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A Short Recap on Data Cubes
Data Cube: A Lattice of Cuboids

time,item,location

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D(base) cuboid
time, item, location, supplier

all

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

time,item

Sales Data Cube:

9/29/2009 Data Mining: Concepts and Techniques 3

Multidimensional Data

Sales volume as a function of product, month, 
and region

Pr
od

uc
t

Reg
ion

Month

Dimensions: Product, Location, Time
Hierarchical summarization paths

Industry   Region         Year

Category   Country  Quarter

Product      City     Month    Week

Office         Day

summarize
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Example of Star Schema

time_key
day
day_of_the_week
month
quarter
year

time

location_key
street
city
state_or_province
country

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales
Measures

item_key
item_name
brand
type
supplier_type

item

branch_key
branch_name
branch_type

branch
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A Sample Data Cube

Total annual sales
of  TV in U.S.A.Date

Pro
du

ct

C
ou

nt
rysum

sumTV

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr
U.S.A

Canada

Mexico

sum

Total sales of TV’s in 1st quarter in USA

1-D Cuboid

2-D Cuboid

3-D Cuboid

0-D Cuboid

Total sales in 
USA in 1Qtr
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dice for
(location = “Toronto” or “Vancouver”)
and (time = “Q1” or “Q2”) and
(item = “home entertainment” or “computer”)

roll-up
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slice
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Typical OLAP Operations

Dice

Roll-up

Drill-downSlice

Pivot
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Cuboids Corresponding to the Cube

all

product date country

product,date product,country date, country

product, date, country

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D(base) cuboid
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Data Cubes: Ancestor – Descendent relation

all

product date country

product,date product,country date, country

product, date, country

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D(base) cuboid

(TV,January,US,45)

(TV,*,US,300)

(*,*,US,1200)

(*,*,*,11540)

Parent/Ancestor

Child/Descendant

Ancestor

Ancestor

No Parent/Ancestor –
Child/Descendant relation!
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Chapter 4: Data Cube Computation 
and Data Generalization

Efficient Computation of Data Cubes

Exploration and Discovery in Multidimensional 

Databases

Attribute-Oriented Induction ─ An Alternative 

Data Generalization Method
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Efficient Computation of Data Cubes

Preliminary cube computation tricks (Agarwal et al.’96)

Computing full/iceberg cubes: 3 methodologies 

Top-Down: Multi-Way array aggregation (Zhao, Deshpande & 
Naughton, SIGMOD’97) 

Bottom-Up: 

Bottom-up computation: BUC (Beyer & Ramarkrishnan, 
SIGMOD’99)

H-cubing technique (Han, Pei, Dong & Wang: SIGMOD’01)

Integrating Top-Down and Bottom-Up: 

Star-cubing algorithm (Xin, Han, Li & Wah: VLDB’03)

High-dimensional OLAP: A Minimal Cubing Approach (Li, et al. VLDB’04)

Computing alternative kinds of cubes: 

Partial cube, closed cube, approximate cube, etc.
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Iceberg Cube

Computing only the cuboid cells whose 
count or other aggregates satisfying the 
condition like

HAVING COUNT(*) >= minsup

Motivation
Only a small portion of cube cells may be “above the 
water’’ in a sparse cube
Only calculate “interesting” cells—data above certain 
threshold
Avoid explosive growth of the cube

Suppose 100 dimensions, only 1 base cell.  How many 
aggregate cells if count >= 1?  What about count >= 2?
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Iceberg Cube

Computing only the cuboid cells whose 
count or other aggregates satisfying the 
condition like

HAVING COUNT(*) >= minsup

compute cube sales_iceberg as
select month, city, customer_group, count(*)
from salesinfo
cube by month, city, customer_group
having count(*) >= minsup
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Closed Cubes

Database of 100 dimensions has 2 base cells:
{(a1,a2,a3 …, a100): 10, (a1,a2,b3, …, b100): 10}

⇒ 2101-6 not so interesting aggregate cells:
{(a1,a2,a3 …, *): 10, (a1,a2.*,a4 …, a100): 10, …, 

(a1,a2,a3, * …, *): 10}

The only 3 interesting aggregate cells would be:
{(a1,a2,a3 …, a100): 10, {(a1,a2,b3 …, b100): 10, 

(a1,a2,*, …, *): 20}
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Closed Cubes

A cell c, is a closed cell, if there exists no cell d
such that d is a specialization (descendant) of cell 
c (i.e., replacing a * in c with a non-* value), and d has 
the same measure value as c (i.e., d will have strictly 
smaller measure value than c).

A closed cube is a data cube consisting of only 
closed cells.

