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Introduction 

!!How predictive is the model we learned? 

!!Error on the training data is not a good indicator 
of performance on future data 

!!Q: Why?   

!!A: Because new data will probably not be exactly the 
same as the training data! 

!!Overfitting – fitting the training data too precisely 
- usually leads to poor results on new data 

Evaluation issues 

!!Possible evaluation measures: 

!!Classification Accuracy  

!!Total cost/benefit – when different errors involve 
different costs 

!!Lift and ROC curves 

!!Error in numeric predictions 

!!How reliable are the predicted results ? 

Classifier error rate 

!!Natural performance measure for classification 

problems: error rate 

!!Success: instance’s class is predicted correctly 

!!Error: instance’s class is predicted incorrectly 

!!Error rate: proportion of errors made over the whole 
set of instances 

!!Training set error rate: is way too optimistic!   

!!you can find patterns even in random data 

Evaluation on “LARGE” data 

!!If many (thousands) of examples are available, 

including several hundred examples from each 
class, then a simple evaluation is sufficient 

!!Randomly split data into training and test sets (usually 
2/3 for train, 1/3 for test) 

!!Build a classifier using the train set and evaluate 
it using the test set.  
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Classification Step 3: 
 Evaluate on test set (Re-train?) 
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Handling unbalanced data 

!!Sometimes, classes have very unequal frequency 

!!Attrition prediction: 97% stay, 3% attrite (in a month) 

!!medical diagnosis: 90% healthy, 10% disease 

!!eCommerce: 99% don’t buy, 1% buy 

!!Security: >99.99% of Americans are not terrorists 

!!Similar situation with multiple classes 

!!Majority class classifier can be 97% correct, but 
useless 

Balancing unbalanced data 

!!With two classes, a good approach is to build 

BALANCED train and test sets, and train model 
on a balanced set 

!! randomly select desired number of minority class 
instances 

!!add equal number of randomly selected majority class 

!!Generalize “balancing” to multiple classes 

!!Ensure that each class is represented with 

approximately equal proportions in train and test 

A note on parameter tuning 

!! It is important that the test data is not used in any way to 
create the classifier 

!!Some learning schemes operate in two stages: 

!! Stage 1: builds the basic structure 

!! Stage 2: optimizes parameter settings 

!!The test data can’t be used for parameter tuning! 

!!Proper procedure uses three sets: training data, 
validation data, and test data 

!! Validation data is used to optimize parameters 
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Making the most of the data 

!!Once evaluation is complete, all the data can be 

used to build the final classifier 

!!Generally, the larger the training data the better 

the classifier (but returns diminish) 

!!The larger the test data the more accurate the 

error estimate 
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*Predicting performance 

!!Assume the estimated error rate is 25%. How 
close is this to the true error rate? 

!!Depends on the amount of test data 

!!Prediction is just like tossing a biased (!) coin 

!! “Head” is a “success”, “tail” is an “error” 

!!In statistics, a succession of independent events 
like this is called a Bernoulli process 

!!Statistical theory provides us with confidence 
intervals for the true underlying proportion! 
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*Confidence intervals 

!! We can say: p lies within a certain specified interval with 
a certain specified confidence 

!! Example: S=750 successes in N=1000 trials 

!! Estimated success rate: 75% 

!! How close is this to true success rate p? 

!! Answer: with 80% confidence p![73.2,76.7] 

!! Another example: S=75 and N=100 

!! Estimated success rate: 75% 

!! With 80% confidence p![69.1,80.1] 

witten & eibe 

*Mean and variance (also Mod 7) 
!! Mean and variance for a Bernoulli trial: 

p, p (1–p) 

!! Expected success rate f=S/N 

!! Mean and variance for f : p, p (1–p)/N 

!! For large enough N, f  follows a Normal 
distribution 

!! c% confidence interval [–z " X " z] for random 
variable with 0 mean is given by: 

!! With a symmetric distribution: 
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*Confidence limits 
!! Confidence limits for the normal distribution with 0 mean and 

a variance of 1: 

!! Thus: 

!! To use this we have to reduce our random variable f  to have 
0 mean and unit variance 

Pr[X # z] z 

0.1% 3.09 

0.5% 2.58 

1% 2.33 

5% 1.65 

10% 1.28 

20% 0.84 

40% 0.25 

–1     0     1   1.65 

witten & eibe 



*Transforming f 

!! Transformed value for f : 

(i.e. subtract the mean and divide by the standard deviation) 

!! Resulting equation: 

!! Solving for p : 
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*Examples 

!! f = 75%, N = 1000, c = 80% (so that z = 1.28): 

