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The Parser

�The task of the parser is to check syntax

�The syntax-directed translation stage in the 
compiler’s front-end checks static semantics and 
produces an intermediate representation (IR) of 
the source program

�Abstract syntax trees (ASTs)

�Control-flow graphs (CFGs) with triples, three-
address code, or register transfer lists

�WHIRL (SGI Pro64 compiler) has 5 IR levels!
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Error Handling

�A good compiler should assist in identifying and 
locating errors
�Lexical errors: important, compiler can easily recover 
and continue

�Syntax errors: most important for compiler, can 
almost always recover

�Static semantic errors: important, can sometimes 
recover

�Dynamic semantic errors: hard or impossible to 
detect at compile time, runtime checks are required

�Logical errors: hard or impossible to detect
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Viable-Prefix Property

�The viable-prefix property of LL/LR parsers 
allows early detection of syntax errors

�Goal: detection of an error as soon as possible 
without consuming unnecessary input

�How: detect an error as soon as the prefix of the 
input does not match a prefix of any string in the 
language

…

for (;)

…

…

DO 10 I = 1;0

…

Error is

detected here

Error is

detected here

Prefix Prefix
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Error Recovery Strategies

�Panic mode
�Discard input until a token in a set of designated 
synchronizing tokens is found

�Phrase-level recovery
�Perform local correction on the input to repair the 
error

�Error productions
�Augment grammar with productions for erroneous 
constructs

�Global correction
�Choose a minimal sequence of changes to obtain a 
global least-cost correction
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Grammars (Recap)

�Context-free grammar is a 4-tuple 
G=(N,T,P,S) where
�T is a finite set of tokens (terminal symbols)

�N is a finite set of nonterminals

�P is a finite set of productions of the form
α → β
where α ∈ (N∪T)* N (N∪T)*
and β ∈ (N∪T)*

�S is a designated start symbol S ∈ N
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Notational Conventions 
Used

�Terminals
a,b,c,… ∈ T
specific terminals: 0, 1, id, +

�Nonterminals
A,B,C,… ∈ N
specific nonterminals: expr, term, stmt

�Grammar symbols
X,Y,Z ∈ (N∪T)

�Strings of terminals
u,v,w,x,y,z ∈ T*

�Strings of grammar symbols
α,β,γ ∈ (N∪T)*
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Derivations (Recap)

�The one-step derivation is defined by
α A β ⇒ α γ β

where A → γ is a production in the grammar

�In addition, we define
�⇒ is leftmost ⇒lm if α does not contain a 
nonterminal

�⇒ is rightmost ⇒rm if β does not contain a 
nonterminal

�Transitive closure ⇒* (zero or more steps)

�Positive closure ⇒+ (one or more steps)

�The language generated by G is defined by
L(G) = {w | S ⇒+ w}
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Derivation (Example)

E → E + E

E → E * E

E → ( E )

E → - E

E → id

E ⇒ - E ⇒ - id

E ⇒* E

E ⇒+ id * id + id

E ⇒rm E + E ⇒rm E + id ⇒rm id + id
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Chomsky Hierarchy: 
Language Classification

�A grammar G is said to be
�Regular if it is right linear where each production is 
of the form
A → w B or A → w
or left linear where each production is of the form
A → B w or A → w

�Context free if each production is of the form
A → α
where A ∈ N and α ∈ (N∪T)*

�Context sensitive if each production is of the form
α A β → α γ β
where A ∈ N, α,γ,β ∈ (N∪T)*, |γ| > 0

�Unrestricted
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Chomsky Hierarchy

L(regular) ⊆ L(context free) ⊆ L(context sensitive) ⊆ L(unrestricted)

Where L(T) = { L(G) | G is of type T }

That is, the set of all languages

generated by grammars G of type T

L1 = { anbn | n ≥ 1 } is context free

L2 = { anbncn | n ≥ 1 } is context sensitive

Every finite language is regular

Examples:
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Parsing

�Universal (any C-F grammar)
�Cocke-Younger-Kasimi

�Earley

�Top-down (C-F grammar with restrictions)
�Recursive descent (predictive parsing)

�LL (Left-to-right, Leftmost derivation) methods

�Bottom-up (C-F grammar with restrictions)
�Operator precedence parsing

�LR (Left-to-right, Rightmost derivation) methods
⌧SLR, canonical LR, LALR
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Top-Down Parsing

�LL methods (Left-to-right, Leftmost 
derivation) and recursive-descent parsing

Grammar:

E → T + T

T → ( E )

T → - E

T → id

Leftmost derivation:

E ⇒lm T + T

⇒lm id + T

⇒lm id + id

E E

T

+

T

idid

E

TT

+

E

T

+

T

id
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�Productions of the form
A → A α

| β
| γ

are left recursive

�When one of the productions in a 
grammar is left recursive then a predictive 
parser may loop forever

Left Recursion (Recap)

16

General Left Recursion 
Elimination

Arrange the nonterminals in some order A1, A2, …, An

for i = 1, …, n do

for j = 1, …, i-1 do
replace each

Ai → Aj γ
with

Ai → δ1 γ | δ2 γ | … | δk γ
where

Aj → δ1 | δ2 | … | δk

enddo
eliminate the immediate left recursion in Ai

enddo
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Immediate Left-Recursion 
Elimination

Rewrite every left-recursive production

A → A α
| β
| γ
| A δ

into a right-recursive production:

A → β AR

| γ AR

AR → α AR

| δ AR

| ε
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Example Left Rec. 
Elimination

A → B C | a

B → C A | A b
C → A B | C C | a

Choose arrangement: A, B, C

i = 1: nothing to do

i = 2, j = 1: B → C A | A b
⇒ B → C A | B C b | a b

⇒(imm) B → C A BR | a b BR

BR → C b BR | ε
i = 3, j = 1: C → A B | C C | a

⇒ C → B C B | a B | C C | a
i = 3, j = 2: C → B C B | a B | C C | a

⇒ C → C A BR C B | a b BR C B | a B | C C | a

⇒(imm) C → a b BR C B CR | a B CR | a CR

CR → A BR C B CR | C CR | ε
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Left Factoring

�When a nonterminal has two or more 
productions whose right-hand sides start with 
the same grammar symbols, the grammar is not 
LL(1) and cannot be used for predictive parsing

�Replace productions
A → α β1 | α β2 | … | α βn | γ

with
A → α AR | γ
AR → β1 | β2 | … | βn

20

Predictive Parsing

�Eliminate left recursion from grammar

�Left factor the grammar

�Compute FIRST and FOLLOW

�Two variants:

�Recursive (recursive calls)

�Non-recursive (table-driven)
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FIRST (Use Defs from Book)

�FIRST(α) = the set of terminals that begin all 
strings derived from α

FIRST(a) = {a} if a ∈ T
FIRST(ε) = {ε}
FIRST(A) = ∪A→α FIRST(α) for A→α ∈
P
FIRST(X1X2…Xk) =
if for all j = 1, …, i-1 : ε ∈ FIRST(Xj) then

add non-ε in FIRST(Xi) to 
FIRST(X1X2…Xk)
if for all j = 1, …, k : ε ∈ FIRST(Xj) then

add ε to FIRST(X1X2…Xk)
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FOLLOW (Use defs Book)

�FOLLOW(A) = the set of terminals that can 
immediately follow nonterminal A

FOLLOW(A) =
for all (B → α A β) ∈ P do

add FIRST(β)\{ε} to FOLLOW(A)
for all (B → α A β) ∈ P and ε ∈ FIRST(β) do

add FOLLOW(B) to FOLLOW(A)
for all (B → α A) ∈ P do

add FOLLOW(B) to FOLLOW(A)
if A is the start symbol S then

add $ to FOLLOW(A)
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EXAMPLE (From Book)

�Explain how FOLLOW works….
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LL(1) Grammar

�A grammar G is LL(1) if for each collections of 
productions

A → α1 | α2 | … | αn
for nonterminal A the following holds:

1. FIRST(αi) ∩ FIRST(αj) = ∅ for all i ≠ j
2. if αi ⇒

* ε then
2.a. αj ⇒

* ε for all i ≠ j
2.b. FIRST(αj) ∩ FOLLOW(A) = ∅

for all i ≠ j
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Non-LL(1) Examples

For R:
FIRST(S) ∩ FOLLOW(R) ≠ ∅

S → a R a
R → S | ε

For R: S →* ε and ε →* ε
S → a R | ε
R → S | ε

FIRST(a S) ∩ FIRST(a) ≠ ∅S → a S | a

Left recursiveS → S a | a

Not LL(1) becauseGrammar
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Recursive Descent Parsing

�Grammar must be LL(1)

�Every nonterminal has one (recursive) 
procedure responsible for parsing the 
nonterminal’s syntactic category of input tokens

�When a nonterminal has multiple productions, 
each production is implemented in a branch of a 
selection statement based on input look-ahead 
information
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Using FIRST and FOLLOW to 
Write a Rec. Descent Parser

expr → term rest

rest → + term rest

| - term rest

| ε
term → id

procedure rest();

begin
if lookahead in FIRST(+ term rest) then

match(‘+’); term(); rest()

else if lookahead in FIRST(- term rest) then

match(‘-’); term(); rest()

else if lookahead in FOLLOW(rest) then

return
else error()

end;

