MIPSpro™ Assembly Language
Programmer’s Guide

Document Number 007-2418-002

CONTRIBUTORS

Written by Larry Huffman, David Graves

Edited by Larry Huffman, Cindy Kleinfeld

Production by Chris Glazek and David Clarke

Engineering contributions by Bean Anderson, Jim Dehnert, Suneel Jain, Michael
Murphy

© Copyright 1996 Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks and IRIX, CASEVision, IRIS IM,
IRIS Showcase, Impressario, Indigo Magic, Inventor, IRIS-4D, POWER Series,
RealityEngine, CHALLENGE, Onyx, and WorkShop are trademarks of Silicon
Graphics, Inc. UNIX is a registered trademark of UNIX System Laboratories.
OSF/Motif is a trademark of Open Software Foundation, Inc. The X Window System
is a trademark of the Massachusetts Institute of Technology. PostScript is a registered
trademark and Display PostScript is a trademark of Adobe Systems, Inc.

MIPSpro™ Assembly Language Programmer’s Guide
Document Number 007-2418-002

Contents

List of Figures vii
List of Tables ix

About This Guide xi
Audience Xi
Topics Covered xii

Registers 1
Register Format 1

General Registers 1
Special Registers 4

Floating Point Registers 5

Addressing 7
Address Formats 8
Address Descriptions 9

Exceptions 11
Main Processor Exceptions 11
Floating Point Exceptions 12

Lexical Conventions 13

Tokens 14

Comments 14

Identifiers 14

Constants 15
Scalar Constants 15
Floating Point Constants 16
String Constants 17

Contents

Multiple Lines Per Physical Line 18
Section and Location Counters 18
Statements 19

Label Definitions 20

Null Statements 20

Keyword Statements 20
Expressions 21

Precedence 21

Expression Operators 22

Data Types 23

Type Propagation in Expressions 25

5. The Instruction Set 27
Instruction Classes 27
Reorganization Constraints and Rules 27
Instruction Notation 28
Instruction Set 29
Load and Store Instructions 29
Load Instruction Descriptions 31
Store Instruction Descriptions 35
Computational Instructions 38
Computational Instructions 39
Computational Instruction Descriptions 42
Jump and Branch Instructions 54
Jump and Branch Instructions 54
Jump and Branch Instruction Descriptions 56
Special Instructions 59
Special Instruction Descriptions 60
Coprocessor Interface Instructions 60
Coprocessor Interface Summary 61
Coprocessor Interface Instruction Descriptions 62

Contents

6. Coprocessor Instruction Set 65
Instruction Notation 65
Floating-Point Instructions 66
Floating-Point Formats 67
Floating-Point Load and Store Formats 68
Floating-Point Load and Store Descriptions 69
Floating-Point Computational Formats 70
Floating-Point Computational Instruction Descriptions 73
Floating-Point Relational Operations 74
Floating-Point Relational Instruction Formats 77
Floating-Point Relational Instruction Descriptions 79
Floating-Point Move Formats 81
Floating-Point Move Instruction Descriptions 82
System Control Coprocessor Instructions 82
System Control Coprocessor Instruction Formats 82
System Control Coprocessor Instruction Descriptions 83
Control and Status Register 84
Exception Trap Processing 86
Invalid Operation Exception 87
Division-by-zero Exception 87
Overflow Exception 88
Underflow Exception 89
Inexact Exception 89
Unimplemented Operation Exception 90
Floating-Point Rounding 90

7. Linkage Conventions 93
Introduction 93
Program Design 94
Register Use and Linkage 94
The Stack Frame 94
The Shape of Data 101
Examples 101
Learning by Doing 105

Contents

8. Pseudo Op-Codes 107
Index 123

vi

List of Figures

Figure 4-1 Section and Location Counters 18

Figure 6-1 Floating Point Formats 67

Figure 6-2 Floating Control and Status Register 31 85
Figure 7-1 Stack Organization 96

Figure 7-2 Stack Example 98

Vii

List of Tables

Table 1-1 General (Integer) Registers (32-Bit) 2

Table 1-2 General (Integer) Registers (64-Bit) 3

Table 1-3 Special Registers 4

Table 1-4 Floating-Point Registers (32-bit) 5

Table 1-5 Floating-Point Registers (64-bit) 6

Table 2-1 Address Formats 8

Table 2-2 Assembler Addresses 9

Table 4-1 Backslash Conventions 17

Table 4-2 Expression Operators 22

Table 4-3 Data Types 23

Table 5-1 Load and Store Format Summary 29

Table 5-2 Load Instruction Descriptions 31

Table 5-3 Load Instruction Descriptions for MIPS3/4 Architecture Only 34
Table 5-4 Store Instruction Descriptions 36

Table 5-5 Store Instruction Descriptions for MIPS3/4 Architecture Only 38
Table 5-6 Computational Format Summaries 39

Table 5-7 Computational Instruction Descriptions 42

Table 5-8 Computational Instruction Descriptions for MIPS3/4 Architecture 50
Table 5-9 Jump and Branch Format Summary 54

Table 5-10 Jump and Branch Instruction Descriptions 56

Table 5-11 Special Instruction Descriptions 60

Table 5-12 Coprocessor Interface Formats 61

Table 5-13 Coprocessor Interface Instruction Descriptions 62

Table 6-1 Floating-Point Load and Store Descriptions 69

Table 6-2 Floating-Point Computational Instruction Descriptions 73

Table 6-3 Floating-Point Relational Operators 75

Table 6-4 Floating-Point Relational Instruction Descriptions 79

List of Tables

Table 6-5
Table 6-6
Table 7-1
Table 7-2
Table 8-1

Floating-Point Move Instruction Descriptions 82
System Control Coprocessor Instruction Descriptions 83
Parameter Passing (32-Bit) 99

Parameter Passing (64-Bit) 99

Pseudo Op-Codes 107

Audience

About This Guide

This book describes the assembly language supported by the RISCompiler system, its
syntax rules, and how to write assembly programs. For information on assembling and
linking an assembly language program, see the MIPSpro Compiling, Debugging and
Performance Tuning Guide.

The assembler converts assembly language statements into machine code. In most
assembly languages, each instruction corresponds to a single machine instruction;
however, some assembly language instructions can generate several machine
instructions. This feature results in assembly programs that can run without modification
on future machines, which might have different machine instructions.

In this release of O/S and compiler software, the assembler supports compilations in
both 32-bit and 64-bit mode. Some of the implications of these different data sizes are
explained in this book. For more information, please refer to the MIPSpro 64-Bit Porting
and Transition Guide.

Many assembly language instructions have direct equivalents to machine instructions.
For more information about the operations of a specific arhcitecture, see book that is
appropriate for your machine, for instance, the MIPS R4000 Microprocessor User’s Manual
or the MIPS R8000 Microprocessor User’s Manual.

This book assumes that you are an experienced assembly language programmer. The
assembler produces object modules from the assembly instructions that the C, and
Fortran 77 compilers generate. It therefore lacks many functions normally present in
assemblers. You should use the assembler only when you need to:

= Maximize the efficiency of a routine, which might not be possible in C, Fortran 77,,
or another high-level language; for example, to write low-level 170 drivers.

