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Lecture 11 – Storage

Slides were used during lectures by 
David Patterson, Berkeley, spring 2006

Case for Storage

• Shift in focus from computation to 
communication and storage of information 

– E.g., Cray Research/Thinking Machines vs. Google/Yahoo
– “The Computing Revolution” (1960s to 1980s) 
⇒ “The Information Age” (1990 to today)

• Storage emphasizes reliability and scalability as 
well as cost-performance

• What is “Software king” that determines which 
HW actually features used?

– Operating System for storage
– Compiler for processor 

• Also has own performance theory—queuing 
theory—balances throughput vs. response time 

Outline

• Magnetic Disks
• RAID
• Advanced Dependability/Reliability/Availability
• I/O Benchmarks, Performance and Dependability
• Intro to Queuing Theory
• The End

Disk Organization

• 5000-30,000 
tracks/surface

• 100-500 
sectors/track

Disk Figure of Merit: Areal Density

• Bits recorded along a track
– Metric is Bits Per Inch (BPI)

• Number of tracks per surface
– Metric is Tracks Per Inch (TPI)

• Disk Designs Brag about bit density per unit area
– Metric is  Bits Per Square Inch: Areal Density = BPI x TPI

Year Areal Density
1973 2            
1979 8            
1989 63          
1997 3,090     
2000 17,100   
2006 130,000 
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Historical Perspective

• 1956 IBM Ramac — early 1970s Winchester
– Developed for mainframe computers, proprietary interfaces
– Steady shrink in form factor: 27 in. to 14 in.

• Form factor and capacity drives market more than performance
• 1970s developments

– 5.25 inch floppy disk formfactor (microcode into mainframe)
– Emergence of industry standard disk interfaces

• Early 1980s: PCs and first generation workstations
• Mid 1980s: Client/server computing 

– Centralized storage on file server
» accelerates disk downsizing: 8 inch to 5.25

– Mass market disk drives become a reality
» industry standards: SCSI, IPI, IDE
» 5.25 inch to 3.5 inch drives for PCs, End of proprietary interfaces

• 1900s: Laptops => 2.5 inch drives
• 2000s: What new devices leading to new drives?
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Future Disk Size and Performance

• Continued advance in capacity (60%/yr) and 
bandwidth (40%/yr)

• Slow improvement in seek, rotation (8%/yr)

• Time to read whole disk 
Year Sequentially Randomly

(1 sector/seek)
1990 4 minutes 6 hours
2000 12 minutes 1 week(!)
2006 56 minutes 3 weeks (SCSI)
2006      171 minutes 7 weeks (SATA)

Use Arrays of Small Disks?

Katz and Patterson asked in 1987: 
Can smaller disks be used  to close gap in 
performance between disks and CPUs?

14”
10”5.25”3.5”

3.5”

Disk Array:    
1 disk design

Conventional:                 
4 disk  
designs

Low End High End

Replace Small Number of Large Disks with 
Large Number of Small Disks! (1988 Disks)

Capacity 
Volume 
Power
Data Rate 
I/O Rate   
MTTF  
Cost

IBM 3390K
20 GBytes
97 cu. ft.

3 KW
15 MB/s

600 I/Os/s
250 KHrs

$250K

IBM 3.5" 0061
320 MBytes

0.1 cu. ft.
11 W

1.5 MB/s
55 I/Os/s
50 KHrs

$2K

x70
23 GBytes
11 cu. ft.

1 KW
120 MB/s

3900 IOs/s
??? Hrs
$150K

Disk Arrays have potential for large data and 
I/O rates, high MB per cu. ft., high MB per KW, 
but what about reliability?

9X
3X

8X

6X

Array Reliability

Reliability of N disks = Reliability of 1 Disk ÷ N

50,000 Hours ÷ 70 disks = 700 hours

Disk system MTTF: Drops from 6 years  to 1 month!

Arrays (without redundancy) too unreliable to be 
useful!