For example the previous three form a lattice of 
closed cells for a closed cube. 
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Closed Cubes

Closed cube lattice:

(a1,a2,*, …, *): 20

(a1,a2,a3, …, a100): 10 (a1,a2,b3, …, b100): 10
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Preliminary Tricks (Agarwal et al. VLDB’96)

Sorting, hashing, and grouping operations are applied to the dimension 
attributes in order to reorder and cluster related tuples

Aggregates may be computed from previously computed aggregates, 
rather than from the base fact table

Smallest-child: computing a cuboid from the smallest, previously 
computed cuboid

Cache-results: caching results of a cuboid from which other 
cuboids are computed to reduce disk I/Os

Amortize-scans: computing as many as possible cuboids at the 
same time to amortize disk reads

Share-sorts: sharing sorting costs cross multiple cuboids when a 
sort-based method is used

Share-partitions: sharing the partitioning cost across multiple 
cuboids when hash-based algorithms are used
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MultiMulti--Way Array AggregationWay Array Aggregation

Array-based “bottom-up” algorithm

Using multi-dimensional chunks

No direct tuple comparisons

Simultaneous aggregation on 
multiple dimensions

Intermediate aggregate values are 
re-used for computing ancestor 
cuboids

Cannot do Apriori pruning: No 
iceberg optimization

all

A B

AB

ABC

AC BC

C

9/29/2009 Data Mining: Concepts and Techniques 18

Multi-way Array Aggregation for Cube 
Computation (MOLAP)

Partition arrays into chunks (a small subcube which fits in memory). 

Compressed sparse array addressing: (chunk_id, offset)

Compute aggregates in “multiway” by visiting cube cells in the order 
which minimizes the # of times to visit each cell, and reduces 
memory access and storage cost.

What is the best 
traversing order 
to do multi-way 
aggregation?

A

B
29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1c 0

b3

b2

b1

b0
a2 a3

C

B

44
28 56

4024 5236
20

60
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Multi-way Array Aggregation for 
Cube Computation

A

B

29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0
a2 a3

C

44
28 56

40
24 52

36
20

60

B
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Multi-way Array Aggregation for 
Cube Computation

A

B

29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0
a2 a3

C

44
28 56

40
24 52

36
20

60

B
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Multi-Way Array Aggregation for 
Cube Computation (Cont.)

Method: the planes should be sorted and computed 
according to their size in ascending order

Idea: keep the smallest plane in the main memory, 
fetch and compute only one chunk at a time for the 
largest plane

Limitation of the method: computing well only for a small 
number of dimensions

If there are a large number of dimensions, “top-down”
computation and iceberg cube computation methods 
can be explored
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Bottom-Up Computation (BUC)

BUC (Beyer & Ramakrishnan, 
SIGMOD’99) 
Bottom-up cube computation 
(Note: top-down in our view!)

Divides dimensions into partitions 
and facilitates iceberg pruning

If a partition does not satisfy 
min_sup, its descendants can 
be pruned
If minsup = 1 ⇒ compute full 
CUBE!

No simultaneous aggregation

all

A B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB

1 all

2 A 10 B 14 C

7 AC 11 BC

4 ABC 6 ABD 8 ACD 12 BCD

9 AD 13 BD 15 CD

16 D

5 ABCD

3 AB
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BUC: Partitioning
Usually, entire data set can’t fit in main 
memory

Sort distinct values, partition into blocks that fit

Continue processing

Optimizations

Partitioning

External Sorting, Hashing, Counting Sort

Ordering dimensions to encourage pruning

Cardinality, Skew, Correlation

Collapsing duplicates

Can’t do holistic aggregates anymore!
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HH--Cubing: Using HCubing: Using H--Tree StructureTree Structure

Bottom-up computation

Exploring an H-tree 
structure

If the current 
computation of an H-tree 
cannot pass min_sup, do 
not proceed further 
(pruning)

No simultaneous 
aggregation

a1: 30 a2: 20 a3: 20 a4: 20

b1: 10 b2: 10 b3: 10

c1: 5 c2: 5

d2: 3d1: 2

root: 100

 all

 A  B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB
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H-tree: A Prefix Hyper-tree

………………

520540HDEduVanMar

25001500LaptopBusMonFeb

12801160CameraEduTorJan

1200800TVHhdTorJan

485500PrinterEduTorJan

PriceCostProdCust_grpCityMonth

root

edu hhd bus

Jan Mar Jan Feb

Tor Van Tor Mon

Q.I.Q.I. Q.I.

bins

Sum: 1765
Cnt: 2

Quant-Info

……
…Mon
…Van
…Tor
……
…Feb
…Jan
……
…Bus
…Hhd

Sum:2285 …Edu
Side-linkQuant-InfoAttr. Val.

Header
table
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H-Cubing: Computing Cells Involving Dimension City

root

Edu. Hhd. Bus.

Jan. Mar. Jan. Feb.

Tor. Van. Tor. Mon.

Q.I.Q.I. Q.I.

bins

Sum: 1765
Cnt: 2

Quant-Info

……
…Mon
…Van
……TorTor
……
…Feb
…Jan
……
…Bus
…Hhd

Sum:2285 …Edu
Side-linkQuant-InfoAttr. Val.