= Access machine functions unavailable in high-level languages or satisfy special
constraints such as restricted register usage.

xi

About This Guide

Topics Covered

Xii

Change the operating system.

Change the compiler system.

Further system information can be obtained from the manuals listed at the end of this
section.

This book has these chapters:

Chapter 1: Registers describes the format for the general registers, the special
registers, and the floating point registers.

Chapter 2: Addressing describes how addressing works.

Chapter 3: Exceptions describes exceptions you might encounter with assembly
programs.

Chapter 4: Lexical Conventions describes the lexical conventions that the
assembler follows.

Chapter 5: Instruction Set describes the main processor’s instruction set, including
notation, load and store instructions, computational instructions, and jump and
branch instructions.

Chapter 6: Coprocessor Instruction Set describes the coprocessor instruction sets.

Chapter 7: Linkage Conventions describes linkage conventions for all supported
high-level languages. It also discusses memory allocation and register use.

Chapter 8: Pseudo-Op-Codes describes the assembler’s pseudo-operations
(directives).

Index. Contains index entries for this publication.

Chapter 1

Register Format

Registers

This chapter describes the organization of data in memory, and the naming and usage
conventions that the assembler applies to the CPU and FPU registers. See Chapter 7 for
information regarding register use and linkage.

The CPU uses four data formats: a 64-bit doubleword, a 32-bit word, a 16-bit halfword
and an 8-bit byte. Byte ordering within each of the larger data formats — doubleword,
word or halfword — the CPU’s byte ordering scheme (or endian issues), affects memory
organization and defines the relationship between address and byte position of data in
memory.

For R4000 and earlier systems, byte ordering is configurable into either big-endian or
little-endian byte ordering (configuration occurs during hardware reset). When
configured as a big-endian system, byte 0 is always the most-significant (leftmost) byte.
When configured as a little-endian system, byte 0 is always the least-significant
(rightmost byte).

The R8000 CPU, at present, supports big-endian only.

General Registers

For the MIPS1 and MIPS2 architectures, the CPU has thirty-two 32-bit registers. In the
MIPS3 architecture and above, the size of each of the thirty-two integer registers is 64-bit.

Table 1-1and Table 1-2 summarize the assembler’s usage, conventions and restrictions
for these registers. The assembler reserves all register names; you must use lowercase for
the names. All register names start with a dollar sign($).

The general registers have the names $0..$31. By including the file regdef.h (use #include
<regdef.h>) in your program, you can use software names for some general registers.

Chapter 1: Registers

The operating system and the assembler use the general registers $1, $26, $27, $28, and
$29 for specific purposes. Attempts to use these general registers in other ways can
produce unexpected results.

Table 1-1 General (Integer) Registers (32-Bit)

Register Name Software Name Use and Linkage
(from regdef.h)

$0 Always has the value 0.
$1 or $at Reserved for the assembler.
$2..$3 VvO-v1 Used for expression evaluations and to hold the

integer type function results. Also used to pass
the static link when calling nested procedures.

$4..$7 a0-a3 Pass the first 4 words of actual integer type
arguments; their values are not preserved across
procedure calls.

$8..$11 t0-t7 Temporary registers used for expression

$11..$15 t4-t7 or evaluations; their values aren’t preserved across
ta0-ta3 procedure calls.

$16..$23 s0-s7 Saved registers. Their values must be preserved

across procedure calls.

$24..$25 t8-19 Temporary registers used for expression
evaluations; their values aren’t preserved across
procedure calls.

$26..27 or kO0-k1 Reserved for the operating system kernel.
$kt0..$ktl

$28 or $gp ap Contains the global pointer.

$29 or $sp sp Contains the stack pointer.

$30 or $fp fp ors8 Contains the frame pointer (if needed);

otherwise a saved register (like s0-s7).

$31 ra Contains the return address and is used for
expression evaluation.

Register Format

Note: General register $0 always contains the value 0. All other general registers are
equivalent, except that general register $31 also serves as the implicit link register for
jump and link instructions. See Chapter 7 for a description of register assignments.

Table 1-2 General (Integer) Registers (64-Bit)

Register Name Software Name Use and Linkage
(from regdef.h)

$0 Always has the value 0.
$1 or $at Reserved for the assembler.
$2..$3 VvO-v1 Used for expression evaluations and to hold the

integer type function results. Also used to pass
the static link when calling nested procedures.

$4..$7 a0-a3 Pass up to 8 words of actual integer type

$8..$11 ad-a7 or arguments; their values are not preserved across
ta0-ta3 procedure calls.

$12..$15 t0-t3 Temporary registers used for expression

evaluations; their values aren’t preserved across
procedure calls.

$16..$23 s0-s7 Saved registers. Their values must be preserved
across procedure calls.

$24..$25 t8-19 Temporary registers used for expression
evaluations; their values aren’t preserved across
procedure calls.

$26..27 or kO0-k1 Reserved for the operating system kernel.
$kt0..$ktl

$28 or $gp ap Contains the global pointer.

$29 or $sp sp Contains the stack pointer.

$30 or $fp fp ors8 Contains the frame pointer (if needed);

otherwise a saved register (such as s0-s7).

$31 ra Contains the return address and is used for
expression evaluation.

Chapter 1: Registers

Special Registers

The CPU defines three special registers: PC (program counter), HI and LO, as shown in
Table 1-3. The Hl and LO special registers hold the results of the multiplication (mult and
multu) and division (div and divu) instructions.

You usually do not need to refer explicitly to these special registers; instructions that use
the special registers refer to them automatically.

Table 1-3 Special Registers

Name Description

PC Program Counter

HI Multiply/Divide special register holds the most-significant 32

bits of multiply, remainder of divide

LO Multiply/Divide special register holds the least-significant 32
bits of multiply, quotient of divide

Note: In MIPS3 architecture and later, the HI and Lo registers hold 64-bits.

Special Registers

Floating Point Registers

The FPU has sixteen floating-point registers. Each register can hold either a
single-precision (32-bit) or double-precision (64-bit) value. In case of a double-precision
value, $f0 holds the least-significant half, and $f1 holds the most-significant half. For
32-bit systems, all references to these registers use an even register number (for example,
$f4). 64-bit systems can reference all 32 registers directly. Table 1-4 and Table 1-5
summarize the assembler’s usage conventions and restrictions for these registers

Table 1-4 Floating-Point Registers (32-bit)

Register Software Name Use and Linkage

Name (from fgregdef.h)

$f0..$f2 fv0-fvl Hold results of floating-point type function ($f0)

and complex type function ($f0 has the real part,
$f2 has the imaginary part.

$f4..$f10 ft0-ft3 Temporary registers, used for expression
evaluation whose values are not preserved across
procedure calls.

$f12..$f14 fa0-fal Pass the first two single or double precision
actual arguments; their values are not preserved
across procedure calls.

$f16..$f18 ft4-ft5 Temporary registers, used for expression
evaluation, whose values are not preserved
across procedure calls.

$f20..$f30 fs0-fs5 Saved registers, whose values must be preserved
across procedure calls.