Hot spares support reconstruction in parallel with 
access: very high media availability can be achieved
Hot spares support reconstruction in parallel with 
access: very high media availability can be achieved

Redundant Arrays of (Inexpensive) Disks

• Files are "striped" across multiple disks
• Redundancy yields high data availability

– Availability: service still provided to user, even if some 
components failed

• Disks will still fail
• Contents reconstructed from data redundantly 

stored in the array
⇒ Capacity penalty to store redundant info
⇒ Bandwidth penalty to update redundant info

Redundant Arrays of Inexpensive Disks
RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its “mirror”
Very high availability can be achieved

• Bandwidth sacrifice on write:
Logical write = two physical writes

• Reads may be optimized
• Most expensive solution: 100% capacity overhead

• (RAID 2 not interesting, so skip)

recovery
group



3

Redundant Array of Inexpensive Disks 
RAID 3: Parity Disk

P contains sum of
other disks per stripe 
mod 2 (“parity”)
If disk fails, subtract 
P from sum of other 
disks to find missing information

P
10010011
11001101
10010011

. . .
logical record 1

0
1
0
0
0
1
1

1
1
0
0
1
1
0
1

1
0
1
0
0
0
1
1

1
1
0
0
1
1
0
1

Striped physical
records

RAID 3

• Sum computed across recovery group to 
protect against hard disk failures, stored in 
P disk

• Logically, a single high capacity, high 
transfer rate disk: good for large transfers

• Wider arrays reduce capacity costs, but 
decreases availability

• 33% capacity cost for parity if 3 data disks 
and 1 parity disk

Inspiration for RAID 4

• RAID 3 relies on parity disk to discover 
errors on Read

• But every sector has an error detection field
• To catch errors on read, rely on error 

detection field vs. the parity disk
• Allows independent reads to different disks 

simultaneously

Redundant Arrays of Inexpensive Disks 
RAID 4: High I/O Rate Parity

D0 D1 D2 D3 P

D4 D5 D6 PD7

D8 D9 PD10 D11

D12 PD13 D14 D15

PD16 D17 D18 D19

D20 D21 D22 D23 P
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.Disk Columns

Increasing
Logical

Disk 
Address

Stripe

Insides of 
5 disks
Insides of 
5 disks

Example:
small read 
D0 & D5, 
large write 
D12-D15

Example:
small read 
D0 & D5, 
large write 
D12-D15

Inspiration for RAID 5

• RAID 4 works well for small reads
• Small writes (write to one disk): 

– Option 1: read other data disks, create new sum and write to 
Parity Disk

– Option 2: since P has old sum, compare old data to new data, 
add the difference to P

• Small writes are limited by Parity Disk: Write to D0, D5 
both also write to P disk 

D0 D1 D2 D3 P

D4 D5 D6 PD7

Redundant Arrays of Inexpensive Disks 
RAID 5: High I/O Rate Interleaved Parity

Independent 
writes
possible 
because of
interleaved 
parity

Independent 
writes
possible 
because of
interleaved 
parity

D0 D1 D2 D3 P

D4 D5 D6 P D7

D8 D9 P D10 D11

D12 P D13 D14 D15

P D16 D17 D18 D19

D20 D21 D22 D23 P
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
Disk Columns

Increasing
Logical

Disk 
Addresses

Example: 
write to 
D0, D5 
uses disks 
0, 1, 3, 4
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Problems of Disk Arrays: Small Writes

D0 D1 D2 D3 PD0'

+

+

D0' D1 D2 D3 P'

new
data

old
data

old 
parity

XOR

XOR

(1. Read) (2. Read)

(3. Write) (4. Write)

RAID-5: Small Write Algorithm
1 Logical Write = 2 Physical Reads + 2  Physical Writes

RAID 6: Recovering from 2 failures

Why > 1 failure recovery?
– operator accidentally replaces the wrong disk during 

a failure
– since disk bandwidth is growing more slowly than 

disk capacity, the MTT Repair a disk in a RAID 
system is increasing 
⇒ increases the chances of a 2nd failure during 
repair since takes longer

– reading much more data during reconstruction meant 
increasing the chance of an uncorrectable media 
failure, which would result in data loss

RAID 6: Recovering from 2 failures

• Network Appliance’s row-diagonal parity or RAID-DP
• Like the standard RAID schemes, it uses redundant 

space based on parity calculation per stripe 
• Since it is protecting against a double failure, it adds 

two check blocks per stripe of data. 
– If p+1 disks total, p-1 disks have data; assume p=5

• Row parity disk is just like in RAID 4 
– Even parity across the other 4 data blocks in its stripe

• Each block of the diagonal parity disk contains the 
even parity of the blocks in the same diagonal

Example p = 5

• Row diagonal parity starts by recovering one of the 4 blocks 
on the failed disk using diagonal parity

– Since each diagonal misses one disk, and all diagonals miss a 
different disk, 2 diagonals are only missing 1 block

• Once the data for those blocks is recovered, then the 
standard RAID recovery scheme can be used to recover 
two more blocks in the standard RAID 4 stripes