……
…Feb
…Jan
……
…Bus
…Hhd
…Edu

Side-linkQ.I.Attr. Val.

Header
Table
HTor

From (*, *, Tor) to (*, Jan, Tor)
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Computing Cells Involving Month But No City

root

Edu. Hhd. Bus.

Jan. Mar. Jan. Feb.

Tor. Van. Tor. Mont.

Q.I.Q.I. Q.I.

…Mar.

……
…Mont.
…Van.
…Tor.
……

…Feb.
…Jan.
……
…Bus.
…Hhd.

Sum:2285 …Edu.
Side-linkQuant-InfoAttr. Val.

1. Roll up quant-info
2. Compute cells involving 

month but no city

Q.I.

Top-k OK mark: if Q.I. in a child passes 
top-k avg threshold, so does its parents. 
No binning is needed!
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Computing Cells Involving Only Cust_grp

root

edu hhd bus

Jan Mar Jan Feb

Tor Van Tor Mon

Q.I.Q.I. Q.I.

…Mar

……
…Mon
…Van
…Tor
……

…Feb
…Jan
……
…Bus
…Hhd

Sum:2285 …Edu
Side-linkQuant-InfoAttr. Val.

Check header table directly

Q.I.
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StarStar--Cubing: An Integrating MethodCubing: An Integrating Method
Integrate the top-down and bottom-up methods

Explore shared dimensions
E.g., dimension A is the shared dimension of ACD and AD
ABD/AB means cuboid ABD has shared dimensions AB

Allows for shared computations
e.g., cuboid AB is computed simultaneously as ABD

Aggregate in a top-down manner but with the bottom-up sub-layer 
underneath which will allow Apriori pruning

Shared dimensions grow in bottom-up fashion
C/C

AC/AC BC/BC

ABC/ABC ABD/AB ACD/A BCD

AD/A BD/B CD

D

ABCD/all
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Iceberg Pruning in Shared DimensionsIceberg Pruning in Shared Dimensions

Anti-monotonic property of shared dimensions

If the measure is anti-monotonic, and if the 
aggregate value on a shared dimension does not 
satisfy the iceberg condition, then all the cells 
extended from this shared dimension cannot 
satisfy the condition either

Intuition: if we can compute the shared dimensions 
before the actual cuboid, we can use them to do 
Apriori pruning

Problem: how to prune while still aggregate 
simultaneously on multiple dimensions?
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Cell TreesCell Trees

Use a tree structure similar 

to H-tree to represent 

cuboids

Collapses common prefixes 

to save memory

Keep count at node

Traverse the tree to retrieve 

a particular tuple

a1: 30 a2: 20 a3: 20 a4: 20

b1: 10 b2: 10 b3: 10

c1: 5 c2: 5

d2: 3d1: 2

root: 100
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Star Attributes and Star NodesStar Attributes and Star Nodes

Intuition: If a single-dimensional  
aggregate on an attribute value p
does not satisfy the iceberg 
condition, it is useless to distinguish 
them during the iceberg 
computation

E.g., b2, b3, b4, c1, c2, c4, d1, d2, 
d3 

Solution: Replace such attributes by 
a *.  Such attributes are star 
attributes, and the corresponding 
nodes in the cell tree are star nodes

1d2 c2b2a1

1d3c4b1a1

1d4c3b4a2

1d4c3b3a2

1d1c1b1a1

CountDCBA
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Example: Star ReductionExample: Star Reduction

Suppose minsup = 2

Perform one-dimensional 
aggregation.  Replace attribute 
values whose count < 2 with *.  And 
collapse all *’s together

Resulting table has all such 
attributes replaced with the star-
attribute

With regards to the iceberg 
computation, this new table is a 
loseless compression of the original 
table

1* **a1

2d4c3*a2

2**b1a1

CountDCBA

1* **a1

1**b1a1

1d4c3*a2

1d4c3*a2

1**b1a1

CountDCBA
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Star TreeStar Tree

Given the new compressed 

table, it is possible to construct 

the corresponding cell tree—

called star tree

Keep a star table at the side for 

easy lookup of star attributes

The star tree is a loseless

compression of the original cell 

tree

a1:3

root:5

a2:2

b*:2

c3:2

d4:2

b*:1 b1:2

c*:1

d*:1

c*:2

d*:2

Star Table

...

