

FP: 8 - 45

IP
C

Limits to ILP (1)
• Doubling issue rates above today’s 3-6

instructions per clock, say to 6 to 12 instructions,
probably requires a processor to

– issue 3 or 4 data memory accesses per cycle,
– resolve 2 or 3 branches per cycle,
– rename and access more than 20 registers per cycle, and
– fetch 12 to 24 instructions per cycle.

• The complexities of implementing these
capabilities is likely to mean sacrifices in the
maximum clock rate

– E.g., widest issue processor is the Itanium 2, but it also has
the slowest clock rate, despite the fact that it consumes the
most power!

Limits to ILP (2)
• Most techniques for increasing performance

increase power consumption
• The key question is whether a technique is energy

efficient: does it increase power consumption
faster than it increases performance?

• Multiple issue processors techniques all are
energy inefficient:
1. Issuing multiple instructions incurs some overhead in

logic that grows faster than the issue rate grows
2. Growing gap between peak issue rates and sustained

performance
• Number of transistors switching = f(peak issue

rate), and performance = f(sustained rate),
growing gap between peak and sustained
performance
⇒ increasing energy per unit of performance

10

Reading

• This lecture:
– chapter 2 ILP
– chapter 3: 3.1-3.4 Limits to ILP

• Next lecture:
– chapter 3: 3.5-3.8 Simultaneous Multithreading (SMT)

• No class on Wed Oct 31st

• Wed Nov 14th 11.15-13.00h & 13.45-15.30h, room 402