• Process continues until two failed disks are restored

043210
432104
321043
210432
104321
043210

Diagona
l Parity

Row 
Parity

Data 
Disk 3

Data 
Disk 2

Data 
Disk 1

Data 
Disk 0

Berkeley History: RAID-I

• RAID-I (1989) 
Consisted of a Sun 4/280 
workstation with 128 MB of DRAM, 
four dual-string SCSI controllers, 
28 5.25-inch SCSI disks and 
specialized disk striping software

• Today RAID is $24 billion 
dollar industry, 80% nonPC
disks sold in RAIDs

Summary: RAID Techniques: Goal was performance,
popularity due to reliability of storage

• Disk Mirroring, Shadowing (RAID 1)

Each disk is fully duplicated onto its "shadow"

Logical write = two physical writes

100% capacity overhead

• Parity Data Bandwidth Array (RAID 3)

Parity computed horizontally

Logically a single high data bw disk

• High I/O Rate Parity Array (RAID 5)
Interleaved parity blocks

Independent reads and writes

Logical write = 2 reads + 2 writes

1
0
0
1
0
0
1
1

1
1
0
0
1
1
0
1

1
0
0
1
0
0
1
1

0
0
1
1
0
0
1
0

1
0
0
1
0
0
1
1

1
0
0
1
0
0
1
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Definitions

• Examples on why precise definitions so important 
for reliability

• Is a programming mistake a fault, error, or failure? 
– Are we talking about the time it was designed 

or the time the program is run? 
– If the running program doesn’t exercise the mistake, 

is it still a fault/error/failure?

• If an alpha particle hits a DRAM memory cell, is it a 
fault/error/failure if it doesn’t change the value? 

– Is it a fault/error/failure if the memory doesn’t access the changed bit? 
– Did a fault/error/failure still occur if the memory had error correction 

and delivered the corrected value to the CPU?  

International Federation for Information 
Processing (IFIP) Standard terminology

• Computer system dependability: quality of delivered service 
such that reliance can be placed on service

• Service is observed actual behavior as perceived by other 
system(s) interacting with this system’s users

• Each module has ideal specified behavior, where service 
specification is agreed description of expected behavior

• A system failure occurs when the actual behavior deviates 
from the specified behavior

• Failure occurred because an error, a defect in module
• The cause of an error is a fault
• When a fault occurs it creates a latent error, which becomes 

effective when it is activated
• When error actually affects the delivered service, a failure 

occurs (time from error to failure is error latency)

Fault v. (Latent) Error v. Failure

• An error is manifestation in the system of a fault, 
a failure is manifestation on the service of an error

• If an alpha particle hits a DRAM memory cell, is it a 
fault/error/failure if it doesn’t change the value? 

– Is it a fault/error/failure if the memory doesn’t access the changed bit? 
– Did a fault/error/failure still occur if the memory had error correction 

and delivered the corrected value to the CPU? 

• An alpha particle hitting a DRAM can be a fault
• If it changes the memory, it creates an error
• Error remains latent until effected memory word is read
• If the effected word error affects the delivered service, 

a failure occurs

Fault Categories

1. Hardware faults: Devices that fail, such alpha particle hitting 
a memory cell

2. Design faults: Faults in software (usually) and hardware 
design (occasionally)

3. Operation faults: Mistakes by operations and maintenance 
personnel

4. Environmental faults: Fire, flood, earthquake, power failure, 
and sabotage

Also by duration: 
1. Transient faults exist for limited time and not recurring 
2. Intermittent faults cause a system to oscillate between 

faulty and fault-free operation 
3. Permanent faults do not correct themselves over time

Fault Tolerance vs Disaster Tolerance

• Fault-Tolerance (or more properly, Error-Tolerance):
mask local faults (prevent errors from becoming 
failures)

– RAID disks
– Uninterruptible Power Supplies
– Cluster Failover  

• Disaster Tolerance: masks site errors
(prevent site errors from causing service failures)

– Protects against fire, flood, sabotage,..
– Redundant system and service at remote site.
– Use design diversity   

From Jim Gray’s “Talk at UC Berkeley on Fault Tolerance " 11/9/00

Case Studies - Tandem Trends
Reported MTTF by Component

0
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1985 1987 1989

software

hardware

maintenance

operations

environment

total

Mean Time to System Failure (years) 
by Cause

1985 1987 1990
SOFTWARE 2 53 33 Years
HARDWARE 29 91 310 Years
MAINTENANCE 45 162 409 Years
OPERATIONS 99 171 136 Years
ENVIRONMENT 142 214 346 Years
SYSTEM 8 20 21 Years
Problem:  Systematic Under-reporting

From Jim Gray’s “Talk at UC Berkeley on Fault Tolerance " 11/9/00
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  Cause of System Crashes       

20%
10% 5%

50%

18%

5%

15%

53%

69%

15% 18% 21%

0%

20%

40%

60%

80%

100%

1985 1993 2001

Other: app, power,  
network failure
System management: 
actions + N/problem
Operating System
failure
Hardware failure

(est.)