b3        *

b2        *

b4        *

c1        *

c2        *

d1        *
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Star-Cubing Algorithm—DFS on Lattice Tree

all

A B/B C/C

AC/AC BC/BC

ABC/ABC ABD/AB ACD/A BCD

AD/A BD/B CD

D/D

ABCD

/A

AB/AB

BCD: 51

b*: 33 b1: 26

c*: 27c3: 211c*: 14

d*: 15 d4: 212 d*: 28

root: 5

a1: 3 a2: 2

b*: 2b1: 2b*: 1

d*: 1

c*: 1

d*: 2

c*: 2

 d4: 2

c3: 2
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MultiMulti--Way AggregationWay Aggregation

a1:3

b*:1 b1:2

c*:1

d*:1

c*:2

d*:2

root:5

a2:2

b*:2

c3:2

d4:2

1

2

3

4

5

d*:1 5

c*:1

d*:1

4

5

a1CD/a1:3 2 a1b*D/a1b*:1

d*:1

a1b*c*/a1b*c*:13 4

5

Base−Tree BCD−Tree ACD/A−Tree ABC/ABC−TreeABD/AB−Tree

b*:1

c*:1

1

3

4

BCD:5

ABC/ABCABD/ABACD/ABCD

ABCD
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Star-Cubing Algorithm—DFS on Star-Tree
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MultiMulti--Way StarWay Star--Tree AggregationTree Aggregation

Start depth-first search at the root of the base star tree

At each new node in the DFS, create corresponding star 

tree that are descendents of the current tree according to 

the integrated traversal ordering 

E.g., in the base tree, when DFS reaches a1, the 

ACD/A tree is created

When DFS reaches b*, the ABD/AD tree is created

The counts in the base tree are carried over to the new 

trees
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MultiMulti--Way Aggregation (2)Way Aggregation (2)

When DFS reaches a leaf node (e.g., d*), start 
backtracking

On every backtracking branch, the count in the 
corresponding trees are output, the tree is destroyed, 
and the node in the base tree is destroyed

Example
When traversing from d* back to c*, the 
a1b*c*/a1b*c* tree is output and destroyed

When traversing from c* back to b*, the 
a1b*D/a1b* tree is output and destroyed

When at b*, jump to b1 and repeat similar process
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The Curse of Dimensionality

None of the previous cubing method can handle high 
dimensionality!
A database of 600k tuples.  Each dimension has 
cardinality of 100 and zipf of 2.
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Motivation of High-D OLAP

Challenge to current cubing methods:
The “curse of dimensionality’’ problem
Iceberg cube and compressed cubes: only delay the 
inevitable explosion
Full materialization: still significant overhead in 
accessing results on disk

High-D OLAP is needed in applications
Science and engineering analysis
Bio-data analysis: thousands of genes
Statistical surveys: hundreds of variables
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Fast High-D OLAP with Minimal Cubing

Observation: OLAP occurs only on a small subset of 

dimensions at a time

Semi-Online Computational Model

1. Partition the set of dimensions into shell fragments

2. Compute data cubes for each shell fragment while 

retaining inverted indices or value-list indices

3. Given the pre-computed fragment cubes, 

dynamically compute cube cells of the high-

dimensional data cube online
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Properties of Proposed Method

Partitions the data vertically

Reduces high-dimensional cube into a set of lower 

dimensional cubes

Online re-construction of original high-dimensional space

Lossless reduction

Offers tradeoffs between the amount of pre-processing 

and the speed of online computation
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Example Computation

Let the cube aggregation function be count

Divide the 5 dimensions into 2 shell fragments: 
(A, B, C) and (D, E)

e3d1c1b1a25
e2d1c1b1a24
e2d1c1b2a13
e1d2c1b2a12
e1d1c1b1a11
EDCBAtid
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1-D Inverted Indices

Build traditional inverted index or RID list

15e3
23 4 e2
21 2e1
12d2
41 3 4 5d1
51 2 3 4 5c1
22 3b2
31 4 5b1
24 5a2
31 2 3a1
List SizeTID ListAttribute Value
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Shell Fragment Cubes

Generalize the 1-D inverted indices to multi-dimensional 
ones in the data cube sense

111 2 3    1 4 5a1 b1

04 5    2 3a2 b2
24 54 5    1 4 5a2 b1
22 31 2 3    2 3a1 b2

List SizeTID ListIntersectionCell

∩

∩

∩

∩ ⊗
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Shell Fragment Cubes (2)

Compute all cuboids for data cubes ABC and DE while 
retaining the inverted indices
For example, shell fragment cube ABC contains 7 
cuboids:

A, B, C
AB, AC, BC
ABC

This completes the offline computation stage
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Shell Fragment Cubes (3)

Given a database of T tuples, D dimensions, and F shell 

fragment size, the fragment cubes’ space requirement is:

For F < 5, the growth is sub-linear.

O T D
F

 
  

 
  (2

F −1)
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Shell Fragment Cubes (4)

Shell fragments do not have to be disjoint

Fragment groupings can be arbitrary to allow for 

maximum online performance

Known common combinations (e.g.,<city, state>) 

should be grouped together.

Shell fragment sizes can be adjusted for optimal 

balance between offline and online computation
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ID_Measure Table

If measures other than count are present, store in 
ID_measure table separate from the shell fragments

3025

4054

2083

1032

7051

sumcounttid
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The Frag-Shells Algorithm

1. Partition set of dimension (A1,…,An) into a set of k fragments 

(P1,…,Pk).

