

What Is Data Mining?

- Data mining (knowledge discovery from data)
 - Extraction of interesting (<u>non-trivial</u>, <u>implicit</u>, <u>previously</u> <u>unknown</u> and <u>potentially useful</u>) patterns or knowledge from
 - huge amount of data
 - Data mining: a misnomer?
- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
- Watch out: Is everything "data mining"?
 - Simple search and query processing
 - (Deductive) expert systems

October 20, 2009

Data Mining: Concepts and Techniques

Why Data Mining?—Potential Applications

- Data analysis and decision support
 - Market analysis and management
 - Target marketing, customer relationship management (CRM), market basket analysis, cross selling, market segmentation
 - Risk analysis and management
 - Forecasting, customer retention, improved underwriting, quality control, competitive analysis
 - Fraud detection and detection of unusual patterns (outliers)
- Other Applications
 - Text mining (news group, email, documents) and Web mining
 - Stream data mining
 - Bioinformatics and bio-data analysis
- October 20, 2009

Data Mining: Concepts and Techniques

Multi-Dimensional View of Data Mining	Data Mining
 Data to be mined Relational, data warehouse, transactional, stream, object- oriented/relational, active, spatial, time-series, text, multi-media, heterogeneous, legacy, WWW Knowledge to be mined 	 General functionality Descriptive data Predictive data r
 Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, etc. Multiple/integrated functions and mining at multiple levels 	 Different views lead to Data view: Kinds
 <u>Techniques utilized</u> Database-oriented, data warehouse (OLAP), machine learning, statistics, visualization, etc. 	Knowledge viewMethod view: Ki
 <u>Applications adapted</u> Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, text mining, Web mining, etc. 	 Application view
October 20, 2009 Data Mining: Concepts and Techniques 9	October 20, 2009

g: Classification Schemes

- mining
- mining
- different classifications
 - ls of data to be mined
 - v: Kinds of knowledge to be discovered

Data Mining: Concepts and Techniques

- inds of techniques utilized
- : Kinds of applications adapted

Data Mining: On What Kinds of Data?

- Database-oriented data sets and applications .
 - Relational database, data warehouse, transactional database
- Advanced data sets and advanced applications
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data (incl. bio-sequences)
 - Structure data, graphs, social networks and multi-linked data
 - Object-relational databases
 - Heterogeneous databases and legacy databases
 - Spatial data and spatiotemporal data
 - Multimedia database
 - Text databases
 - The World-Wide Web

October 20, 2009

Data Mining: Concepts and Techniques

Data Mining Functionalities

- Multidimensional concept description: Characterization and discrimination
 - Generalize, summarize, and contrast data characteristics, e.g., dry vs. wet regions
- Frequent patterns, association, correlation vs. causality
 - Diaper \rightarrow Beer [0.5%, 75%] (Correlation or causality?)
- Classification and prediction
 - Construct models (functions) that describe and distinguish classes or concepts for future prediction
 - E.g., classify countries based on (climate), or classify cars based on (gas mileage)
 - Predict some unknown or missing numerical values
- October 20, 2009

Data Mining: Concepts and Techniques

Are All the "Discovered" Patterns Interesting?

- Data mining may generate thousands of patterns: Not all of them are interesting
 - Suggested approach: Human-centered, query-based, focused mining
- Interestingness measures
 - A pattern is interesting if it is <u>easily understood</u> by humans, <u>valid</u> on new or test data with some degree of certainty, <u>potentially useful</u>, <u>novel</u>, or <u>validates some hypothesis</u> that a user seeks to confirm
- Objective vs. subjective interestingness measures
 - <u>Objective</u>: based on statistics and structures of patterns, e.g., support, confidence, etc.
 - <u>Subjective</u>: based on user's belief in the data, e.g., unexpectedness, novelty, actionability, etc.

October 20, 2009

Data Mining: Concepts and Techniques

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Other Pattern Mining Issues

- Precise patterns vs. approximate patterns
 - Association and correlation mining: possible find sets of precise patterns
 - But approximate patterns can be more compact and sufficient
 - How to find high quality approximate patterns??
 - Gene sequence mining: approximate patterns are inherent
 - How to derive efficient approximate pattern mining algorithms??
- Constrained vs. non-constrained patterns
- Why constraint-based mining?
 - What are the possible kinds of constraints? How to push constraints into the mining process?

```
October 20, 2009
```

Data Mining: Concepts and Technique

Primitives that Define a Data Mining Task

- Task-relevant data
- Type of knowledge to be mined
- Background knowledge
- Pattern interestingness measurements
- Visualization/presentation of discovered patterns

.

October 20, 2009

Data Mining: Concepts and Techniques

Primitive 2: Types of Knowledge to Be Mined Characterization Discrimination Association Classification/prediction Clustering Outlier analysis Other data mining tasks

 Simplic 	ity
e.e	g., (association) rule length, (decision) tree size
Certair	ty
e.e	g., confidence, P(A B) = #(A and B)/ #(B), classification
rel dis	iability or accuracy, certainty factor, rule strength, rule quality criminating weight, etc.
 Utility 	
po (de	tential usefulness, e.g., support (association), noise threshold escription)
 Novelty 	/
no	t previously known, surprising (used to remove redundant
ru	es, e.g., Illinois vs. Champaign rule implication support ratio)

DMQL—A Data Mining Query Language

- Motivation
 - A DMQL can provide the ability to support ad-hoc and interactive data mining
 - By providing a standardized language like SQL
 - Hope to achieve a similar effect like that SQL has on relational database
 - Foundation for system development and evolution
 - Facilitate information exchange, technology transfer, commercialization and wide acceptance
- Design
 - DMQL is designed with the primitives described earlier

```
October 20, 2009
```