• VAX crashes ‘85, ‘93 [Murp95]; extrap. to ‘01
• Sys. Man.: N crashes/problem, SysAdmin action

– Actions: set params bad, bad config, bad app install

• HW/OS 70% in ‘85 to 28% in ‘93. In ‘01, 10%?

• Rule of Thumb: Maintenance 10X HW
– so over 5 year product life, ~ 95% of cost is maintenance

Is Maintenance the Key? HW Failures in Real Systems: Tertiary Disks

Component Total in System Total Failed % Failed
SCSI Controller 44 1 2.3%
SCSI Cable 39 1 2.6%
SCSI Disk 368 7 1.9%
IDE Disk 24 6 25.0%
Disk Enclosure -Backplane 46 13 28.3%
Disk Enclosure - Power Supply 92 3 3.3%
Ethernet Controller 20 1 5.0%
Ethernet Switch 2 1 50.0%
Ethernet Cable 42 1 2.3%
CPU/Motherboard 20 0 0%

A cluster of 20 PCs in seven 7-foot high, 19-inch wide 
racks with 368 8.4 GB, 7200 RPM, 3.5-inch IBM disks. 
The PCs are P6-200MHz with 96 MB of DRAM each. 
They run FreeBSD 3.0 and the hosts are connected via 
switched 100 Mbit/second Ethernet

Does Hardware Fail Fast? 
4 of 384 Disks that failed in Tertiary Disk

Messages in system log for failed disk No. log 
msgs 

Duration 
(hours) 

Hardware Failure (Peripheral device write fault 
[for] Field Replaceable Unit) 

1763 186

Not Ready (Diagnostic failure: ASCQ = Component 
ID [of] Field Replaceable Unit) 

1460 90

Recovered Error (Failure Prediction Threshold 
Exceeded [for] Field Replaceable Unit) 

1313 5

Recovered Error (Failure Prediction Threshold 
Exceeded [for] Field Replaceable Unit) 

431 17

 
 

High Availability System Classes
Goal: Build Class 6 Systems

Availability

90.%
99.%
99.9%
99.99%
99.999%
99.9999%
99.99999%

System Type
Unmanaged
Managed
Well Managed
Fault Tolerant
High-Availability
Very-High-Availability
Ultra-Availability

Unavailable
(min/year)

50,000
5,000

500
50

5
.5

.05

Availability
Class

1
2
3
4
5
6
7

UnAvailability =  MTTR/MTBF
can cut it in ½ by cutting MTTR or MTBF

From Jim Gray’s “Talk at UC Berkeley on Fault Tolerance " 11/9/00

How Realistic is "5 Nines"?

• HP claims HP-9000 server HW and HP-UX OS can 
deliver 99.999% availability guarantee “in certain 
pre-defined, pre-tested customer environments” 

– Application faults?
– Operator faults?
– Environmental faults?

• Collocation sites (lots of computers in 1 building on 
Internet) have

– 1 network outage per year (~1 day)
– 1 power failure per year (~1 day)

• Microsoft Network unavailable recently for a day due 
to problem in Domain Name Server: if only outage 
per year, 99.7% or 2 Nines

Outline

• Magnetic Disks
• RAID
• Advanced Dependability/Reliability/Availability
• I/O Benchmarks, Performance and Dependability
• Intro to Queuing Theory
• The End
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I/O Performance

100%

Response
Time (ms)

Throughput 
(% total BW)

0

100

200

300

0%

Response time = Queue + Device Service time

Proc
Queue

IOC Device

Metrics:
Response Time
vs. Throughput

I/O Benchmarks

• For better or worse, benchmarks shape a field
– Processor benchmarks classically aimed at response time for fixed 

sized problem
– I/O benchmarks typically measure throughput, possibly with upper

limit on response times (or 90% of response times)

• Transaction Processing (TP)  (or On-line TP=OLTP)
– If bank computer fails when customer withdraw money, TP system 

guarantees account debited if customer gets $ & account 
unchanged if  no $

– Airline reservation systems & banks use TP

• Atomic transactions makes this work
• Classic metric is Transactions Per Second (TPS) 

I/O Benchmarks: Transaction Processing

• Early 1980s great interest in OLTP
– Expecting demand for high TPS (e.g., ATM machines, credit cards)
– Tandem’s success implied medium range OLTP expands
– Each vendor picked own conditions for TPS claims, report only CPU 

times with widely different I/O
– Conflicting claims led to disbelief of all benchmarks ⇒ chaos