2. Scan base table once and do the following

3. insert <tid, measure> into ID_measure table.

4. for each attribute value ai of each dimension Ai

5. build inverted index entry <ai, tidlist>

6. For each fragment partition Pi

7. build local fragment cube Si by intersecting tid-lists in bottom-

up fashion.
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Frag-Shells (2)

…FEDCBA

ABC
Cube

DEF
Cube

D Cuboid
EF Cuboid

DE Cuboid

……

{5, 10}d2 e1

{2, 4, 6, 7}d1 e2

{1, 3, 8, 9}d1 e1

Tuple-ID ListCell

Dimensions
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Online Query Computation

A query has the general form

Each ai has 3 possible values

1. Instantiated value

2. Aggregate * function

3. Inquire ? function

For example,                                returns a 2-D 

data cube.

 a1,a2,K,an :M

3 ? ? * 1: count
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Online Query Computation (2)

Given the fragment cubes, process a query as 

follows

1. Divide the query into fragment, same as the shell

2. Fetch the corresponding TID list for each 

fragment from the fragment cube

3. Intersect the TID lists from each fragment to 

construct instantiated base table

4. Compute the data cube using the base table with 

any cubing algorithm
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Online Query Computation (3)

…NMLKJIHGFEDCBA

Online
Cube

Instantiated 
Base Table

9/29/2009 Data Mining: Concepts and Techniques 56

Experiment: Size vs. Dimensionality (50 and 
100 cardinality)

(50-C): 106 tuples, 0 skew, 50 cardinality, fragment size 3.
(100-C): 106 tuples, 2 skew, 100 cardinality, fragment size 2.
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Experiment: Size vs. Shell-Fragment Size

(50-D): 106 tuples, 50 dimensions, 0 skew, 50 cardinality.
(100-D): 106 tuples, 100 dimensions, 2 skew, 25 cardinality.
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Experiment: Run-time vs. Shell-Fragment 
Size

106 tuples, 20 dimensions, 10 cardinality, skew 1, fragment 
size 3, 3 instantiated dimensions.
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Experiment:  I/O vs. Shell-Fragment Size

(10-D): 106 tuples, 10 dimensions, 10 cardinalty, 0 skew, 4 inst., 4 query.
(20-D): 106 tuples, 20 dimensions, 10 cardinalty, 1 skew, 3 inst., 4 query.
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Experiment: I/O vs. # of Instantiated 
Dimensions

106 tuples, 10 dimensions, 10 cardinalty, 0 skew, fragment 
size 1, 7 total relevant dimensions.
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Experiments on Real World Data

UCI Forest CoverType data set

54 dimensions, 581K tuples

Shell fragments of size 2 took 33 seconds and 325MB 
to compute

3-D subquery with 1 instantiate D: 85ms~1.4 sec.

Longitudinal Study of Vocational Rehab. Data

24 dimensions, 8818 tuples

Shell fragments of size 3 took 0.9 seconds and 60MB 
to compute

5-D query with 0 instantiated D: 227ms~2.6 sec.
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Comparisons to Related Work

[Harinarayan96] computes low-dimensional cuboids by 

further aggregation of high-dimensional cuboids.  

Opposite of our method’s direction.

Inverted indexing structures [Witten99] focus on single 

dimensional data or multi-dimensional data with no 

aggregation.

Tree-stripping [Berchtold00] uses similar vertical 

partitioning of database but no aggregation.
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Further Implementation Considerations

Incremental Update:

Append more TIDs to inverted list 

Add <tid: measure> to ID_measure table

Incremental adding new dimensions

Form new inverted list and add new fragments

Bitmap indexing

May further improve space usage and speed

Inverted index compression

Store as d-gaps

Explore more IR compression methods
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Chapter 4: Data Cube Computation 
and Data Generalization

Efficient Computation of Data Cubes

Exploration and Discovery in Multidimensional 

Databases

Attribute-Oriented Induction ─ An Alternative 

Data Generalization Method
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Computing Cubes with Non-Antimonotonic
Iceberg Conditions

Most cubing algorithms cannot compute cubes with non-
antimonotonic iceberg conditions efficiently

Example
CREATE CUBE Sales_Iceberg AS

SELECT month, city, cust_grp,

AVG(price), COUNT(*)

FROM Sales_Infor

CUBEBY month, city, cust_grp

HAVING AVG(price) >= 800 AND

COUNT(*) >= 50

Needs to study how to push constraint into the cubing 
process
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Non-Anti-Monotonic Iceberg Condition

Anti-monotonic: if a process fails a condition, continue 
processing will still fail
The cubing query with avg is non-anti-monotonic! 