Chapter 1: Registers

Table 1-5 Floating-Point Registers (64-bit)

Register Software Name Use and Linkage

Name (from fgregdef.h)

$f0, $f2 fv0,fvl Hold results of floating-point type function ($f0)
and complex type function ($f0 has the real part,
$f2 has the imaginary part.

$f1, $f3 ft1,ft3 Temporary registers, used for expression

$f4..$f11 ftO-ft7 evaluation; their values are not preserved across
procedure calls.

$f12..$f19 fa0-fa7 Pass single or double precision actual
arguments, whose values are not preserved
across procedure calls.

$f20..$f23 ft8-ftll Temporary registers, used for expression
evaluation; their values are not preserved across
proceadure calls.

$24..$f31 fs0-fs7 Saved registers, whose values must be preserved

across procedure calls.

Chapter 2

Addressing

This chapter describes the formats that you can use to specify addresses. SGI CPUs use
a byte addressing scheme. Access to halfwords requires alignment on even byte
boundaries, and access to words requires alignment on byte boundaries that are divisible
by four. Access to doublewords (for 64-bit systems) requires alignment on byte
boundaries that are divisible by eight. Any attempt to address a data item that does not
have the proper alignment causes an alignment exception.

The unaligned assembler load and store instructions may generate multiple machine
language instructions. They do not raise alignment exceptions.
These instructions load and store unaligned data:

« Load doubleword left (LDL)

Load word left (LWL)

« Load doubleword right (LDR)

« Load word right (LWR)

= Store doubleword left (SDL)

= Store word left (SWL)

= Store doubleword right (SDR)

= Store word right (SWR)

= Unaligned load doubleword (ULD)

« Unaligned load word (ULW)

« Unaligned load halfword (ULH)

= Unaligned load halfword unsigned (ULHU)

« Unaligned store doubleword (USD)
= Unaligned store word (USW)
= Unaligned store halfword (USH)

Chapter 2: Addressing

These instructions load and store aligned data
= Load doubleword (LD)

< Load word (LW)

< Load halfword (LH)

= Load halfword unsigned (LHU)
< Load byte (LB)

= Load byte unsigned (LBU)

= Store doubleword (SD)

= Store word (SW)

= Store halfword (SH)

= Store byte (SB)

Address Formats

The assembler accepts these formats shown in Table 2-1 for addresses. Table 2-2 explains
these formats in more detail.

Table 2-1 Address Formats

Format Address

(base register) Base address (zero offset assumed)
expression Absolute address

expression (base register) Based address

index-register (base register) Based address

relocatable-symbol Relocatable address
relocatable-symbol + expression Relocatable address

relocatable-symbol +expression (index Indexed relocatable address
register)

Address Descriptions

Address Descriptions

The assembler accepts any combination of the constants and operations described in this
chapter for expressions in address descriptions.

Table 2-2

Assembler Addresses

Expression

Address Description

(base-register)

expression

expression (base-register)

index-register(base-register)

relocatable-symbol

relocatable-symbol + expression

Specifies an indexed address, which
assumes a zero offset. The base-register
contents specify the address.

Specifies an absolute address. The
assembler generates the most locally
efficient code for referencing a value at the
specified address.

Specifies a based address. To get the
address, the CPU adds the value of the
expression to the contents of the
base-register.

Same as expression(base-register), except that
the index register is used as the offset.

Specifies a relocatable address. The
assembler generates the necessary
instruction(s) to address the item and
generates relocatable information for the
link editor.

Specifies a relocatable address. To get the
address, the assembler adds or subtracts the
value of the expression, which has an
absolute value, from the relocatable symbol.
The assembler generates the necessary
instruction(s) to address the item and
generates relocatable information for the
link editor. If the symbol hame does not
appear as a label anywhere in the assembly,
the assembler assumes that the symbol is
external.

Chapter 2: Addressing

10

Table 2-2 (continued) Assembler Addresses

Expression

Address Description

relocatable-symbol (index register)

relocatable + expression

Specifies an indexed relocatable address. To
get the address, the CPU adds the index
register to the relocatable symbol’s address.
The assembler generates the necessary
instruction(s) to address the item and
generates relocatable information for the
link editor. If the symbol name does not
appear as a label anywhere in the assembly,
the assembler assumes that the symbol is
external.

Specifies an indexed relocatable address. To
get the address, the assembler adds or
subtracts the relocatable symbol, the
expression, and the contents of the index
register. The assembler generates the
necessary instruction(s) to address the item
and generates relocation information for the
link editor. If the symbol does not appear as
a label anywhere in the assembly, the
assembler assumes that the symbol is
external.

Chapter 3

Exceptions

This chapter describes the exceptions that you can encounter while running assembly
programs. The system detects some exceptions directly, and the assembler inserts specific
tests that signal other exceptions. This chapter lists only those exceptions that occur
frequently.

Main Processor Exceptions

The following exceptions are the most common to the main processor:

= Address error exceptions, which occur when a data item is referenced that is not on
its proper memory alignment or when an address is invalid for the executing
process.

= Overflow exceptions, which occur when arithmetic operations compute signed
values and the destination lacks the precision to store the result.

= Bus exceptions, which occur when an address is invalid for the executing process.

= Divide-by-zero exceptions, which occur when a divisor is zero.

11

Chapter 3: Exceptions

Floating Point Exceptions

The following are the most common floating point exceptions:
= Invalid operation exceptions which include:

— Magnitude subtraction of infinities, for example: -1.

— Multiplication of 0 by 1 with any signs.

— Division of 0/0 or 1/1 with any signs.

— Conversion of a binary floating point number to an integer format when an
overflow or the operand value for the infinity or NaN precludes a faithful
representation in the format (see Chapter 4).

— Comparison of predicates that have unordered operands, and that involve
Greater Than or Less Than without Unordered.

— Any operation on a signaling NaN.
= Divide-by-zero exceptions.

= Overflow exceptions occur when a rounded floating-point result exceeds the
destination format’s largest finite number.

= Underflow exceptions these occur when a result has lost accuracy and also when a
nonzero result is between 25™N (2 to the minimum expressible exponent).

= Inexact exceptions.

12

Chapter 4

Lexical Conventions

This chapter discusses lexical conventions for these topics:

This chapter uses the following notation to describe syntax:

Tokens

Comments

Identifiers

Constants

Multiple lines per physical line
Sections and location counters
Statements

Expressions

| (vertical bar) means “or”

[1 (square brackets) enclose options

+ indicates both addition and subtraction operations

13

Chapter 4: Lexical Conventions

Tokens

Comments

Identifiers

14

The assembler has these tokens:

= ldentifiers

= Constants

= Operators

The assembler lets you put blank characters and tab characters anywhere between
tokens; however, it does not allow these characters within tokens (except for character

constants). A blank or tab must separate adjacent identifiers or constants that are not
otherwise separated.

The pound sign character (#) introduces a comment. Comments that start with a # extend
through the end of the line on which they appear. You can also use C-language notation
/*..*/ to delimit comments.

The assembler uses cpp (the C language preprocessor) to preprocess assembler code.
Because cpp interprets #s in the first column as pragmas (compiler directives), do not start
a # comment in the first column.