• 1984 Jim Gray (Tandem) distributed paper to Tandem 
+ 19 in other companies propose standard benchmark

• Published “A measure of transaction processing 
power,” Datamation, 1985 by Anonymous et. al

– To indicate that this was effort of large group
– To avoid delays of legal department of each author’s firm
– Still get mail at Tandem to author “Anonymous”

• Led to Transaction Processing Council in 1988
– www.tpc.org

I/O Benchmarks: TP1 by Anon et. al

• DebitCredit Scalability: size of account, branch, teller, 
history function of throughput

TPS Number of ATMs Account-file size
10 1,000 0.1 GB

100 10,000 1.0 GB
1,000 100,000 10.0 GB

10,000 1,000,000 100.0 GB
– Each input TPS =>100,000 account records, 10 branches, 100 ATMs
– Accounts must grow since a person is not likely to use the bank more 
frequently just because the bank has a faster computer! 

• Response time: 95% transactions take ≤ 1 second
• Report price (initial purchase price + 5 year 

maintenance = cost of ownership)
• Hire auditor to certify results

Unusual Characteristics of TPC

• Price is included in the benchmarks
– cost of HW, SW, and 5-year maintenance agreements 

included ⇒ price-performance as well as performance

• The data set generally must scale in size as 
the throughput increases

– trying to model real systems, demand on system and size 
of the data stored in it increase together

• The benchmark results are audited
– Must be approved by certified TPC auditor, who enforces 

TPC rules ⇒ only fair results are submitted

• Throughput is the performance metric but 
response times are limited

– eg, TPC-C: 90% transaction response times < 5 seconds

• An independent organization maintains the 
benchmarks

– COO ballots on changes, meetings, to settle disputes...

TPC Benchmark History/Status

Benchmark Data Size (GB) Performance 
Metric 

1st Results 

A: Debit Credit (retired) 0.1 to 10 transactions/s Jul-90 
B: Batch Debit Credit 
(retired) 

0.1 to 10 transactions/s  Jul-91 

C: Complex Query 
OLTP 

100 to 3000 
(min. 07 * tpm)

new order 
trans/min (tpm) 

Sep-92 

D: Decision Support 
(retired) 

100, 300, 1000 queries/hour Dec-95 

H: Ad hoc decision 
support 

100, 300, 1000 queries/hour Oct-99 

R: Business reporting 
decision support (retired) 

1000 queries/hour Aug-99 

W: Transactional web  ~ 50, 500 web inter-
actions/sec. 

Jul-00 

App: app. server & web 
services  

 Web Service 
Interactions/sec 

(SIPS) 

Jun-05 
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I/O Benchmarks via SPEC

• SFS 3.0 Attempt by NFS companies to agree on 
standard benchmark

– Run on multiple clients & networks (to prevent bottlenecks)
– Same caching policy in all clients
– Reads: 85% full block & 15% partial blocks
– Writes: 50% full block & 50% partial blocks
– Average response time: 40 ms
– Scaling: for every 100 NFS ops/sec, increase capacity 1GB

• Results: plot of server load (throughput) vs. response 
time & number of users

– Assumes: 1 user => 10 NFS ops/sec
– 3.0 for NFS 3.0

• Added SPECMail (mailserver), SPECWeb (webserver) 
benchmarks

2005 Example SPEC SFS Result: 
NetApp FAS3050c NFS servers

• 2.8 GHz Pentium Xeon microprocessors, 2 GB of DRAM 
per processor, 1GB of Non-volatile memory per system

• 4 FDDI networks; 32 NFS Daemons, 24 GB file size
• 168 fibre channel disks: 72 GB, 15000 RPM, 2 or 4 FC 

controllers 

0
1
2
3
4
5
6
7
8

0 10000 20000 30000 40000 50000 60000

Operations/second

R
es

po
ns

e 
tim

e 
(m

s)

34,089 47,927

4 processors
2 processors

Availability benchmark methodology

• Goal: quantify variation in QoS metrics as events 
occur that affect system availability

• Leverage existing performance benchmarks
– to generate fair workloads
– to measure & trace quality of service metrics

• Use fault injection to compromise system
– hardware faults (disk, memory, network, power)
– software faults (corrupt input, driver error returns)
– maintenance events (repairs, SW/HW upgrades)

• Examine single-fault and multi-fault workloads
– the availability analogues of performance micro- and macro-

benchmarks
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0 10 20 30 40 50 60 70 80 90 100 110