An Example Query in DMQL
Example 1.11 Mining classification rules. Suppose, as a marketing manager of AllElectronics, you would like to classify customers based on their buying patterns. You are especially interested in those customers whose salary is no less than \$40,000, and who have bought more than \$1,000 worth of items, each of which is priced at no less than \$100. In particular, you are interested in the customer's age, income, the types of items purchased, the purchase location, and where the items were made. You would like to view the resulting classification in the form of rules. This data mining query is expressed in DMQL ³ as follows, where each line of the query has been enumerated to aid in our discussion.
use database AllElectronics_db
use hierarchy location_hierarchy for T.branch, age_hierarchy for C.age
mine classification as promising_customers
in relevance to C.age, C.income, I.type, I.place made, T.branch
from customer C, item I, transaction T
where $I.item_{ID} = T.item_{ID}$ and $C.cust_{ID} = T.cust_{ID}$
and $C.income \ge 40,000$ and $I.price \ge 100$
group by T.cust_ID
having sum(I.price) $\geq 1,000$
display as rules
October 20, 2009 Data Mining: Concepts and Techniques 25

Other Data Mining Languages & Standardization Efforts

- Association rule language specifications
 - MSQL (Imielinski & Virmani'99)
 - MineRule (Meo Psaila and Ceri'96)
 - Query flocks based on Datalog syntax (Tsur et al'98)
- OLEDB for DM (Microsoft'2000) and recently DMX (Microsoft SQLServer 2005)
 - Based on OLE, OLE DB, OLE DB for OLAP, C#
 - Integrating DBMS, data warehouse and data mining
- DMML (Data Mining Mark-up Language) by DMG (www.dmg.org)
 - Providing a platform and process structure for effective data mining
 - Emphasizing on deploying data mining technology to solve business problems

October 20, 2009

Data Mining: Concepts and Techniques

Data mining systems, DBMS, Data warehouse systems coupling Data mining systems, DBMS, Data warehouse systems coupling No coupling, loose-coupling, semi-tight-coupling, tight-coupling On-line analytical mining data integration of mining and OLAP technologies Interactive mining multi-level knowledge Necessity of mining knowledge and patterns at different levels of abstraction by drilling/rolling, pivoting, slicing/dicing, etc. Integration of multiple mining functions Characterized classification, first clustering and then association

Coupling Data Mining with DB/DW Systems

- No coupling —flat file processing, not recommended
- Loose coupling
 - Fetching data from DB/DW
- Semi-tight coupling —enhanced DM performance
 - Provide efficient implement a few data mining primitives in a DB/DW system, e.g., sorting, indexing, aggregation, histogram analysis, multiway join, precomputation of some stat functions
- Tight coupling —A uniform information processing environment
 - DM is smoothly integrated into a DB/DW system, mining query is optimized based on mining query, indexing, query processing methods, etc.

```
October 20, 2009
```


<section-header> Summary Data mining: Discovering interesting patterns from large amounts of data A natural evolution of database technology, in great demand, with wide applications A KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation Mining can be performed in a variety of information repositories Data mining functionalities: characterization, discrimination, association, classification, clustering, outlier and trend analysis, etc. Data mining systems and architectures Major issues in data mining

•	1989 IJCAI Workshop on Knowledge Discovery in Databases
	 Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley 1991)
	1991-1994 Workshops on Knowledge Discovery in Databases
	 Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
1	1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining (KDD'95-98)
	 Journal of Data Mining and Knowledge Discovery (1997)
	ACM SIGKDD conferences since 1998 and SIGKDD Explorations
	More conferences on data mining
	 PAKDD (1997), PKDD (1997), SIAM-Data Mining (2001), (IEEE) ICDM (2001), etc.
	ACM Transactions on KDD starting in 2007

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
- Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.
 October 20, 2009
 Data Mining: Concepts and Techniques

- Discloses an intrinsic and important property of data sets
- Forms the foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data
 - Classification: associative classification
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles
 - Broad applications
- October 20, 2009 Data Mining: Concepts and Techniques

Closed Patterns and Max-Patterns

- A long pattern contains a combinatorial number of subpatterns, e.g., $\{a_1, ..., a_{100}\}$ contains $({}_{100}{}^1) + ({}_{100}{}^2) + ... + ({}_{1}{}^{1}_{0}{}^{0}_{0}) = 2^{100} - 1 = 1.27*10^{30}$ sub-patterns!
- Solution: *Mine closed patterns and max-patterns instead*
- An itemset X is closed if X is *frequent* and there exists *no* super-pattern Y ⊃ X, with the same support as X (proposed by Pasquier, et al. @ ICDT'99)
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y ⊃ X (proposed by Bayardo @ SIGMOD'98)
- Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules

- <u>Apriori pruning principle</u>: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

```
October 20, 2009
```

Data Mining: Concepts and Techniques

11

Efficient Implementation of Apriori in SQL

- Hard to get good performance out of pure SQL (SQL-92) based approaches alone
- Make use of object-relational extensions like UDFs, BLOBs, Table functions etc.
 - Get orders of magnitude improvement
- S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. In SIGMOD'98

Data Mining: Concepts and Techniques

Challenges of Frequent Pattern Mining

- Challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

DHP: Reduce the Number of Candidates

- A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
 - Candidates: a, b, c, d, e
 - Hash entries: {ab, ad, ae} {bd, be, de} ...
 - Frequent 1-itemset: a, b, d, e
 - ab is not considered to be a candidate 2-itemset if the sum of count of {ab, ad, ae} is below support threshold
- J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. In SIGMOD'95

Data Mining: Concepts and Techniques