(Mar, *, *, 600, 1800) fails the HAVING clause
(Mar, *, Bus, 1300, 360) passes the clause

CREATE CUBE Sales_Iceberg AS
SELECT month, city, cust_grp,

AVG(price), COUNT(*)
FROM Sales_Infor
CUBEBY month, city, cust_grp
HAVING AVG(price) >= 800 AND

COUNT(*) >= 50
………………

520540HDEduVanMar

25001500LaptopBusMonFeb

12801160CameraEduTorJan

1200800TVHldTorJan

485500PrinterEduTorJan

PriceCostProdCust_grpCityMonth
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From Average to Top-k Average

Let (*, Van, *) cover 1,000 records

Avg(price) is the average price of those 1000 sales

Avg50(price) is the average price of the top-50 sales 
(top-50 according to the sales price

Top-k average is anti-monotonic

The top 50 sales in Van. is with avg(price) <= 800 
the top 50 deals in Van. during Feb. must be with 
avg(price) <= 800

………………

PriceCostProdCust_grpCityMonth
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Binning for Top-k Average

Computing top-k avg is costly with large k
Binning idea

Avg50(c) >= 800
Large value collapsing: use a sum and a count to 
summarize records with measure >= 800

If count>=800, no need to check “small” records
Small value binning: a group of bins

One bin covers a range, e.g., 600~800, 400~600, 
etc.
Register a sum and a count for each bin
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Computing Approximate top-k average

………

3015200400~600

1510600600~800

2028000Over 800

CountSumRange

Top 50

Approximate avg50()=
(28000+10600+600*15)/50=952

Suppose for (*, Van, *), we have

………………

PriceCostProdCust_grpCityMonth

The cell may pass the HAVING clause
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Weakened Conditions Facilitate Pushing

Accumulate quant-info for cells to compute average 
iceberg cubes efficiently

Three pieces: sum, count, top-k bins

Use top-k bins to estimate/prune descendants

Use sum and count to consolidate current cell

avg()

Not anti-
monotonic

real avg50()

Anti-monotonic, but 
computationally 

costly

Approximate avg50()

Anti-monotonic, can 
be computed 

efficiently

strongestweakest
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Computing Iceberg Cubes with Other 
Complex Measures

Computing other complex measures

Key point: find a function which is weaker but ensures 

certain anti-monotonicity

Examples

Avg() ≤ v:  avgk(c) ≤ v (bottom-k avg)

Avg() ≥ v only (no count): max(price) ≥ v 

Sum(profit) (profit can be negative): 
p_sum(c) ≥ v if p_count(c) ≥ k; or otherwise, sumk(c) ≥ v 

Others: conjunctions of multiple conditions
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Compressed Cubes: Condensed or Closed Cubes

W. Wang, H. Lu, J. Feng, J. X. Yu, Condensed Cube: An Effective Approach to 

Reducing Data Cube Size,  ICDE’02.

Icerberg cube cannot solve all the problems

Suppose 100 dimensions, only 1 base cell with count = 10.  How many 

aggregate (non-base) cells if count >= 10? 

Condensed cube

Only need to store one cell (a1, a2, …, a100, 10), which represents all the 

corresponding aggregate cells

Adv.

Fully precomputed cube without compression

Efficient computation of the minimal condensed cube

Closed cube

Dong Xin, Jiawei Han, Zheng Shao, and Hongyan Liu, “C-Cubing: Efficient 

Computation of Closed Cubes by Aggregation-Based Checking”, ICDE'06. 
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Chapter 4: Data Cube Computation 
and Data Generalization

Efficient Computation of Data Cubes

Exploration and Discovery in Multidimensional 

Databases

Attribute-Oriented Induction ─ An Alternative 

Data Generalization Method
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Discovery-Driven Exploration of Data Cubes

Hypothesis-driven

exploration by user, huge search space

Discovery-driven (Sarawagi, et al.’98)

Effective navigation of large OLAP data cubes

pre-compute measures indicating exceptions, guide 
user in the data analysis, at all levels of aggregation

Exception: significantly different from the value 
anticipated, based on a statistical model

Visual cues such as background color are used to 
reflect the degree of exception of each cell
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Kinds of Exceptions and their Computation

Parameters 

SelfExp: surprise of cell relative to other cells at same 
level of aggregation

InExp: surprise beneath the cell

PathExp: surprise beneath cell for each drill-down 
path

Computation of exception indicator (modeling fitting and 
computing SelfExp, InExp, and PathExp values) can be 
overlapped with cube construction

Exception themselves can be stored, indexed and 
retrieved like precomputed aggregates
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Examples: Discovery-Driven Data Cubes



20

9/29/2009 Data Mining: Concepts and Techniques 77

Complex Aggregation at Multiple Granularities: 
Multi-Feature Cubes

Multi-feature cubes (Ross, et al. 1998): Compute complex queries 
involving multiple dependent aggregates at multiple granularities

Ex. Grouping by all subsets of {item, region, month}, find the 
maximum price in 1997 for each group, and the total sales among all 
maximum price tuples

select item, region, month, max(price), sum(R.sales)

from purchases

where year = 1997

cube by item, region, month: R

such that R.price = max(price)

Continuing the last example, among the max price tuples, find the  
min and max shelf live, and find the fraction of the total sales due to 
tuple that have min shelf life within the set of all max price tuples
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Cube-Gradient (Cubegrade)

Analysis of changes of sophisticated measures in multi-
dimensional spaces

Query: changes of average house price in Vancouver 
in ‘00 comparing against ’99

Answer: Apts in West went down 20%, houses in 
Metrotown went up 10%

Cubegrade problem by Imielinski et al.