80

100

120

140

160

0

1

2

Hits/sec
# failures tolerated

0 10 20 30 40 50 60 70 80 90 100 110

H
its

 p
er

 s
ec

on
d

190

195

200

205

210

215

220

#f
ai

lu
re

s 
to

le
ra

te
d

0

1

2

Reconstruction

Reconstruction

Example single-fault result

Compares Linux and Solaris reconstruction
– Linux: minimal performance impact but longer window of vulnerability 

to second fault
– Solaris: large perf. impact but restores redundancy fast

Linux

Solaris

Reconstruction policy (2)

• Linux: favors performance over data availability
– automatically-initiated reconstruction, idle bandwidth
– virtually no performance impact on application
– very long window of vulnerability (>1hr for 3GB RAID)

• Solaris: favors data availability over app. perf.
– automatically-initiated reconstruction at high BW
– as much as 34% drop in application performance
– short window of vulnerability (10 minutes for 3GB)

• Windows: favors neither!
– manually-initiated reconstruction at moderate BW
– as much as 18% app. performance drop
– somewhat short window of vulnerability (23 min/3GB)

Introduction to Queuing Theory

• More interested in long term, steady state than in 
startup => Arrivals = Departures

• Little’s Law: 
Mean number tasks in system =                       

arrival rate x mean response time
– Observed by many, Little was first to prove

• Applies to any system in equilibrium, as long as 
black box not creating or destroying tasks

Arrivals Departures
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Deriving Little’s Law

• Timeobserve = elapsed time that observe a system
• Numbertask = number of (overlapping) tasks during Timeobserve

• Timeaccumulated = sum of elapsed times for each task 

Then
• Mean number tasks in system = Timeaccumulated / Timeobserve

• Mean response time = Timeaccumulated / Numbertask

• Arrival Rate = Numbertask / Timeobserve

Factoring RHS of 1st equation
• Timeaccumulated / Timeobserve = Timeaccumulated / Numbertask x

Numbertask / Timeobserve 

Then get Little’s Law:
• Mean number tasks in system = Arrival Rate x Mean response time

A Little Queuing Theory: Notation

• Notation:
Timeserver average time to service a task 
Average service rate = 1 / Timeserver (traditionally µ) 
Timequeue  average time/task in queue 
Timesystem average time/task in system  

= Timequeue + Timeserver 
Arrival rate avg no. of arriving tasks/sec (traditionally λ) 
Lengthserver average number of tasks in service
Lengthqueue average length of queue 
Lengthsystem average number of tasks in service

= Lengthqueue + Lengthserver

• Little’s Law: Lengthserver = Arrival rate x Timeserver
(Mean number tasks = arrival rate x mean service time)

Proc IOC Device

Queue server
System

Server Utilization

• For a single server, service rate = 1 / Timeserver

• Server utilization must be between 0 and 1, since 
system is in equilibrium (arrivals = departures); 
often called traffic intensity, traditionally ρ)

• Server utilization 
= mean number tasks in service 
= Arrival rate x Timeserver

• What is disk utilization if get 50 I/O requests per 
second for disk and average disk service time is 
10 ms (0.01 sec)?

• Server utilization = 50/sec x 0.01 sec = 0.5
• Or server is busy on average 50% of time

Time in Queue vs. Length of Queue

• We assume First In First Out (FIFO) queue
• Relationship of time in queue (Timequeue) to mean 

number of tasks in queue (Lengthqueue) ?
• Timequeue = Lengthqueue x Timeserver 

+ “Mean time to complete service of 
task when new task arrives if 
server is busy”

• New task can arrive at any instant; how predict 
last part?

• To predict performance, need to know sometime 
about distribution of events

Distribution of Random Variables

• A variable is random if it takes one of a specified 
set of values with a specified probability

– Cannot know exactly next value, but may know probability of all 
possible values

• I/O Requests can be modeled by a random variable 
because OS normally switching between several 
processes generating independent I/O requests

– Also given probabilistic nature of disks in seek and rotational delays

• Can characterize distribution of values of a random 
variable with discrete values using a histogram

– Divides range between the min & max values into buckets
– Histograms then plot the number in each bucket as columns
– Works for discrete values e.g., number of I/O requests?

• What about if not discrete? Very fine buckets

Characterizing distribution of 
a random variable

Need mean time and a measure of variance
For mean, use weighted arithmetic mean (WAM):
• fi = frequency of task i
• Ti = time for tasks I
Weighted arithmetic mean = f1×T1 + f2×T2 + . . . +fn×Tn

For variance, instead of standard deviation, use Variance 
(square of standard deviation) for WAM:

Variance = (f1×T12 + f2×T22 + . . . +fn×Tn2) – WAM2

– If time is miliseconds, Variance units are square milliseconds!

