
Machine  Learning in 

Real World: 

C4.5 

Outline 

!!Handling Numeric Attributes 

!!Finding Best Split(s) 

!!Dealing with Missing Values 

!!Pruning 

!!Pre-pruning, Post-pruning, Error Estimates 

!!From Trees to Rules 

Industrial-strength algorithms 

!! For an algorithm to be useful in a wide range of real-
world applications it must: 

!! Permit numeric attributes 

!! Allow missing values 

!! Be robust in the presence of noise 

!! Be able to approximate arbitrary concept descriptions (at least 
in principle)  

!! Basic schemes need to be extended to fulfill these 
requirements 
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C4.5 History 

!! ID3, CHAID – 1960s 

!! C4.5 innovations (Quinlan): 

!! permit numeric attributes 

!! deal sensibly with missing values 

!! pruning to deal with for noisy data 

!! C4.5 - one of best-known and most widely-used learning 
algorithms 

!! Last research version: C4.8, implemented in Weka as J4.8 (Java) 

!! Commercial successor: C5.0 (available from Rulequest) 

Numeric attributes 

!! Standard method: binary splits 

!! E.g. temp < 45 

!! Unlike nominal attributes, 
every attribute has many possible split points 

!! Solution is straightforward extension:  

!! Evaluate info gain (or other measure) 
for every possible split point of attribute 

!! Choose “best” split point 

!! Info gain for best split point is info gain for attribute 

!! Computationally more demanding 
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Weather data – nominal values 
Outlook Temperature Humidity Windy Play 

Sunny Hot High False No 

Sunny Hot  High  True No 

Overcast  Hot   High False Yes 

Rainy Mild Normal False Yes 

… … … … … 

If outlook = sunny and humidity = high then play = no 

If outlook = rainy and windy = true then play = no 

If outlook = overcast then play = yes 

If humidity = normal then play = yes 

If none of the above then play = yes 
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Weather data - numeric 
Outlook Temperature Humidity Windy Play 

Sunny 85 85 False No 

Sunny 80  90  True No 

Overcast  83   86 False Yes 

Rainy 75 80 False Yes 

… … … … … 

If outlook = sunny and humidity > 83 then play = no 

If outlook = rainy and windy = true then play = no 

If outlook = overcast then play = yes 

If humidity < 85 then play = yes 

If none of the above then play = yes 

Example 

!! Split on temperature attribute: 

!! E.g.  temperature < 71.5: yes/4, no/2 
 temperature ! 71.5: yes/5, no/3 

!! Info([4,2],[5,3]) 
= 6/14 info([4,2]) + 8/14 info([5,3])  
= 0.939 bits 

!! Place split points halfway between values 

!! Can evaluate all split points in one pass! 

 64     65     68     69     70     71     72     72     75     75     80     81     83     85 

Yes  No  Yes Yes  Yes  No  No  Yes Yes  Yes  No  Yes  Yes No 
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Avoid repeated sorting! 

!! Sort instances by the values of the numeric attribute 

!! Time complexity for sorting: O (n log n)  

!! Q. Does this have to be repeated at each node of 
the tree? 

!! A: No! Sort order for children can be derived from sort 
order for parent 

!! Time complexity of derivation: O (n) 

!! Drawback: need to create and store an array of sorted indices 
for each numeric attribute  
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More speeding up  

!!Entropy only needs to be evaluated between points 
of different classes (Fayyad & Irani, 1992) 

 64     65     68     69     70     71     72     72     75     75     80     81     83     85 

Yes  No  Yes Yes  Yes  No  No  Yes Yes  Yes  No  Yes  Yes No 

Potential optimal breakpoints 

Breakpoints between values of the same class cannot 
be optimal 

value 

class 

X 

Binary vs. multi-way splits 

!! Splitting (multi-way) on a nominal attribute 
exhausts all information in that attribute 

!! Nominal attribute is tested (at most) once on any path 
in the tree 

!! Not so for binary splits on numeric attributes! 