Changes in dimensions changes in measures

Drill-down, roll-up, and mutation
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From Cubegrade to Multi-dimensional 
Constrained Gradients in Data Cubes

Significantly more expressive than association rules

Capture trends in user-specified measures

Serious challenges

Many trivial cells in a cube “significance constraint”
to prune trivial cells

Numerate pairs of cells “probe constraint” to select 
a subset of cells to examine

Only interesting changes wanted “gradient 
constraint” to capture significant changes
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MD Constrained Gradient Mining

Significance constraint Csig: (cnt≥100)
Probe constraint Cprb: (city=“Van”, cust_grp=“busi”, 
prod_grp=“*”)
Gradient constraint Cgrad(cg, cp): 
(avg_price(cg)/avg_price(cp)≥1.3)

225058600PCbusi**c4

23507900PCBusiTor*c3

18002800PCBusiVan*c2

2100300PCBusiVan00c1

Avg_priceCntPrd_grpCst_grpCityYrcid

MeasuresDimensions
Base cell

Aggregated cell

Siblings

Ancestor

Probe cell: satisfied Cprb (c4, c2) satisfies Cgrad!
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Efficient Computing Cube-gradients

Compute probe cells using Csig and Cprb

The set of probe cells P is often very small

Use probe P and constraints to find gradients

Pushing selection deeply

Set-oriented processing for probe cells

Iceberg growing from low to high dimensionalities

Dynamic pruning probe cells during growth

Incorporating efficient iceberg cubing method
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Chapter 4: Data Cube Computation 
and Data Generalization

Efficient Computation of Data Cubes

Exploration and Discovery in Multidimensional 

Databases

Attribute-Oriented Induction ─ An Alternative 

Data Generalization Method
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What is Concept Description?

Descriptive vs. predictive data mining
Descriptive mining: describes concepts or task-relevant 
data sets in concise, summarative, informative, 
discriminative forms
Predictive mining: Based on data and analysis, 
constructs models for the database, and predicts the 
trend and properties of unknown data

Concept description: 
Characterization: provides a concise and succinct 
summarization of the given collection of data
Comparison: provides descriptions comparing two or 
more collections of data
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Data Generalization and Summarization-based 
Characterization

Data generalization

A process which abstracts a large set of task-relevant 
data in a database from a low conceptual levels to 
higher ones.

Approaches:

Data cube approach(OLAP approach)

Attribute-oriented induction approach

1

2

3

4

5
Conceptual levels
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Concept Description vs. OLAP

Similarity:

Data generalization

Presentation of data summarization at multiple levels of abstraction.

Interactive drilling, pivoting, slicing and dicing.

Differences:

Can handle complex data types of the attributes and their 
aggregations

Automated desired level allocation.

Dimension relevance analysis and ranking when there are many 
relevant dimensions.

Sophisticated typing on dimensions and measures.

Analytical characterization: data dispersion analysis
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Attribute-Oriented Induction

Proposed in 1989 (KDD ‘89 workshop)

Not confined to categorical data nor particular measures

How it is done?

Collect the task-relevant data (initial relation) using a 
relational database query

Perform generalization by attribute removal or 
attribute generalization

Apply aggregation by merging identical, generalized 
tuples and accumulating their respective counts

Interactive presentation with users
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Basic Principles of Attribute-Oriented Induction

Data focusing: task-relevant data, including dimensions, 
and the result is the initial relation
Attribute-removal: remove attribute A if there is a large set 
of distinct values for A but (1) there is no generalization 
operator on A, or (2) A’s higher level concepts are 
expressed in terms of other attributes

Attribute-generalization: If there is a large set of distinct 
values for A, and there exists a set of generalization 
operators on A, then select an operator and generalize A
Attribute-threshold control: typical 2-8, specified/default

Generalized relation threshold control: control the final 
relation/rule size
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Attribute-Oriented Induction: Basic Algorithm 

InitialRel: Query processing of task-relevant data, deriving 
the initial relation.

PreGen: Based on the analysis of the number of distinct 
values in each attribute, determine generalization plan for 
each attribute: removal? or how high to generalize?

PrimeGen: Based on the PreGen plan, perform 
generalization to the right level to derive a “prime 
generalized relation”, accumulating the counts.