FIRST(+ term rest) = { + }

FIRST(- term rest) = { - }

FOLLOW(rest) = { $ }
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Non-Recursive Predictive 
Parsing

�Given an LL(1) grammar G=(N,T,P,S) 
construct a table M[A,a] for A ∈ N, a ∈ T 
and use a driver program with a stack

Predictive parsing

program (driver)

Parsing table

M

$b+a

$

Z

Y

X

stack

input

output
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Constructing a Predictive 
Parsing Table

for each production A → α do

for each a ∈ FIRST(α) do

add A → α to M[A,a]

enddo

if ε ∈ FIRST(α) then

for each b ∈ FOLLOW(A) do

add A → α to M[A,b]

enddo

endif

enddo
Mark each undefined entry in M error
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Example Table
E → T ER

ER → + T ER | ε
T → F TR

TR → * F TR | ε
F → ( E ) | id

F → ( E )F → idF

TR → εTR → εTR → * F TRTR → εTR

T → F TRT → F TRT

ER → εER → εER → + T ERER

E → T ERE → T ERE

$)(*+id

idF → id

* + $ )(F → ( E )

εTR → ε

+ $ )*TR → * F TR

+ $ )( idT → F TR

εER → ε

$ )+ER → + T ER

$ )( idE → T ER

FOLLOW(A)FIRST(α)A → α
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LL(1) Grammars are 
Unambiguous

Ambiguous grammar

S → i E t S SR | a
SR → e S | ε
E → b

E → bE

SR → ε
SR → ε

SR → e S
SR

S → i E t S SRS → aS

$tieba

tbE → b

εSR → ε

e $eSR → e S

aS → a

e $i
S → i E t S 

SR

FOLLOW(A)FIRST(α)A → α

Error: duplicate table entry

32

Predictive Parsing Program 
(Driver)

push($)

push(S)

a := lookahead

repeat
X := pop()

if X is a terminal or X = $ then
match(X) // move to next token, a := lookahead

else if M[X,a] = X → Y1Y2…Yk then
push(Yk, Yk-1, …, Y2, Y1) // such that Y1 is on top

produce output and/or invoke actions

else error()

endif

until X = $
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Example Table-Driven 
Parsing

Stack

$E

$ERT

$ERTRF

$ERTRid

$ERTR

$ER

$ERT+

$ERT

$ERTRF

$ERTRid

$ERTR

$ERTRF*

$ERTRF

$ERTRid

$ERTR

$ER

$

Input

id+id*id$

id+id*id$

id+id*id$

id+id*id$

+id*id$

+id*id$

+id*id$

id*id$

id*id$

id*id$

*id$

*id$

id$

id$

$

$

$

Production applied

E → T ER

T → F TR

F → id

TR → ε

ER → + T ER

T → F TR

F → id

TR → * F TR

F → id

TR → ε

ER → ε
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Panic Mode Recovery

synchsynchF → ( E )synchsynchF → idF

TR → εTR → εTR → * F TRTR → εTR

synchsynchT → F TRsynchT → F TRT

ER → εER → εER → + T ERER

synchsynchE → T ERE → T ERE

$)(*+id

FOLLOW(E) = { $ ) }

FOLLOW(ER) = { $ ) }

FOLLOW(T) = { + $ ) }

FOLLOW(TR) = { + $ ) }

FOLLOW(F) = { * + $ ) }

Add synchronizing actions to

undefined entries based on FOLLOW

synch: pop A and skip input till synch token

or skip until FIRST(A) found
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Phrase-Level Recovery

synchsynchF → ( E )synchsynchF → idF

TR → εTR → εTR → * F TRTR → εinsert *TR

synchsynchT → F TRsynchT → F TRT

ER → εER → εER → + T ERER

synchsynchE → T ERE → T ERE

$)(*+id

Change input stream by inserting missing *

For example: id id is changed into id * id

insert *: insert missing * and redo the production
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Error Productions

synchsynchF → ( E )synchsynchF → idF

TR → εTR → εTR → * F TRTR → εTR → F TRTR

synchsynchT → F TRsynchT → F TRT

ER → εER → εER → + T ERER

synchsynchE → T ERE → T ERE

$)(*+id

E → T ER

ER → + T ER | ε
T → F TR

TR → * F TR | ε
F → ( E ) | id

Add error production:

TR → F TR

to ignore missing *, e.g.: id id