!! Numeric attribute may be tested several times along a 
path in the tree 

!! Disadvantage: tree is hard to read 

!! Remedy: 

!! pre-discretize numeric attributes, or 

!! use multi-way splits instead of binary ones 

witten & eibe 

Missing as a separate value 

!!Missing value denoted “?” in C4.X 

!!Simple idea: treat missing as a separate value 

!!Q: When this is not appropriate? 

!!A: When values are missing due to different 
reasons  

!!Example 1: gene expression could be missing when it is 
very high or very low   

!!Example 2: field IsPregnant=missing for a male 
patient should be treated differently (no) than for a 
female patient of age 25 (unknown) 



Missing values - advanced 

Split instances with missing values into pieces 

!! A piece going down a branch receives a weight 
proportional to the popularity of the branch 

!! weights sum to 1 

!! Info gain works with fractional instances 

!! use sums of weights instead of counts 

!! During classification, split the instance into pieces 
in the same way 

!! Merge probability distribution using weights 
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Pruning 

!! Goal: Prevent overfitting to noise in the 

data 

!! Two strategies for “pruning” the decision 

tree: 

"! Postpruning - take a fully-grown decision tree 
and discard unreliable parts 

"! Prepruning - stop growing a branch when 
information becomes unreliable 

!! Postpruning preferred in practice—

prepruning can “stop too early” 

Prepruning 

!! Based on statistical significance test 

!! Stop growing the tree when there is no statistically significant 
association between any attribute and the class at a particular 
node 

!! Most popular test: chi-squared test 

!! ID3 used chi-squared test in addition to information gain 

!! Only statistically significant attributes were allowed to be 
selected by information gain procedure 
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Early stopping 

!! Pre-pruning may stop the growth process 
prematurely: early stopping 

!! Classic example: XOR/Parity-problem 

!! No individual attribute exhibits any significant 
association to the class 

!! Structure is only visible in fully expanded tree 

!! Pre-pruning won’t expand the root node 

!! But: XOR-type problems rare in practice 

!! And: pre-pruning faster than post-pruning 

a b class 

1 0 0 0 

2 0 1 1 

3 1 0 1 

4 1 1 0 
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Post-pruning 
!! First, build full tree 

!! Then, prune it 

!! Fully-grown tree shows all attribute interactions  

!! Problem: some subtrees might be due to chance effects 

!! Two pruning operations:  

1.! Subtree replacement 

2.! Subtree raising 

!! Possible strategies: 

!! error estimation 

!! significance testing 

!! MDL principle 
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Subtree replacement 
!! Bottom-up 

!! Consider replacing a tree 
only after considering all 
its subtrees 

!! Ex: labor negotiations  
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Subtree 
replacement 

!! Bottom-up 

!! Consider replacing a tree 
only after considering all 
its subtrees 
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*Subtree raising 
!! Delete node 

!! Redistribute instances 

!! Slower than subtree 
replacement 

 (Worthwhile?) 
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X

Estimating error rates 

!! Prune only if it reduces the estimated error 

!! Error on the training data is NOT a useful 
estimator 
Q: Why it would result in very little pruning? 

!! Use hold-out set for pruning 
(“reduced-error pruning”) 

!! C4.5’s method 

!! Derive confidence interval from training data 

!! Use a heuristic limit, derived from this, for pruning 

!! Standard Bernoulli-process-based method 

!! Shaky statistical assumptions (based on training data) 
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*Mean and variance 

!! Mean and variance for a Bernoulli trial: 
p, p (1–p) 

!! Expected success rate f=S/N 

!! Mean and variance for f : p, p (1–p)/N 

!! For large enough N, f  follows a Normal 
distribution 

!! c% confidence interval [–z " X " z] for random 
variable with 0 mean is given by: 

!! With a symmetric distribution: 
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*Confidence limits 
!! Confidence limits for the normal distribution with 0 mean and 

a variance of 1: 

!! Thus: 

!! To use this we have to reduce our random variable f  to have 
0 mean and unit variance 