Presentation: User interaction: (1) adjust levels by drilling, 
(2) pivoting, (3) mapping into rules, cross tabs, 
visualization presentations.
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Example

DMQL: Describe general characteristics of graduate 
students in the Big-University database
use Big_University_DB
mine characteristics as “Science_Students”
in relevance to name, gender, major, birth_place, 

birth_date, residence, phone#, gpa
from student
where status in “graduate”

Corresponding SQL statement:
Select name, gender, major, birth_place, birth_date, 

residence, phone#, gpa
from student
where status in {“Msc”, “MBA”, “PhD” }
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Class Characterization: An Example

Name Gender Major Birth-Place Birth_date Residence Phone # GPA

Jim
Woodman

  M   CS Vancouver,BC,
Canada

  8-12-76 3511 Main St.,
Richmond

687-4598 3.67

Scott
Lachance

  M   CS Montreal, Que,
Canada

28-7-75 345 1st Ave.,
Richmond

253-9106 3.70

Laura Lee
…

  F
…

Physics
…

Seattle, WA, USA
…

25-8-70
…

125 Austin Ave.,
Burnaby
…

420-5232
…

3.83
…

Removed Retained Sci,Eng,
Bus

Country Age range City Removed Excl,
VG,..

Gender Major Birth_region Age_range Residence GPA Count
    M Science    Canada     20-25 Richmond Very-good     16
    F Science    Foreign     25-30 Burnaby Excellent     22
   …      …        …        …      …        …     …

        Birth_Region

Gender
Canada Foreign Total

              M     16       14    30
              F     10       22    32

           Total     26       36    62

Prime 
Generalized 
Relation

Initial 
Relation
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Presentation of Generalized Results

Generalized relation: 

Relations where some or all attributes are generalized, with counts 
or other aggregation values accumulated.

Cross tabulation:

Mapping results into cross tabulation form (similar to contingency 
tables). 

Visualization techniques:

Pie charts, bar charts, curves, cubes, and other visual forms.

Quantitative characteristic rules:

Mapping generalized result into characteristic rules with quantitative 
information associated with it, e.g.,

.%]47:["")(_%]53:["")(_
)()(

tforeignxregionbirthtCanadaxregionbirth
xmalexgrad

=∨=
⇒∧
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Mining Class Comparisons

Comparison: Comparing two or more classes

Method:

Partition the set of relevant data into the target class and the
contrasting class(es) 

Generalize both classes to the same high level concepts

Compare tuples with the same high level descriptions

Present for every tuple its description and two measures

support - distribution within single class

comparison - distribution between classes

Highlight the tuples with strong discriminant features 

Relevance Analysis:

Find attributes (features) which best distinguish different classes
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Quantitative Discriminant Rules

Cj = target class
qa = a generalized tuple covers some tuples of class

but can also cover some tuples of contrasting class
d-weight

range: [0, 1]

quantitative discriminant rule form

∑
=

∈

∈
=− m

i

ia

ja

)Ccount(q

)Ccount(qweightd

1

d_weight]:[dX)condition(ss(X)target_claX, ⇐∀
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Example: Quantitative Discriminant Rule

Quantitative discriminant rule

where 90/(90 + 210) = 30%

Status Birth_country Age_range Gpa Count

Graduate Canada 25-30 Good 90

Undergraduate Canada 25-30 Good 210

Count distribution between graduate and undergraduate students for a generalized tuple

%]30:["")("3025")(_"")(_
)(_,

dgoodXgpaXrangeageCanadaXcountrybirth
XstudentgraduateX

=∧−=∧=
⇐∀
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Class Description 

Quantitative characteristic rule

necessary
Quantitative discriminant rule

sufficient
Quantitative description rule

necessary and sufficient
]w:d,w:[t...]w:d,w:[t nn111 ′∨∨′

⇔∀
(X)condition(X)condition

ss(X)target_claX,
n

d_weight]:[dX)condition(ss(X)target_claX, ⇐∀

t_weight]:[tX)condition(ss(X)target_claX, ⇒∀
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Example: Quantitative Description Rule

Quantitative description rule for target class Europe

Location/item  TV   Computer   Both_items  

 Count t-wt d-wt Count t-wt d-wt Count t-wt d-wt 

Europe 80 25% 40% 240 75% 30% 320 100% 32% 

N_Am 120 17.65% 60% 560 82.35% 70% 680 100% 68% 

Both_ 
regions 

200 20% 100% 800 80% 100% 1000 100% 100% 
 

 

Crosstab showing associated t-weight, d-weight values and total number 
(in thousands) of TVs and computers sold at AllElectronics in 1998

30%]:d75%,:[t40%]:d25%,:[t )computer""(item(X))TV""(item(X)
Europe(X)X,

=∨=
⇔∀
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Summary

Efficient algorithms for computing data cubes
Multiway array aggregation
BUC
H-cubing
Star-cubing
High-D OLAP by minimal cubing

Further development of data cube technology
Discovery-drive cube
Multi-feature cubes
Cube-gradient analysis

Anther generalization approach: Attribute-Oriented Induction
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SQL Group By statement

From: http://www.w3schools.com/sql/sql_groupby.asp


