Spring 2008

Program correctness

Program verification and
operational semantics

Marcello Bonsangue

LEJdEH Inatlt ute of Advanced Cﬂmputer Science
Research & Educatio




System verification

m Model checking verification is
model based M,s E ¢

fully automatic

intended for hardware or software systems with
finitely many states

m control is the main issue

m N0 complex data

= mainly reactive
reaction-> computation -> reaction -> ...
not intended to terminated

6/9/2008

Leiden Institute of Advanced Computer Science

a%ﬁi@gﬂf Sllde 2




System verification

m Program verification:
Proof based I'E¢

m |t is impossible to check infinite states !
Semi-automatic

intended for software systems with possibly
infinite states
= mainly sequential

m transformational
input -> computation -> output
like methods of an object

6/9/2008
29’;‘@::14’: Slide 3 Leiden Institute of Advanced.Co_ﬁ_ﬁputer Science




Program verification

The verification framework:

Convert an informal specification S in an
‘equivalent’ formula ¢ of some logic

Write a program P realizing ¢ (or S)

Prove that P satisfies the formula ¢

6/9/2008
29’;‘@::14’: Slide 4 Leiden Institute of Advanced'Co_lf;i_iputer Science




A simple language

m Syntactic sets associated to the language:

N positive and negative integers n,...

B truth values true,false
Var program variables X,...
Aexp arithmetic expressions a,.

Bexp boolean expressions b,...

Com commands C

6/9/2008
=)

aaj‘@g?f Slide 5 Leiden Institute of Advanced (_;opiputer Science




Arithmetic expressions

m A:=n|x|(A+A) | (A-A) | (A*A)

where n e Nand x € Var
m Here * binds more tightly than - and +

m Examples:
2+3%4-5 is
-3 IS
- -5 IS
2+x+5 IS

(2+3)7(4-9)
(0-3)

(0 --5)
(2+x)+5

6/9/2008

Leiden Institute of Advanced Computer Science




Boolean expressions

mB:=true|false | -B | BAB |BVB | A <A

m Examples:
A, = A, is (A <A) A (A, <A,

m Boolean expression are built on top of arithmetic
expressions
m 3+5<9
m 4 =5 is a correct boolean expression !!!
m true < 10 is not a boolean expression

6/9/2008
29’;‘@::14’: Slide 7 Leiden Institute of Advanced.Cp_r__ﬁputer Science




Commands

m C:= skip |
X:=A|
C;C|
if B then C else Cfi|
while B do C od

m Example (Fact1)

y:=1;

z:=0;

while z # 0 do
z:=z+1
y =Yz

6/9/2008

15‘?@!‘; Slide 8 Leiden Institute of Advanced Go_ﬂ"ipu.ter Science




The behaviour

m \We need a formal model to understand
correctly the behavior of a program

m State s : Var > N

m An arithmetic expression a in a state ¢
evaluates to an integer n

<a, 6> —> N
=

configuration

6/9/2008
29’;‘@::14’: Slide 9 Leiden Institute of Advanced'(_ipﬁfnpu"ter Science




Evaluating arithmetic expressions

<N, G>.—) n
<X, 0> — o(X)
If n is the sum of n, and n,
<a1, ('5> —> Ny <a2, c> —> N,
<a; + a2, G>—>n

If n is the subtraction of n, from n,
<a1, G> — Ny <a2, c> —> N,
<a,;-a,, 6> —n

If n is the product of n, and n,

6/9/2008
Leiden Institute of Advanced Computer Science

\owd Slide 10




An Example Derivation

m \What is the n such that

<(3+4)-(x*2), 6> —> n ?