An identifier consists of a case-sensitive sequence of alphanumeric characters, including
these:

e . (period)
e _ (underscore)

< $ (dollar sign)

The first character of an identifier cannot be numeric.

Constants

Constants

If an identifier is not defined to the assembler (only referenced), the assembler assumes
that the identifier is an external symbol. The assembler treats the identifier like a .globl
pseudo-operation (see Chapter 8). If the identifier is defined to the assembler and the
identifier has not been specified as global, the assembler assumes that the identifier is a
local symbol.

The assembler has these constants:
« Scalar constants
= Floating point constants

= String constants

Scalar Constants

The assembler interprets all scalar constants as twos-complement numbers. In 32-bit
mode, a scalar constant is 32 bits. 64 bits is the size of a scalar constant in 64-bit mode.
Scalar constants can be any of the alphanumeric characters 0123456789abcdefABCDEF.
Scalar constants can be one of these constants:

= Decimal constants, which consist of a sequence of decimal digits without a leading
zero.

< Hexadecimal constants, which consist of the characters 0x (or 0X) followed by a
sequence of digits.

= Octal constants, which consist of a leading zero followed by a sequence of digits in
the range 0..7.

15

Chapter 4: Lexical Conventions

16

Floating Point Constants

Floating point constants can appear only in .float and .double pseudo-operations
(directives), see Chapter 8, and in the floating point Load Immediate instructions, see
Chapter 6. Floating point constants have this format:

+d1[.d2][e|E+d3]

where:

= dliswritten as a decimal integer and denotes the integral part of the floating point
value.

= d2iswritten as a decimal integer and denotes the fractional part of the floating
point value.

= d3is written as a decimal integer and denotes a power of 10.

< The “+” symbol is optional.

For example:
21.73E-3

represents the number .02173.

Optionally, .float and .double directives may use hexadecimal floating point constants
instead of decimal ones. A hexadecimal floating point constant consists of:

<+or—>0x <1 or 0 or nothing> . <hex digits> H Ox <hex digits>

The assembler places the first set of hex digits (excluding the 0 or 1 preceding the decimal
point) in the mantissa field of the floating point format without attempting to normalize
it. It stores the second set of hex digits into the exponent field without biasing them. It
checks that the exponent is appropriate if the mantissa appears to be denormalized.
Hexadecimal floating point constants are useful for generating IEEE special symbols,
and for writing hardware diagnostics.

For example, either of the following generates a single-precision “1.0”:
float 1.0e+0
float 0x1.0hOx7f

Constants

String Constants

String constants begin and end with double quotation marks ().

The assembler observes C language backslash conventions. For octal notation, the
backslash conventions require three characters when the next character can be confused
with the octal number. For hexadecimal notation, the backslash conventions require two
characters when the next character can be confused with the hexadecimal number (that
is,, use a 0 for the first character of a single character hex number).

The assembler follows the backslash conventions shown in Table 4-1.

Table 4-1 Backslash Conventions

Convention Meaning

\a Alert (0x07)

\b Backspace (0x08)

\f Form feed (0x0Oc)

\n Newline (0x0a)

\r Carriage return (0x0d)

\t horizontal tab (0x09)

\v Vertical feed (0x0b)

\\ Backslash (0x5c)

\" Double quotation mark (0x22)

\’ Single quotation mark (0x27)

\000 Character whose octal value is 000
\Xnn Character whose hexadecimal value is nn

17

Chapter 4: Lexical Conventions

Multiple Lines Per Physical Line

You can include multiple statements on the same line by separating the statements with
semicolons. The assembler does not recognize semicolons as separators when they
follow comment symbols (# or /%*).

Section and Location Counters

Assembled code and data fall in one of the sections shown in Figure 4-1.

text @—— Text section

rdata ——— Read-only data section

.data

Jit8 ——— Data sections

lit4
Small data section, addressed
-sdata ‘ through register $gp
Small bss section, addressed
-sbss ¢ through register $gp
bss (block started by storage)
.bss <— section, which loads zero-initialized
data
Figure 4-1 Section and Location Counters

18

Statements

Statements

The assembler always generates the text section before other sections. Additions to the
text section happen in four-byte units. Each section has an implicit location counter,
which begins at zero and increments by one for each byte assembled in the section.

The bss section holds zero-initialized data. If a.lcomm pseudo-op defines a variable (see
Chapter 8), the assembler assigns that variable to the bss (block started by storage) section
or to the shss (short block started by storage) section depending on the variable’s size.
The default variable size for sbss is 8 or fewer bytes.

The command line option -G for each compiler (C, Pascal, Fortran 77, or the assembler),
can increase the size of shss to cover all but extremely large data items. The link editor

issues an error message when the -G value gets too large. If a—-G value is not specified
to the compiler, 8 is the default. Items smaller than, or equal to, the specified size go in
shss. Items greater than the specified size go in bss.

Because you can address items much more quickly through $gp than through a more
general method, put as many items as possible in sdata or shss. The size of sdata and shss
combined must not exceed 64K bytes.

Each statement consists of an optional label, an operation code, and the operand(s). The
system allows these statements:

< Null statements

< Keyword statements

19

Chapter 4: Lexical Conventions

20

Label Definitions

A label definition consists of an identifier followed by a colon. Label definitions assign
the current value and type of the location counter to the name. An error results when the
name is already defined, the assigned value changes the label definition, or both
conditions exist.

Label definitions always end with a colon. You can put a label definition on a line by
itself.

A generated label is a single numeric value (1...255). To reference a generated label, put
an f (forward) or a b (backward) immediately after the digit. The reference tells the
assembler to look for the nearest generated label that corresponds to the number in the
lexically forward or backward direction.

Null Statements

A null statement is an empty statement that the assembler ignores. Null statements can
have label definitions. For example, this line has three null statements in it:

label: ; ;

Keyword Statements

A keyword statement begins with a predefined keyword. The syntax for the rest of the
statement depends on the keyword. All instruction opcodes are keywords. All other
keywords are assembler pseudo-operations (directives).

Expressions

Expressions

An expression is a sequence of symbols that represent a value. Each expression and its
result have data types. The assembler does arithmetic in twos-complemet integers (32
bits of precision in 32-bit mode; 64 bits of precision in 64-bit mode). Expressions follow
precedence rules and consist of:

= Operators
= |dentifiers
e Constants

Also, you may use a single character string in place of an integer within an expression.
Thus:

.byte “a” ; .word “a”+0x19

is equivalent to:
.byte 0x61 ; .word 0x7a

Precedence

Unless parentheses enforce precedence, the assembler evaluates all operators of the same
precedence strictly from left to right. Because parentheses also designate index-registers,
ambiguity can arise from parentheses in expressions. To resolve this ambiguity, put a
unary + in front of parentheses in expressions.

The assembler has three precedence levels, which are listed here from lowest to highest
precedence

least binding, binary +,-
lowest precedence

binary */,5,<<,>>"N&, |

most binding, unary -~
highest precedence

Note: The assembler’s precedence scheme differs from that of the C language.