!! f = 75%, N = 100, c = 80% (so that z = 1.28): 

!! Note that normal distribution assumption is only valid for large N (i.e. 
N > 100) 

!! f = 75%, N = 10, c = 80% (so that z = 1.28): 

 (should be taken with a grain of salt) 
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Evaluation on “small” data 

!!The holdout method reserves a certain amount 
for testing and uses the remainder for training 

!!Usually: one third for testing, the rest for training 

!!For small or “unbalanced” datasets, samples 
might not be representative 

!!Few or none instances of some classes 

!!Stratified sample: advanced version of balancing  
the data 

!!Make sure that each class is represented with 
approximately equal proportions in both subsets 

Repeated holdout method 

!!Holdout estimate can be made more reliable by 

repeating the process with different subsamples 

!! In each iteration, a certain proportion is randomly 
selected for training (possibly with stratification) 

!!The error rates on the different iterations are averaged 
to yield an overall error rate 

!!This is called the repeated holdout method 

!!Still not optimum: the different test sets overlap 

!!Can we prevent overlapping? 
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Cross-validation 

!!Cross-validation avoids overlapping test sets 

!!First step: data is split into k subsets of equal size 

!!Second step: each subset in turn is used for testing and 
the remainder for training 

!!This is called k-fold cross-validation 

!!Often the subsets are stratified before the cross-

validation is performed 

!!The error estimates are averaged to yield an 

overall error estimate 
witten & eibe !"  

Cross-validation example: 

—! Break up data into groups of the same size  

—!   

—!   

—! Hold aside one group for testing and use the rest to build model 

—!   

—! Repeat 

Test 



More on cross-validation 

!!Standard method for evaluation: stratified ten-

fold cross-validation 

!!Why ten? Extensive experiments have shown that 

this is the best choice to get an accurate estimate 

!!Stratification reduces the estimate’s variance 

!!Even better: repeated stratified cross-validation 

!!E.g. ten-fold cross-validation is repeated ten times and 
results are averaged (reduces the variance) 
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Leave-One-Out cross-validation 

!! Leave-One-Out: 
a particular form of cross-validation: 

!! Set number of folds to number of training instances 

!! I.e., for n training instances, build classifier n times 

!! Makes best use of the data 

!! Involves no random subsampling  

!! Very computationally expensive 

!! (exception: NN) 

Leave-One-Out-CV and stratification 

!! Disadvantage of Leave-One-Out-CV: stratification is not 
possible 

!! It guarantees a non-stratified sample because there is only 
one instance in the test set! 

!! Extreme example: random dataset split equally into  two 
classes 

!! Best inducer predicts majority class 

!! 50% accuracy on fresh data  

!! Leave-One-Out-CV estimate is 100% error! 

*The bootstrap 
!! CV uses sampling without replacement 

!! The same instance, once selected, can not be selected 
again for a particular training/test set 

!! The bootstrap uses sampling with replacement to 
form the training set 

!! Sample a dataset of n instances n times with replacement 
to form a new dataset 
of n instances 

!! Use this data as the training set 

!! Use the instances from the original 
dataset that don’t occur in the new 
training set for testing 

*The 0.632 bootstrap 

!! Also called the 0.632 bootstrap 

!! A particular instance has a probability of 1–1/n of not being 
picked 

!! Thus its probability of ending up in the test data is: 

!! This means the training data will contain approximately 63.2% 
of the instances 

*Estimating error 
with the bootstrap 

!! The error estimate on the test data will be very 
pessimistic  

!! Trained on just ~63% of the instances 

!! Therefore, combine it with the resubstitution error: 

!! The resubstitution error gets less weight than the error 
on the test data 

!! Repeat process several times with different replacement 
samples; average the results 



*More on the bootstrap 

!! Probably the best way of estimating performance for 
very small datasets 

!! However, it has some problems 

!! Consider the random dataset from above 

!! A perfect memorizer will achieve 
   0% resubstitution error and 
   ~50% error on test data 

!! Bootstrap estimate for this classifier: 

!! True expected error: 50% 

Comparing data mining schemes 

!!Frequent situation: we want to know which one 

of two learning schemes performs better 

!!Note: this is domain dependent! 