/€3y PenC - Spring 2006 6/9/2008
i;?;l‘”: Slide 11 Leiden Institute of Advancedrcoﬂipu.ter Scileince




Semantics of arithmetic expressions

m Two arithmetic expressions are equivalent if they
evaluate to the same value in all states

a, = a,
Iff
(Vn eN.Vo. <a;, 0> »>n < <a,, > —n)

m Examples:
<2+3,06> — 5 and <3+2, 6> — 5 thus (2+3) = (3+2)

2+x is not equivalent to 2+3 because there are states in
which x evaluates to an integer different from 3

6/9/2008
29’;‘@::14’: Slide 12 Leiden Institute of Advanced.Co_ﬁ_ﬁputer Science




Evaluating Boolean expressions

<true,c>—->T

<false,c> > F

<b,ADb,, 6> >t

where t =T if both t, = T and t, =T, otherwise t = F

6/9/2008
29’;‘@::14’: Slide 13 Leiden Institute of Advanced.Co_ﬁ_ﬁputer Science




Evaluating boolean expressions

. g e e e e ) - — -

wheret=Tift,=Tor t,=T, and t = F otherwise

If n, is less than n, then

e e — — i T —— gy (e —— — - — - -

<a;<a,, 6> —>1T

If n, is greater than or equal to n, then

6/9/2008

Leiden Institute of Advanced Computer Science




Semantics of Boolean expressions

m Two Boolean expressions are equivalent if they
evaluate to the same truth value in all states
b, = b,
iff
(Vo.<by,6> > T < <b,,6>—>T)

m We could improve the evaluation of Boolean
expressions using
a left-first sequential strategy
a parallel strategy

6/9/2008
29’;‘@::14’: Slide 15 Leiden Institute of Advanced.Cp_r__ﬁputer Science




The command behaviour

m A program may
terminate in a final state or
diverge and never yield a final state

m We denote by
<C, 6> >0

the execution of a command c¢ in an initial state
c and terminating in a final state ¢’

n fx=y

- Recall: o[n/x] (y) ={ oly) ifxzy

6/9/2008
29’;‘@::14’: Slide 16 Leiden Institute of Advanced'Co_lf;i_iputer Science




Executing commands |

<skip, 6> > ©

<a, 6> —>n
<X :=a, 6> — c[n/X]

<C,, 6> > o’ <C,,0 > >0

<C4; Cy, G> > G’

<b,c>—>T <Cc,0> >0
<if b then c, else ¢, fi, 6> > &’

<b,c>—>F <C,,6>—>0C
<if b then c, else ¢, fi, 6> > ¢

6/9/2008
29’;‘@::14’: Slide 17 Leiden Institute of Advanced'Co_lf;i_iputer Science




Example: MAX

m \What is the final state ¢’ of
<ifx<ythenz=yelsez.=xfi,c>—> 0o

foro(x)=2,c(y)=1and o(z) =0 7?

.63\ PenC - Spring 2006 6/9/2008
i;?;l‘”: Slide 18 Leiden Institute of Advanced'Co_lf;i_iputer Scilgice




Executing commands ||

<while bdocod, 6> > ¢’

6/9/2008
29’;‘@::14’: Slide 19 Leiden Institute of Advanced'Co_lf;i_iputer Science




Semantics of commands

m [wo commands are equivalent if when executed from
the same initial state they terminate in the same final
state

C17C
iff
(Vo,o'. <Cc,, 6> 506 & <C,, G> —50C)

m Examples
X =X =~ skip
while b do c of ~ if b then c¢; while b do ¢ od
else skip

6/9/2008
29’;‘@::14’: Slide 20 Leiden Institute of Advanced.Co_ﬁ_ﬁputer Science




Execution of Commands

m [he order of evaluation is important and explicit.
c, is evaluated before c, in c,; c,
C, Is not evaluated in if true then c, else ¢, fi
b is evaluated first in if b then c, else ¢, fi
c is not evaluated in “while false do ¢ od

m The execution rules suggest an interpreter but abstract
from a concrete one

m Execution is deterministic: only one rule can be applied
at time.

63N PenC - Spring 2006 6/9/2008

Hraen "
s%,gx’j Slide 21 Leiden Institute of Advanced (_;opiputer Sci¥nce