21

Chapter 4: Lexical Conventions

Expression Operators

For expressions, you can rely on the precedence rules, or you can group expressions with
parentheses. The assembler recognizes the operators listed in Table 4-2.

Table 4-2 Expression Operators
Operator Meaning
+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder

<< Shift Left

>> Shift Right (sign NOT extended)
n Bitwise Exclusive-OR

& Bitwise AND

| Bitwise OR

- Minus (unary)
+ Identity (unary)

~ Complement

22

Expressions

Data Types

The assembler manipulates several types of expressions. Each symbol you reference or
define belongs to one of the categories shown in Table 4-3.

Table 4-3 Data Types
Type Description
undefined Any symbol that is referenced but not defined becomes global

undefined, and this module will attempt to import it. The
assembler uses 32-bit addressing to access these symbols.
(Declaring such a symbol in a. globl pseudo-op merely makes its
status clearer).

sundefined A symbol defined by a .extern pseudo-op becomes global small
undefined if its size is greater than zero but less than the number
of bytes specified by the -G option on the command line (which
defaults to 8). The linker places these symbols within a 64KB
region pointed to by the $gp register, so that the assembler can
use economical 16-bit addressing to access them.

absolute A constant defined in an “=" expression.

text The text section contains the program’s instructions, which are
not modifiable during execution. Any symbol defined while the
.text pseudo-op is in effect belongs to the text section.

data The data section contains memory that the linker can initialize to
nonzero values before your program begins to execute. Any
symbol defined while the .data pseudo-op is in effect belongs to
the data section. The assembler uses 32-bit or 64-bit addressing to
access these symbols (depending on whether you are in 32-bit or
64-bit mode).

sdata This category is similar to data, except that defining a symbol
while the .sdata (“small data”) pseudo-op is in effect causes the
linker to place it within a 64KB region pointed to by the $gp
register, so that the assembler can use economical 16-bit
addressing to access it.

23

Chapter 4: Lexical Conventions

Table 4-3 Data Types
Type Description
rdata Any symbol defined while the .rdata pseudo-op is in effect

belongs to this category, which is similar to data, but may not be
modified during execution.

bss and shss The bss and shss sections consist of memory which the kernel
loader initializes to zero before your program begins to execute.
Any symbol defined in a .comm or .Icomm pseudo-op belongs to
these sections (except that a .data, .sdata, or .rdata pseudo-op can
override a .comm directive). If its size is less than the number of
bytes specified by the -G option on the command line (which
defaults to 8), it belongs to shss (“small bss”), and the linker
places it within a 64k byte region pointed to by the $gp register so
that the assembler can use economical 16-bit addressing to access
it. Otherwise, it belongs to bss and the assembler uses 32-bit or
64-bit addressing (depending on whether you are in 32-bit or
64-bit mode). Local symbols in bss or sbss defined by .Icomm are
allocated memory by the assembler; global symbols are allocated
memory by the link editor; and symbols defined by .comm are
overlaid upon like-named symbols (in the fashion of Fortran
“COMMON” blocks) by the link editor.

Symbols in the undefined and small undefined categories are always global (that is, they
are visible to the link editor and can be shared with other modules of your program).
Symbols in the absolute, text, data, sdata, rdata, bss, and sbss categories are local unless
declared in a .globl pseudo-op.

24

Expressions

Type Propagation in Expressions

When expression operators combine expression operands, the result’s type depends on
the types of the operands and on the operator. Expressions follow these type propagation
rules:

If an operand is undefined, the result is undefined.
If both operands are absolute, the result is absolute.

If the operator is + and the first operand refers to a relocatable text-section,
data-section, bss-section, or an undefined external, the result has the postulated type
and the other operand must be absolute.

If the operator is — and the first operand refers to a relocatable text-section,
data-section, or bss-section symbol, the second operand can be absolute (if it
previously defined) and the result has the first operand’s type; or the second
operand can have the same type as the first operand and the result is absolute. If the
first operand is external undefined, the second operand must be absolute.

The operators *, /, % , << ,>>,~, ", &, and | apply only to absolute symbols.

25

Chapter 5

The Instruction Set

This chapter describes instruction notation and discusses assembler instructions for the
main processor. Chapter 6 describes coprocessor notation and instructions.

Instruction Classes

The assembler has these classes of instructions for the main processor:

e |Load and Store Instructions. These instructions load immediate values and move
data between memory and general registers.

= Computational Instructions. These instructions do arithmetic and logical
operations for values in registers.

= Jump and Branch Instructions. These instructions change program control flow.

In addition, there are two other classes of instruction:

= Coprocessor Interface. These instructions provide standard interfaces to the
COProcessors.

= Special Instructions. These instructions do miscellaneous tasks.

Reorganization Constraints and Rules

To maximize performance, the goal of RISC designs is to achieve an execution rate of one
machine cycle per instruction. When writing assembly language instructions, you must
be aware of the rules to achieve this goal. This information is given in the MIPS R4000
Microprocessor User’s Manual (published by Prentice Hall) or the MIPS R8000
Microprocessor User’s Manual, depending on which architecture you are using.

27

Chapter 5: The Instruction Set

Instruction Notation

28

The tables in this chapter list the assembler format for each load, store, computational,
jump, branch, coprocessor, and special instruction. The format consists of an op-code and
a list of operand formats. The tables list groups of closely related instructions; for those
instructions, you can use any op-code with any specified operand.

Operands can take any of these formats:

= Memory references. For example, a relocatable symbol +/— an expression(register).

= Expressions (for immediate values).

< Two or three operands. For example, ADD $3,$4 is the same as ADD $3,$3,$4.

The operands in the table in this chapter have the following meanings

Operand Description

address Symbolic expression (see Chapter?2)
breakcode Value that determines the break
destination Destination register

destination/srcl ~ Destination register is also source register 1

dest-copr Destination coprocessor register

dest-gpr Destination general register

expression Absolute value

immediate Expression with an immediate value

label Symbolic label

operation Coprocessor-specific operation

return Register containing the return address

source Source register

srcl, src2 Source registers

src-copr Coprocessor register from which values are assigned
src-gpr General register from which values are assigned
target Register containing the target

z Coprocessor number in the range 0..2

Instruction Set

Instruction Set

The tables in this section summarize the assembly language instruction set. Most of the
assembly language instructions have direct machine equivalents.

Load and Store Instructions

Load and store are immediate type intructions that move data between memory and the
general registers. Table 5-1 summarizes the load and store instruction format, and
Table 5-2 and Table 5-3 provide more detailed descriptions for each load instruction.
Table 5-4 and Table 5-5 provide details of each store instruction.