Got a unitless measure of variance?
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Squared Coefficient of Variance (C2)

• C2 = Variance / WAM2 

⇒ C = sqrt(Variance)/WAM = StDev/WAM
– Unitless measure

• Trying to characterize random events, but need 
distribution of random events with tractable math

• Most popular such distribution is exponential 
distribution, where C = 1

• Note using constant to characterize variability about 
the mean

– Invariance of C over time ⇒ history of events has no impact on 
probability of an event occurring now 

– Called memoryless, an important assumption to predict behavior 
– (Suppose not; then have to worry about the exact arrival times of 

requests relative to each other ⇒ make math not tractable!)

Poisson Distribution

• Most widely used exponential distribution is 
Poisson

• Described by probability mass function:
Probability (k) = e-a x ak / k! 

– where a = Rate of events x Elapsed time

• If interarrival times exponentially distributed 
& use arrival rate from above for rate of 
events, number of arrivals in time interval t
is a Poisson process

Time in Queue

• Time new task must wait for server to 
complete a task assuming server busy

– Assuming it’s a Poisson process

• Average residual service time 
= ½ x Arithmetic mean x (1 + C2)

– When distribution is not random & all values = 
average ⇒ standard deviation is 0  ⇒ C is 0 
⇒ average residual service time 

= half average service time
– When distribution is random & Poisson ⇒ C is 1 
⇒ average residual service time 

= weighted arithmetic mean

Time in Queue

• All tasks in queue (Lengthqueue) ahead of new task 
must be completed before task can be serviced 

– Each task takes on average Timeserver

– Task at server takes average residual service time to complete 

• Chance server is busy is server utilization
⇒ expected time for service is Server utilization ×
Average residual service time

• Timequeue = Lengthqueue x Timeserver 
+ Server utilization x Average residual service time

• Substituting definitions for Lengthqueue, Average 
residual service time, & rearranging:
Timequeue = Timeserver 

x Server utilization/(1-Server utilization) 

M/M/1 Queuing Model

• System is in equilibrium
• Times between 2 successive requests arriving, 

“interarrival times”, are exponentially distributed
• Number of sources of requests is unlimited 

“infinite population model”
• Server can start next job immediately
• Single queue, no limit to length of queue, and FIFO 

discipline, so all tasks in line must be completed
• There is one server
• Called M/M/1 (book also derives M/M/m)

1. Exponentially random request arrival (C2 = 1)
2. Exponentially random service time (C2 = 1)
3. 1 server
– M standing for Markov, mathematician who defined and 

analyzed the memoryless processes

Example

40 disk I/Os / sec, requests are exponentially 
distributed, and average service time is 20 ms

⇒ Arrival rate/sec = 40, Timeserver = 0.02 sec
1. On average, how utilized is the disk?

Server utilization = Arrival rate × Timeserver
= 40 x 0.02 = 0.8 = 80%

2. What is the average time spent in the queue?
Timequeue = Timeserver 

x Server utilization/(1-Server utilization) 
= 20 ms x 0.8/(1-0.8) = 20 x 4 = 80 ms

3. What is the average response time for a disk request, 
including the queuing time and disk service time?
Timesystem=Timequeue + Timeserver = 80+20 ms = 100 ms
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How much better with 2X faster disk?

Average service time is 10 ms
⇒ Arrival rate/sec = 40, Timeserver = 0.01 sec
1. On average, how utilized is the disk?

Server utilization = Arrival rate × Timeserver
= 40 x 0.01 = 0.4 = 40%

2. What is the average time spent in the queue?
Timequeue = Timeserver 

x Server utilization/(1-Server utilization) 
= 10 ms x 0.4/(1-0.4) = 10 x 2/3 = 6.7 ms

3. What is the average response time for a disk request, 
including the queuing time and disk service time?
Timesystem=Timequeue + Timeserver=6.7+10 ms = 16.7 ms
6X faster response time with 2X faster disk!

Value of Queuing Theory in practice

• Learn quickly do not try to utilize resource 100% 
but how far should back off?

• Allows designers to decide impact of faster 
hardware on utilization and hence on response 
time

• Works surprisingly well

Cross cutting Issues: 
Buses ⇒ point-to-point links and switches

?2503 GHz0.5 m2bPCI Express
?53333 / 66 MHz0.5 m32/64PCI

16,256375--10 m1bSerial Attach SCSI
1532080 MHz (DDR)12 m16b(Parallel) SCSI
?3003 GHz2 m2bSerial ATA
2133133 MHz0.5 m8b(Parallel) ATA

MaxMB/sClock ratelengthwidthStandard

• No. bits and BW is per direction ⇒ 2X for both 
directions (not shown). 