Pr[X ! z] z 

0.1% 3.09 

0.5% 2.58 

1% 2.33 

5% 1.65 

10% 1.28 

20% 0.84 

25% 0.69 

40% 0.25 
–1     0     1   1.65 
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*Transforming f 

!! Transformed value for f : 

(i.e. subtract the mean and divide by the standard deviation) 

!! Resulting equation: 

!! Solving for p: 

witten & eibe 



C4.5’s method 

!! Error estimate for subtree is weighted sum of error 
estimates for all its leaves 

!! Error estimate for a node (upper bound): 

!! If c = 25% then z = 0.69 (from normal distribution) 

!! f  is the error on the training data 

!! N  is the number of instances covered by the leaf 
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Example 

f=0.33 

e=0.47 

f=0.5 

e=0.72 

f=0.33 

e=0.47 

f = 5/14  

e = 0.46 

e < 0.51 

so prune! 

Combined using ratios 6:2:6 gives 0.51 
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*Complexity of tree induction 
!! Assume 

!! m attributes 

!! n training instances 

!! tree depth O (log n) 

!! Building a tree  O (m n log n) 

!! Subtree replacement  O (n) 

!! Subtree raising  O (n (log n)2) 

!! Every instance may have to be redistributed at every node 
between its leaf and the root 

!! Cost for redistribution (on average): O (log n) 

!! Total cost: O (m n log n) + O (n (log n)2) 
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From trees to rules 
!! Simple way: one rule for each leaf 

!! C4.5rules: greedily prune conditions from each rule 
if this reduces its estimated error 

!! Can produce duplicate rules 

!! Check for this at the end 

!! Then 

!! look at each class in turn 

!! consider the rules for that class 

!! find a “good” subset (guided by MDL) 

!! Then rank the subsets to avoid conflicts 

!! Finally, remove rules (greedily) if this decreases 
error on the training data 
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C4.5rules: choices and options 

!! C4.5rules slow for large and noisy datasets 

!! Commercial version C5.0rules uses a different technique 

!! Much faster and a bit more accurate 

!! C4.5 has two parameters 

!! Confidence value (default 25%): 
lower values incur heavier pruning 

!! Minimum number of instances in the two most popular 
branches (default 2) 
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*Classification rules 

!! Common procedure: separate-and-conquer  

!! Differences: 

!! Search method (e.g. greedy, beam search, ...) 

!! Test selection criteria (e.g. accuracy, ...) 

!! Pruning method (e.g. MDL, hold-out set, ...) 

!! Stopping criterion (e.g. minimum accuracy) 

!! Post-processing step 

!! Also: Decision list 
  vs.  one rule set for each class 
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*Test selection criteria 
!! Basic covering algorithm: 

!! keep adding conditions to a rule to improve its accuracy 

!! Add the condition that improves accuracy the most 

!! Measure 1: p/t 

!! t  total instances covered by rule 
p  number of these that are positive 

!! Produce rules that don’t cover negative instances, 
as quickly as possible 

!! May produce rules with very small coverage 
—special cases or noise? 

!! Measure 2: Information gain p (log(p/t) – log(P/T)) 

!! P and T the positive and total numbers before the new condition 
was added 

!! Information gain emphasizes positive rather than negative 
instances 

!! These interact with the pruning mechanism used 
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*Missing values, 
numeric attributes 

!! Common treatment of missing values: 
for any test, they fail 

!! Algorithm must either 

!! use other tests to separate out positive instances 

!! leave them uncovered until later in the process 

!! In some cases it’s better to treat “missing” as a separate 

value 

!! Numeric attributes are treated just like they are in 

decision trees 
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*Pruning rules 

!! Two main strategies: 

!! Incremental pruning 

!! Global pruning 

!! Other difference: pruning criterion 

!! Error on hold-out set (reduced-error pruning) 

!! Statistical significance 

!! MDL principle 

!! Also: post-pruning vs. pre-pruning 
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Summary  

!! Decision Trees 

!! splits – binary, multi-way 

!! split criteria – entropy, gini, … 

!! missing value treatment 

!! pruning  

!! rule extraction from trees 

!! No method is always superior – 
experiment! 
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