Table 5-1 Load and Store Format Summary
Description Op-code Operands
Load Address LA destination, address

Load Doubleword Address DLA

Load Byte LB
Load Byte Unsigned LBU
Load Halfword LH

Load Halfword Unsigned LHU

Load Linked* LL
Load Word LW
Load Word Left LWL
Load Word Right LWR
Load Doubleword LD

Unaligned Load Halfword ULH
Unaligned Load Halfword ULHU

Unsigned
Unaligned Load Word uLw
Load Immediate LI destination, expression

29

Chapter 5: The Instruction Set

30

Table 5-1 (continued)

Load and Store Format Summary

Description Op-code Operands

Load Doublewod Immediate DLI

Store Double Right SDR

Unaligned Store Doubleword USD

Load Upper Immediate LUI

Store Byte SB source, address
Store Conditional * SC

Store Double SD

Store Halfword SH

Store Word Left SWL

Store Word Right SWR

Store Word SwW

Unaligned Store Halfword USH

Unaligned Store Word uUsw

Load Doubleword LD destination, address
Load Linked Doubleword LLD

Load Word Unsigned LWuU

Load Doubleword Left LDL

Load Doubleword Right LDR

Unaligned Load Double ULD

Store Doubleword SD source, address
Store Conditional SCD

Doubleword

Store Double Left SDL

* Not valid in MIPS1 architectures

Instruction Set

Load Instruction Descriptions

For all load instructions, the effective address is the 32-bit twos-complement sum of the
contents of the index-register and the (sign-extended) 16-bit offset. Instructions that have
symbolic labels imply an index register, which the assembler determines. The assembler
supports additional load instructions, which can produce multiple machine instructions.

Note: Load instructions can generate many code sequences for which the link editor
must fix the address by resolving external data items.

Table 5-2 Load Instruction Descriptions

Instruction Name Description

Load Address (LA) Loads the destination register with the effective 32-bit
address of the specified data item.

Load Doubleword Loads the destination register with the effective 64-bit
Address (DLA) address of the specified data item (MIPS4 only).

Load Byte (LB) Loads the least-significant byte of the destination register
with the contents of the byte that is at the memory location
specified by the effective address. The system treats the
loaded byte as a signed value: bit seven is extended to fill
the three most-significant bytes.

Load Byte Unsigned Loads the least-significant byte of the destination register

(LBUL) with the contents of the byte that is at the memory location
specified by the effective address. Because the system treats
the loaded byte as an unsigned value, it fills the three
most-significant bytes of the destination register with zeros.

Load Halfword (LH) Loads the two least-significant bytes of the destination
register with the contents of the halfword that is at the
memory location specified by the effective address. The
system treats the loaded halfword as a signed value. If the
effective address is not even, the system signals an address
error exception.

31

Chapter 5: The Instruction Set

32

Table 5-2 (continued)

Load Instruction Descriptions

Instruction Name

Description

Load Halfword
Unsigned (LHU)

Load Linked (LL) *

Load Word (LW)

Load Word Left
(LWL)

Loads the least-significant bits of the destination register
with the contents of the halfword that is at the memory
location specified by the effective address. Because the
system treats the loaded halfword as an unsigned value, it
fills the two most-significant bytes of the destination
register with zeros. If the effective address is not even, the
system signals an address error exception.

Loads the destination register with the contents of the word
that is at the memory location. This instruction performs an
SYNC operation implicitly; all loads and stores to shared
memory fetched prior to the LL must access memory before
the LL, and loads and stores to shared memory fetched
subsequent to the LL must access memory after the LL.
Load Linked and Store Conditional can be use to update
memory locations atomically. The system signals an
address exception when the effective address is not
divisible by four. *This instruction is not valid in the MIPS1
architectures.

Loads the destination register with the contents of the word
that is at the memory location. The system replaces all bytes
of the register with the contents of the loaded word. The
system signals an address error exception when the
effective address is not divisible by four.

Loads the sign; that is, Load Word Left loads the destination
register with the most-significant bytes of the word
specified by the effective address. The effective address
must specify the byte containing the sign. In a big-endian
system, the effective address specifies the lowest numbered
byte; in a little-endian system, the effective address specifies
the highest numbered byte. Only the bytes which share the
same aligned word in memory are merged into the
destination register.

Instruction Set

Table 5-2 (continued) Load Instruction Descriptions

Instruction Name Description

Load Word Right Loads the lowest precision bytes; that is, Load Word Right

(LWR) loads the destination register with the least-significant bytes
of the word specified by the effective address. The effective
address must specify the byte containing the
least-significant bits. In a big-endian configuration, the
effective address specifies the highest numbered byte; in a
little-endian configuration, the effective address specifies
the lowest numbered byte. Only the bytes which share the
same aligned word in memory are merged into the
destination register.

Load Doubleword LD is a machine instruction in the MIPS3 architecture. For

(LD) the -mips1 [default] and -mips2 option: Loads the register
pair (destination and destination +1) with the two successive
words specified by the address. The destination register
must be the even register of the pair. When the address is
not on aword boundary, the system signals an address error
exception.

Note: This is retained for use with the -mips1 and -mips2
options to provide backward compatibility only.

Unaligned Load Loads a halfword into the destination register from the

Halfword (ULH) specified address and extends the sign of the halfword.
Unaligned Load Halfword loads a halfword regardless of
the halfword’s alignment in memory.

Unaligned Load Loads a halfword into the destination register from the

Halfword Unsigned specified address and zero extends the halfword. Unaligned

(ULHU) Load Halfword Unsigned loads a halfword regardless of
the halfword’s alignment in memory.

Unaligned Load Loads a word into the destination register from the

Word (ULW) specified address. Unaligned Load Word loads a word

regardless of the word’s alignment in memory.

Load Immediate (L1) Loads the destination register with the 32-bit value of an
expression that can be computed at assembly time.

Note: Load Immediate can generate any efficient code
sequence to put a desired value in the register.

33

Chapter 5: The Instruction Set

34

Table 5-2 (continued)

Load Instruction Descriptions

Instruction Name

Description

Load Doubleword
Immediate (DLI)

Load Upper
Immediate (LUI)

Loads the destination register with the 64-bit value of an
expression that can be computed at assembly time.

Note: Load Immediate can generate any efficient code
sequence to put a desired value in the register (MIPS4 only).

Loads the most-significant half of a register with the
expression’s value. The system fills the least-significant half
of the register with zeros. The expression’s value must be in
the range -32768...65535.

Table 5-3 Load Instruction Descriptions for MIPS3/4 Architecture Only

Instruction Name

Description

Load Doubleword
(LD)

Load Linked
Doubleword (LLD)

Load Word
Unsigned (LWU)

Loads the destination register with the contents of the
doubleword that is at the memory location. The system
replaces all bytes of the register with the contents of the
loaded doubleword. The system signals an address error
exception when the effective address is not divisible by
eight.

Loads the destination register with the contents of the
doubleword that is currently in the memory location. This
instruction performs a SYNC operation implicitly. Load
Linked Doubleword and Store Conditional Doubleword can
be used to update memory locations atomically.

Loads the least-significant bits of the destination register
with the contents of the word (32 bits) that is at the memory
location specified by the effective address. Because the
system treats the loaded word as an unsigned value, it fills
the four most-significant bytes of the destination register
with zeros. If the effective address is not divisible by four,
the system signals an address error exception.