!!Obvious way: compare 10-fold CV estimates 

!!Problem: variance in estimate 

!!Variance can be reduced using repeated CV 

!!However, we still don’t know whether the results 
are reliable 
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Significance tests 

!!Significance tests tell us how confident we can be 
that there really is a difference 

!!Null hypothesis: there is no “real” difference 

!!Alternative hypothesis: there is a difference 

!!A significance test measures how much evidence 
there is in favor of rejecting the null hypothesis 

!!Let’s say we are using 10 times 10-fold CV 

!!Then we want to know whether the two means of 
the 10 CV estimates are significantly different 

!!Student’s paired t-test tells us whether the means of two 
samples are significantly different 
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*Paired t-test 
!! Student’s t-test tells whether the means of two 

samples are significantly different 

!! Take individual samples from the set of all possible 
cross-validation estimates 

!! Use a paired t-test because the individual samples 
are paired 

!! The same CV is applied twice 

William Gosset 

Born:  1876 in Canterbury; Died:  1937 in Beaconsfield, England 

Obtained a post as a chemist in the Guinness brewery in Dublin in 1899. 

Invented the t-test to handle small samples for quality control in brewing. 

Wrote under the name "Student".  

*Distribution of the means 
!! x1 x2 … xk and y1 y2 … yk are the 2k samples for a k-fold CV 

!! mx and my are the means 

!! With enough samples, the mean of a set of independent 
samples is normally distributed 

!! Estimated variances of the means are $x
2/k and $y

2/k  

!! If µx and µy are the true means then 

are approximately normally distributed with 
mean 0, variance 1 

*Student’s distribution 
!! With small samples (k < 100) the mean follows 

Student’s distribution with k–1 degrees of freedom 

!! Confidence limits: 

Pr[X # z] z 

0.1% 4.30 

0.5% 3.25 

1% 2.82 

5% 1.83 

10% 1.38 

20% 0.88 

Pr[X # z] z 

0.1% 3.09 

0.5% 2.58 

1% 2.33 

5% 1.65 

10% 1.28 

20% 0.84 

9 degrees of freedom                 normal distribution 



*Distribution of the differences 

!! Let md = mx – my 

!! The difference of the means (md) also has a Student’s 
distribution with k–1 degrees of freedom 

!! Let $d
2 be the variance of the difference 

!! The standardized version of md is called the t-statistic: 

!! We use t  to perform the t-test 

*Performing the test 
1.! Fix a significance level %  

!! If a difference is significant at the %% level, 
there is a (100-%)% chance that there really is a 
difference 

3.! Divide the significance level by two because the 
test is two-tailed 

!! I.e. the true difference can be +ve or – ve 

5.! Look up the value for z  that corresponds to %/2 

7.! If t ! –z or t # z then the difference is significant 

!! I.e. the null hypothesis can be rejected 

Unpaired observations 

!! If the CV estimates are from different 
randomizations, they are no longer paired 

!! (or maybe we used k -fold CV for one scheme, and 
j -fold CV for the other one) 

!! Then we have to use an un paired t-test with 
min(k , j) – 1 degrees of freedom 

!! The t-statistic becomes: 

*Interpreting the result 

!! All our cross-validation estimates are based on the same 
dataset 

!! Hence the test only tells us whether a complete k-fold 
CV for this dataset would show a difference 

!! Complete k-fold CV generates all possible partitions of the data 
into k folds and averages the results 

!! Ideally, should use a different dataset sample for each 
of the k-fold CV estimates used in the test to judge 
performance across different training sets  

*Predicting probabilities 
!! Performance measure so far: success rate 

!! Also called 0-1 loss function: 

!! Most classifiers produces class probabilities 

!! Depending on the application, we might want to 
check the accuracy of the probability estimates 

!! 0-1 loss is not the right thing to use in those cases 

*Quadratic loss function 

!! p1 … pk are probability estimates for an instance 

!! c is the index of the instance’s actual class 

!! a1 … ak = 0, except for ac which is 1 

!! Quadratic loss is: 

!! Want to minimize 

!! Can show that this is minimized when pj = pj
*, the true probabilities 



*Informational loss function 

!! The informational loss function is –log(pc), 
where c is the index of the instance’s actual class 

!! Number of bits required to communicate the actual class 

!! Let p1
* … pk

* 
 be the true class probabilities 

!! Then the expected value for the loss function is: 

!! Justification: minimized when pj = pj
* 

!! Difficulty: zero-frequency problem  

*Discussion 
!! Which loss function to choose? 

!! Both encourage honesty 

!! Quadratic loss function takes into account all class 
probability estimates for an instance 

!! Informational loss focuses only on the probability 
estimate for the actual class 

!! Quadratic loss is bounded: 
      it can never exceed 2 

!! Informational loss can be infinite 

!! Informational loss is related to MDL principle [later] 

Evaluation Summary: 

!!Use Train, Test, Validation sets for “LARGE” data 

!!Balance “un-balanced” data 

!!Use Cross-validation for small data 

!!Don’t use test data for parameter tuning - use 

separate validation data 

!!Most Important: Avoid Overfitting 


