Networking Lab: TCP/IP Packet Filtering

1 Introduction

Packet filtering is a technique that can be used for many tasks. It can be used
for techniques such as port forwarding, network address translation, packet in-
spection and packet rewriting. In this assignment, you will implement your
own packet filter running on Linux. Under Linux, a mechanism has been im-
plemented to enable packet inspection and rewriting in user space. The kernel
running on our system support this mechanism. For user space packet rewriting,
we will use the library libnetfilter_queue® Using this library, you will implement
a basic form of encryption, which is completely transparent to applications that
use TCP/IP. Eventually, you will have to connect to web server that is running
an implementation of this encryption algorithm.

First, a short overview of TCP/IP is given. Next, the tools you will need
in this assignment are discussed. The tools are: iptables and libnetfilter_queue.
Then the specification of the encryption scheme is given which you should im-
plement using the tools mentioned above.

2 TCP/IP

TCP (Transmission Control Protocol) is a connection oriented protocol that
is used for most communication on computer networks nowadays. TCP runs
on top of IP (Internet Protocol). IP is used in host-to-host communication in
packet-switched networks. It sends data packets called datagrams from one host
to another hosts, based on the target address specified. Note that the familiar
port numbers (such as 80 for HTTP and 25 for SMTP) are not part of the IP
protocol. Multiplexing is handled in the TCP layer. We show the layout of the
IP header here (from RFC 791):

Lhttp://www.netfilter.org/projects/libnetfilter_queue/index.html

0 1 2 3
01234567890123456789012345678901
tt—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t -ttt =ttt =ttt —t—t—+—+

|[Version| IHL |Type of Servicel Total Length
s S St e S s e S S Bt St S
| Identification |Flags| Fragment Offset |

B T s T e B s e T S B T ot e
| Time to Live | Protocol | Header Checksum

B s T T S e s Tt T T e T e et T S S
| Source Address

s e T s s T e ot e
| Destination Address

B T T B T e T T e e s s T ot TR I
| Options | Padding |
S R S N N S A S S SRR

Example Internet Datagram Header

For a description of all these field, please consult RFC 7912. Under Linux, the
header file /usr/include/linux/ip.h contains the definition of the structure iphdr,
which looks as follows:

struct iphdr {
#if defined(__LITTLE_ENDIAN_BITFIELD)
__u8 ihl:4,
version:4;
#elif defined (__BIG_ENDIAN_BITFIELD)

__u8 version:4,
ihl:4;
#else
#error "Please fix <asm/byteorder.h>"
#endif
__u8 tos;
__bel6 tot_len;
__bel6 id;
__bel6 frag_off;
__u8 ttl;
__u8 protocol;
__uleé check;
__be32 saddr;
__be32 daddr;

/*The options start here. */

};

Note that these structures are defined in such a way that they will be compatible
with both little endian and big endian architectures. Be aware of the fact that

2http://www.ietf.org/rfc/rfc07TI1.txt

all data in the IP header is big endian. GCC supports C bitfields. The notation
“__u8 ihl:4;” declares a 4-bit unsigned integer. While the order of definition
matters, no conversion needs to be done for values of 8 bit and smaller (thus,
endianness only matters at the byte level, not the bit level).

For larger fields (16 bit and greater), the network byte order must be con-
verted to the host byte order, if they are to be used in integer computations.
This conversion is architecture dependent and you should use the functions
ntohs, ntohl, htons and htonl whenever appropriate.

If you want to access fields of an IP header, you should not define your own
structure, but use the one provided by the header file mentioned above.

The data payload of an IP packet is located directly after the header. Its
size can be determined using the IP header. In our case the payload will be a
TCP packet. The layout of such a packet is as follows (RFC 793%):

0 1 2 3
01234567890123456789012345678901
e s e L s S T e st St I
| Source Port | Destination Port |
tot—t—t—t—t—t—t—t—t—t—t—t—t—t =ttt —t—t—t—t—t =ttt —t—t—t—t—t—t—+

| Sequence Number

tot—t—t—t—t =ttt bt —t—t—t—t— bttt —t—t—t—t =ttt —t—t—t—t—t—t—+
| Acknowledgment Number

t—t—t—t—t—t—t—t bttt ottt bttt bttt —t—t =ttt —t—t—t—+
| Data | [UIAIPIRISIF]

| Offset| Reserved |RICISIS|YII] Window

| | |GIKIHITININ|

e e L s St S e e
| Checksum | Urgent Pointer |
Fott—t—t—t—t—t—d bttt =ttt bt —t—t—t— =ttt —t—t—t—t—t—t—+
| Options | Padding |
tot—t—t—t—t—t—t—t—t—t—t—t—t—t— bttt —t—t—t—t =ttt —t—t—t—t—t—t—+
| data |
e e L e Tt S G st S

TCP Header Format

The corresponding structure is defined in /usr/include/linux/tcp.h:

Shttp://www.ietf.org/rfc/rfc0793.txt

struct tcphdr {
__uleé source;
_ulé dest;
_u32 seq;
__u32 ack_seq;
#if defined(__LITTLE_ENDIAN_BITFIELD)
ulé resl:4,
doff:4,
fin:1
syn:1
rst:1
psh:1,
1
1
1

ack:
urg:
ece:
cwr:1;
#elif defined(__BIG_ENDIAN_BITFIELD)
_ulé doff:4,
resl:4,
CWr:
ece:
urg:
ack:
psh:
rst:
syn:
fin:

e e

#else

#error "Adjust your <asm/byteorder.h> defines"
#endif

ulé window;

ulé check;

ul6é urg_ptr;

};

All fields are described in RFC 793. The field check is the checksum. Check-
sum recomputation is essential if you rewrite a TCP packet. While checksum
computation is described in RFC 793 this can be a bit tricky and therefore we
outline the checksum computation here. For checksum computation purposes,
the TCP packet is prepended with a pseudo header. While this pseudo header
does not really have to be constructed, you should view it as being right in front
of a TCP packet when computing the checksum.

o fmmm fomm o +
| Destination Address |
U U — fom o +
| zero | PTCL | TCP Length |
o o fmm—— fmm————— +

The source and destination address and the protocol can be obtained from the
IP packet. TCP length is the TCP header length plus the length of the data
payload. This quantity must be computed.

Using the pseudo header prepended to the TCP packet, the checksum is
computed as follows (See RFC 1072* for more details on byte order indepen-
dence):

long checksum(unsigned short *addr, int count)
{
/* Compute Internet Checksum for "count" bytes
* beginning at location "addr".
*/
long checksum;
register long sum = O;

while(count > 1) A
/* This is the inner loop */
sum += * (unsigned short) addr++;
count -= 2;

/* Add left-over byte, if any */
if(count > 0)
sum += * (unsigned char *) addr;

/* Fold 32-bit sum to 16 bits */
while (sum>>16)
sum = (sum & Oxffff) + (sum >> 16);

checksum = “sum;
return checksum;

}

3 Programming Using Sockets

In order to test your packet encryption implementation later on, you should
implement a simple TCP server that only echos data received. A client (you
can just use telnet) should connect to this server and send a test string, which

4http://tools.ietf.org/html/rfc1071

must in turn be received back from the server. In order to create a TCP server,
the following calls are needed in this order (use the man pages as a reference):

1. socket
2. bind
3. listen
4. accept
5. recv
6. send

7. close

4 Packet Filtering Using Iptables

We will use the following settings using iptables:

iptables -t mangle -A INPUT -j NFQUEUE --queue-num O
iptables -t mangle -A OUTPUT -j NFQUEUE --queue-num 1

Read the man page of iptables (man iptables) and understand what these com-
mands do. If these rules are in effect, you network will not be functioning
unless you handle the packets that are sent to user space. To flush all rules
from iptables, use:

iptables -F
iptables -t mangle -F

5 User Space Packet Filtering Using Libnetfil-
ter_queue

Libnetfilter_queue is a library for packet filtering in user space. Version 0.0.13
is installed on the machines you will be using. You can download the sources
yourself from www.netfilter.org. This includes the file nfgnl_test.c, which shows
how to handle packets with this library.

6 Packet Level Encryption

It is your task to implement a 32-bit XOR based payload encryption. All im-
plementations among the groups should be compatible with each other, i.e. you
should be able to communicate with other groups provided that the 32-bit key
is given. A reference machine is available to test your implementation. The
key of the reference implementation is 0x12345678. This key should be stored

BIG ENDIAN, as all network traffic is big endian. If the payload is not a mul-
tiple of 32 bits, then only part of the key is used for the last few bytes. Example:

DATA: AB CD EF 34 23 21 34 (7 bytes)
KEY : 12 34 56 78 12 34 56 (key repeated each 4 bytes)

7 Requirements

Implement the echo server. Your source code should be readable and contain
useful comments. No further documentation is required for the echo server.

For the TCP payload encryption program, you must write readable code.
You must implement the following functions:

e struct iphdr *get_ip_hdr(char *data)

e struct tcphdr *get_tcp_hdr(char *data)

e char *get_tcp_payload(char *data)

e __ul6 get_ip_tot_len(struct iphdr *ip)

e __ul6 get_tcp-optlen(struct tcphdr *hdr)
e __ul6 get_tcp-data_len(char *data)

e __ul6 get_tcp_source(struct tcphdr *hdr)
e __ul6 get_tcp-dest(struct tcphdr *hdr)

e void encrypt_payload(char *data)

All functions taking “char *data” get the full packet including IP header. En-
crypt payload should rewrite the TCP payload of the IP packet given by data.
Your implementation must be able to setup an encrypted connected to one of
our web servers.