Instruction Set

Table 5-3 (continued)

Load Instruction Descriptions for MIPS3/4 Architecture Only

Instruction Name

Description

Load Doubleword
Left (LDL)

Load Doubleword
Right (LDR)

Unaligned Load
Doubleword (ULD)

Loads the destination register with the most-significant
bytes of the doubleword specified by the effective address.
The effective address must specify the byte containing the
sign. In a big-endian configuration, the effective address
specifies the lowest numbered byte; in a little-endian
machine, the effective address specifies the highest
numbered byte. Only the bytes which share the same
aligned doubleword in memory are merged into the
destination register.

Loads the destination register with the least-significant
bytes of the doubleword specified by the effective address.
The effective address must specify the byte containing the
least-significant bits. In a bid-endian machine, the effective
address specifies the highest numbered byte. In a
little-endian machine, the effective address specifies the
lowest numbered byte. Only the bytes which share the same
aligned doubleword in memory are merged into the
destination register.

Loads a doubleword into the destination register from the
specified address. ULD loads a doubleword regardless of
the doubleword’s alignment in memory.

Store Instruction Descriptions

For all machine store instructions, the effective address is the 32-bit twos-complement
sum of the contents of the index-register and the (sign-extended) 16-bit offset. The
assembler supports additional store instructions, which can produce multiple machine

35

Chapter 5: The Instruction Set

instructions. Instructions that have symbolic labels imply an index-register, which the
assembler determines.

Table 5-4 Store Instruction Descriptions
Instruction Name Description
Store Byte (SB) Stores the contents of the source register’s least-significant

byte in the byte specified by the effective address.

Store Conditional* Stores the contents of a word from the source register into

(SC) the memory location specified by the effective address. This
instruction implicitly performs a SYNC operation; all loads
and stores to shared memory fetched prior to the sc must
access memory before the sc, and loads and stores to shared
memory fetched subsequent to the sc must access memory
after the sc. If any other processor or device has modified
the physical address since the time of the previous Load
Linked instruction, or if an RFE or ERET instruction occurs
between the Load Linked and this store instruction, the
store fails. The success or failure of the store operation (as
defined above) is indicated by the contents of the source
register after execution of the instruction. A successful store
setsitto 1;and a failed store sets it to 0. The machine signals
an address exception when the effective address is not
divisible by four. *This instruction is not valid in the MIPS1
architectures.

Store Doubleword SD is a machine instruction in the MIPS3 architecture. For

(SD) the -mipsl [default] and -mips2 options: Stores the
contents of the register pair in successive words, which the
address specifies. The source register must be the even
register of the pair, and the storage address must be word
aligned.

Note: This is retained for use with the -mips1 and -mips2
options to provide backward compatibility only.

Store Halfword (SH) Stores the two least-significant bytes of the source register in
the halfword that is at the memory location specified by the
effective address. The effective address must be divisible by
two; otherwise the machine signals an address error
exception.

36

Instruction Set

Table 5-4 (continued) Store Instruction Descriptions

Instruction Name Description

Store Word Left Stores the most-significant bytes of a word in the memory
(SWL) location specified by the effective address. The contents of

the word at the memory location, specified by the effective
address, are shifted right so that the leftmost byte of the
unaligned word is in the addressed byte position. The
stored bytes replace the corresponding bytes of the effective
address. The effective address’s last two bits determine how
many bytes are involved.

Store Word Right Stores the least-significant bytes of a word in the memory

(SWR) location specified by the effective address. The contents of
the word at the memory location, specified by the effective
address, are shifted left so that the right byte of the
unaligned word is in the addressed byte position. The
stored bytes replace the corresponding bytes of the effective
address. The effective address’s last two bits determine how
many bytes are involved.

Store Word (SW) Stores the contents of a word from the source register in the
memory location specified by the effective address. The
effective address must be divisible by four; otherwise the
machine signals an address error exception.

Unaligned Store Stores the contents of the two least-significant bytes of the
Halfword (USH) source register in a halfword that the address specifies. The
machine does not require alignment for the storage address.

Unaligned Store Stores the contents of the source register in a word specified
Word (USW) by the address. The machine does not require alignment for
the storage address.

37

Chapter 5: The Instruction Set

Table 5-5 Store Instruction Descriptions for MIPS3/4 Architecture Only

Instruction Name

Description

Store Doubleword
(SD)

Store Conditional
Doubleword (SCD)

Store Doubleword
Left (SDL)

Store Doubleword
Right (SDR)

Unaligned Store
Doubleword (USD)

Stores the contents of a doubleword from the source register
in the memory location specified by the effective address.
The effective address must be divisible by eight, otherwise
the machine signals an address error exception.

Stores the contents of a doubleword from the source register
into the memory locations specified by the effective address.
This instruction implicitly performs a SYNC operation. If
any other processor or device has modified the physical
address since the time of the previous Load Linked
instruction, or if an ERET instruction occurs between the
Load Linked instruction and this store instruction, the store
fails and is inhibited from taking place. The success or
failure of the store operation (as defined above) is indicated
by the contents of the source register after execution of this
instruction. A successful store sets it to 1; and a failed store
sets it to 0. The machine signals an address exception when
the effective address is not divisible by eight.

Stores the most-significant bytes of a doubleword in the
memory location specified by the effective address. It alters
only the doubleword in memory which contains the byte
indicated by the effective address.

Stores the least-significant bytes of a doubleword in the
memory location specified by the effective address. It alters
only the doubleword in memory which contains the byte
indicated by the effective address.

Stores the contents of the source register in a doubleword
specified by the address. The machine does not require
alignment for the storage address.

Computational Instructions

The machine has general-purpose and coprocessor-specific computational instructions
(for example, the floating-point coprocessor). This part of the book describes

general-purpose computational instructions.

38

Computational Instructions

Computational Instructions

Computational instructions perform the following operations on register values;

 arithmetic

< logical
- shift

< multiply
« divide

Table 5-6 summarizes the computational format summaries, and Table 5-7 and Table 5-8
describe these instructions in more detail.

Table 5-6 Computational Format Summaries

Description Op-code Operand

Add with Overflow ADD destination, srcl, src2

Add without Overflow ADDU destination, srcl, src2
AND AND destination, srcl, immediate
Divide Signed DIV destination/srcl, immediate
Divide Unsigned DIVU

Exclusive-OR XOR

Multiply MUL

Multiply with Overflow MULO

Multiply with Overflow MULOU

Unsigned

NOT OR NOR

OR OR

Set Equal SEQ

Set Greater Than SGT

Set Greater/Equal SGE

39

Chapter 5: The Instruction Set

40

Table 5-6 (continued) Computational Format Summaries
Description Op-code Operand

Set Greater/Equal Unsigned SGEU

Set Greater Unsigned SGTU

Set Less Than SLT

Set Less/Equal SLE

Set Less/Equal Unsigned SLEU

Set Less Than Unsigned SLTU

Set Not Equal SNE

Subtract with Overflow SUB

Subtract without Overflow SUBU

Remainder Signed REM

Remainder Unsigned REMU

Rotate Left ROL

Rotate Right ROR

Shift Right Arithmetic SRA

Shift Left Logical SLL

Shift Right Logical SRL

Absolute Value ABS destination, srcl
Negate with Overflow NEG destination/srcl
Negate without Overflow NEGU

NOT NOT

Move MOVE destination, srcl
Move Conditional on Not Zero MOVN destination, srcl, src2
Move Conditional on Zero MOVZ