• Since use fewer wires, commonly increase BW  via 
versions with 2X-12X the number of wires and BW

Storage Example: Internet Archive

• Goal of making a historical record of the Internet 
– Internet Archive began in 1996
– Wayback Machine interface perform time travel to see what 

the website at a URL looked like in the past

• It contains over a petabyte (1015 bytes), and is 
growing by 20 terabytes (1012 bytes) of new data 
per month

• In addition to storing the historical record, the 
same hardware is used to crawl the Web every 
few months to get snapshots of the Internet.

Internet Archive Cluster

• 1U storage node PetaBox GB2000 from 
Capricorn Technologies 

• Contains 4 500 GB Parallel ATA (PATA) 
disk drives, 512 MB of DDR266 DRAM, 
one 10/100/1000 Ethernet interface, and a 
1 GHz C3 Processor from VIA (80x86). 

• Node dissipates ≈ 80 watts 
• 40 GB2000s in a standard VME rack, 
⇒ 80 TB of raw storage capacity 

• 40 nodes are connected with a 48-port 
10/100 or 10/100/1000 Ethernet switch 

• Rack dissipates about 3 KW 
• 1 PetaByte = 12 racks

Estimated Cost

• Via processor, 512 MB of DDR266 DRAM, ATA 
disk controller, power supply, fans, and 
enclosure = $500

• 7200 RPM Parallel ATA drives holds 500 GB = 
$375. 

• 48-port 10/100/1000 Ethernet switch and all 
cables for a rack = $3000.

• Cost $84,500 for a 80-TB rack. 
• 160 Disks are ≈ 60% of the cost

• Other costs: power, space, ……
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Estimated Performance

• 7200 RPM Parallel ATA drives holds 500 GB, has an 
average time seek of 8.5 ms, transfers at 50 MB/second 
from the disk. The PATA link speed is 133 MB/second.

– performance of the VIA processor is 1000 MIPS.
– operating system uses 50,000 CPU instructions for a disk I/O.
– network protocol stacks uses 100,000 CPU instructions to transmit a 

data block between the cluster and the external world
• ATA controller overhead is  0.1 ms to perform a disk I/O.
• Average I/O size is 16 KB for accesses to the historical 

record via the Wayback interface, and 50 KB when 
collecting a new snapshot

• Disks are limit: ≈ 75 I/Os/s per disk, 300/s per node, 12000/s 
per rack, or about 200 to 600 Mbytes/sec Bandwidth per 
rack

• Switch needs to support 1.6 to 3.8 Gbits/second over 40 
Gbit/sec links

Estimated Reliability

• CPU/memory/enclosure MTTF is 1,000,000 hours 
(x 40)

• PATA Disk MTTF is 125,000 hours (x 160)
• PATA controller MTTF is 500,000 hours (x 40)
• Ethernet Switch MTTF is 500,000 hours (x 1)
• Power supply MTTF is 200,000 hours (x 40)
• Fan MTTF is 200,000 hours (x 40)
• PATA cable MTTF is 1,000,000 hours (x 40)
• MTTF for the system is 531 hours (≈ 3 weeks)
• 70% of time failures are disks
• 20% of time failures are fans or power supplies

Summary (1/2)

• Disks: Arial Density now 30%/yr vs. 100%/yr in 2000s
• RAID Techniques: Goal was performance, popularity 

due to reliability of storage
• TPC: price performance as normalizing configuration 

feature
– Auditing to ensure no foul play
– Throughput with restricted response time is normal measure

• Fault ⇒ Latent errors in system ⇒ Failure in service
• Components often fail slowly 
• Real systems: problems in maintenance, operation as well 

as hardware, software

Summary (2/2)

• Little’s Law: Lengthsystem = rate x Timesystem
(Mean number customers = arrival rate x mean service time)

• Appreciation for relationship of latency and utilization:
– Timesystem= Timeserver  +Timequeue

– Timequeue = Timeserver 
x Server utilization/(1-Server utilization)

Proc IOC Device

Queue server
System

The End

• The last lecture
– chapter 6: Storage Systems

• Exam
– Mon Jan 14th 2008, 14-17h
– chap 1-6, app A, C & F
– remark: sample exams on website based on previous edition of book

• Assignment
– deadline 2b: Dec 3rd

– deadline 3: Dec 24th (intro by Eyal on Wed Dec 5th, 13.45h)