Multiply MULT srcl,src2

Computational Instructions

Table 5-6 (continued) Computational Format Summaries
Description Op-code Operand

Multiply Unsigned MULTU

Trap if Equal TEQ srcl, src2

Trap if not Equal TNE srcl, immediate
Trap if Less Than TLT

Trap if Less than, Unsigned TLTU

Trap if Greater Than or Equal TGE

Trap if Greater than or Equal, TGEU
Unsigned

Doubleword Add with Overflow DADD destination,srcl, src2
destination/srcl,src2

Doubleword Add without DADDU destination, srcl, immediate
Overflow destination/src1, immediate
Doubleword Divide Signed DDIV

Doubleword Divide Unsigned DDIVU

Doubleword Multiply DMUL
Doubleword Multiply with DMULO
Overflow

Doubleword Multiply with DMULO
Overflow Unsigned U
Doubleword Subtract with DSUB
Overflow

Doubleword Subtract without DSUBU
Overflow

Description Op-code Operand
Doubleword Remainder Signed DREM
Doubleword Remainder Unsigned DREMU

41

Chapter 5: The Instruction Set

42

Description Op-code Operand
Doubleword Rotate Left DROL
Doubleword Rotate Right DROR
Doubleword Shift Right DSRA
Arithmetic

Doubleword Shift Left Logical DSLL
Doubleword Shift Right Logical DSRL

Doubleword Absolute Value DABS destination, srcl
Doubleword Negate with DNEG destination/srcl
Overflow

Doubleword Negate without DNEGU

Overflow

Doubleword Multiply DMULT srcl, src2

Doubleword Multiply Unsigned DMULT srcl, immediate

U

Computational Instruction Descriptions

Table 5-7 Computational Instruction Descriptions

Instruction Name

Description

Absolute Value
(ABS)

Add with Overflow
(ADD)

Add without
Overflow (ADDU)

Computes the absolute value of the contents of src1 and puts
the result in the destination register. If the value in srcl is
—2147483648, the machine signals an overflow exception.

Computes the twos-complement sum of two signed values.
This instruction adds the contents of srcl to the contents of
src2, or it can add the contents of srcl to the immediate value.
Add (with Overflow) puts the result in the destination
register. When the result cannot be extended as a 32-bit
number, the machine signals an overflow exception.

Computes the twos-complement sum of two 32-bit values.
This instruction adds the contents of srcl to the contents of
src2, or it can add the contents of srcl to the immediate value.
Add (without Overflow) puts the result in the destination
register. Overflow exceptions never occur.

Computational Instructions

Table 5-7 (continued)

Computational Instruction Descriptions

Instruction Name

Description

AND (AND)

Divide Signed (DIV)

Divide Unsigned
(DIVU)

Exclusive-OR (XOR)

Move (MOVE)

Computes the Logical AND of two values. This instruction
ANDs (bit-wise) the contents of srcl with the contents of
src2, or it can AND the contents of srcl with the immediate
value. The immediate value is not sign extended. AND puts
the result in the destination register.

Computes the quotient of two values. Divide (with
Overflow) treats srcl as the dividend. The divisor can be src2
or the immediate value. The instruction divides the contents
of srcl by the contents of src2, or it can divide srcl by the
immediate value. It puts the quotient in the destination
register. If the divisor is zero, the machine signals an error
and may issue a BREAK instruction. The DIV instruction
rounds toward zero. Overflow is signaled when dividing
—2147483648 by —1. The machine may issue a BREAK
instruction for divide-by-zero or for overflow.

Note: The special case DIV $0,srcl,src2 generates the real
machine divide instruction and leaves the result in the
HI/LO register. The HI register contains the remainder and
the LO register contains the quotient. No checking for
divide-by-zero is performed.

Computes the quotient of two unsigned 32-bit values.
Divide (unsigned) treats srcl as the dividend. The divisor
can be src2 or the immediate value. This instruction divides
the contents of srcl by the contents of src2, or it can divide
the contents of srcl by the immediate value. Divide
(unsigned) puts the quotient in the destination register. If the
divisor is zero, the machine signals an exception and may
issue a BREAK instruction. See the note for DIV concerning
$0 as a destination. Overflow exceptions never occur.

Computes the XOR of two values. This instruction XORs
(bit-wise) the contents of src1 with the contents of src2, or it
can XOR the contents of src1 with the immediate value. The
immediate value is not sign extended. Exclusive-OR puts
the result in the destination register.

Moves the contents of srcl to the destination register.

43

Chapter 5: The Instruction Set

44

Table 5-7 (continued)

Computational Instruction Descriptions

Instruction Name

Description

Move Conditional on
Not Zero (MOVN)

Move Conditionalon

Zero (MOVZ)
Multiply (MUL)

Multiply (MULT)

Multiply Unsigned
(MULTU)

Conditionally moves the contents of srcl to the destination
register after testing that src2 is not equal to zero (MIPS4

only.)

Conditionally moves the contents of srcl to the destination
register after testing that src2 is equal to zero (MIPS4 only).

Computes the product of two values. This instruction puts
the 32-bit product of srcl and src2, or the 32-bit product of
srcl and the immediate value, in the destination register. The
machine does not report overflow.

Note: Use MUL when you do not need overflow protection:
it’s often faster than MULO and MULOU. For multiplication
by a constant, the MUL instruction produces faster machine
instruction sequences than MULT or MULTU instructions
can produce.

Computes the 64-bit product of two 32-bit signed values.
This instruction multiplies the contents of srcl by the
contents of src2 and puts the resultin the Hl and LO registers
(see Chapter 1). No overflow is possible.

Note: The MULT instruction is a real machine language
instruction.

Computes the product of two unsigned 32-bit values. It
multiplies the contents of srcl and the contents of src2 and
puts the result in the HI and LO registers (see Chapter 1). No
overflow is possible.

Note: The MULTU instruction is a real machine language
instruction.

Computational Instructions

Table 5-7 (continued)

Computational Instruction Descriptions

Instruction Name

Description

Multiply with
Overflow (MULO)

Multiply with
Overflow Unsigned
(MULOU)

Negate with
Overflow (NEG)

Negate without
Overflow (NEGU)

NOT (NOT)

NOT OR (NOR)

Computes the product of two 32-bit signed values. Multiply
(with Overflow) puts the 32-bit product of srcl and src2, or
the 32-bit product of srcl and the immediate value, in the
destination register. When an overflow occurs, the machine
signals an overflow exception and may execute a BREAK
instruction.

Note: For multiplication by a constant, MULO produces
faster machine instruction sequences than MULT or MULTU
can produce; however, if you do not need overflow
detection, use the MUL instruction. It’s often faster than
MULO.

Computes the product of two 32-bit unsigned values.
Multiply (with Overflow Unsigned) puts the 32-bit product
of srcl and src2, or the product of srcl and the immediate
value, in the destination register. This instruction treats the
multiplier and multiplicand as 32-bit unsigned values.
When an overflow occurs, the machine signals an overflow
exception and may issue an BREAK instruction.

Note: For multiplication by a constant, MULOU produces