
Compiler Construction, Bart Kienhuis

1

1

Syntax Analysis (1)

Dr. Ir. Bart Kienhuis

Computer Systems Group

LIACS

2

Position of a Parser in the
Compiler Model

Lexical

Analyzer

Parser

and rest of

front-end

Source

Program

Token,

tokenval

Symbol Table

Get next

token

Lexical error Syntax error

Semantic error

Intermediate

representation

Compiler Construction, Bart Kienhuis

2

3

The Parser

�The task of the parser is to check syntax

�The syntax-directed translation stage in the
compiler’s front-end checks static semantics and
produces an intermediate representation (IR) of
the source program

�Abstract syntax trees (ASTs)

�Control-flow graphs (CFGs) with triples, three-
address code, or register transfer lists

�WHIRL (SGI Pro64 compiler) has 5 IR levels!

4

Error Handling

�A good compiler should assist in identifying and
locating errors
�Lexical errors: important, compiler can easily recover
and continue

�Syntax errors: most important for compiler, can
almost always recover

�Static semantic errors: important, can sometimes
recover

�Dynamic semantic errors: hard or impossible to
detect at compile time, runtime checks are required

�Logical errors: hard or impossible to detect

Compiler Construction, Bart Kienhuis

3

5

Viable-Prefix Property

�The viable-prefix property of LL/LR parsers
allows early detection of syntax errors

�Goal: detection of an error as soon as possible
without consuming unnecessary input

�How: detect an error as soon as the prefix of the
input does not match a prefix of any string in the
language

…

for (;)

…

…

DO 10 I = 1;0

…

Error is

detected here

Error is

detected here

Prefix Prefix

6

Error Recovery Strategies

�Panic mode
�Discard input until a token in a set of designated
synchronizing tokens is found

�Phrase-level recovery
�Perform local correction on the input to repair the
error

�Error productions
�Augment grammar with productions for erroneous
constructs

�Global correction
�Choose a minimal sequence of changes to obtain a
global least-cost correction

Compiler Construction, Bart Kienhuis

4

7

Grammars (Recap)

�Context-free grammar is a 4-tuple
G=(N,T,P,S) where
�T is a finite set of tokens (terminal symbols)

�N is a finite set of nonterminals

�P is a finite set of productions of the form
α → β
where α ∈ (N∪T)* N (N∪T)*
and β ∈ (N∪T)*

�S is a designated start symbol S ∈ N

8

Notational Conventions
Used

�Terminals
a,b,c,… ∈ T
specific terminals: 0, 1, id, +

�Nonterminals
A,B,C,… ∈ N
specific nonterminals: expr, term, stmt

�Grammar symbols
X,Y,Z ∈ (N∪T)

�Strings of terminals
u,v,w,x,y,z ∈ T*

�Strings of grammar symbols
α,β,γ ∈ (N∪T)*

Compiler Construction, Bart Kienhuis

5

9

Derivations (Recap)

�The one-step derivation is defined by
α A β ⇒ α γ β

where A → γ is a production in the grammar

�In addition, we define
�⇒ is leftmost ⇒lm if α does not contain a
nonterminal

�⇒ is rightmost ⇒rm if β does not contain a
nonterminal

�Transitive closure ⇒* (zero or more steps)

�Positive closure ⇒+ (one or more steps)

�The language generated by G is defined by
L(G) = {w | S ⇒+ w}

10

Derivation (Example)

E → E + E

E → E * E

E → (E)

E → - E

E → id

E ⇒ - E ⇒ - id

E ⇒* E

E ⇒+ id * id + id

E ⇒rm E + E ⇒rm E + id ⇒rm id + id

Compiler Construction, Bart Kienhuis

6

11

Chomsky Hierarchy:
Language Classification

�A grammar G is said to be
�Regular if it is right linear where each production is
of the form
A → w B or A → w
or left linear where each production is of the form
A → B w or A → w

�Context free if each production is of the form
A → α
where A ∈ N and α ∈ (N∪T)*

�Context sensitive if each production is of the form
α A β → α γ β
where A ∈ N, α,γ,β ∈ (N∪T)*, |γ| > 0

�Unrestricted

12

Chomsky Hierarchy

L(regular) ⊆ L(context free) ⊆ L(context sensitive) ⊆ L(unrestricted)

Where L(T) = { L(G) | G is of type T }

That is, the set of all languages

generated by grammars G of type T

L1 = { anbn | n ≥ 1 } is context free

L2 = { anbncn | n ≥ 1 } is context sensitive

Every finite language is regular

Examples:

Compiler Construction, Bart Kienhuis

7

13

Parsing

�Universal (any C-F grammar)
�Cocke-Younger-Kasimi

�Earley

�Top-down (C-F grammar with restrictions)
�Recursive descent (predictive parsing)

�LL (Left-to-right, Leftmost derivation) methods

�Bottom-up (C-F grammar with restrictions)
�Operator precedence parsing

�LR (Left-to-right, Rightmost derivation) methods
⌧SLR, canonical LR, LALR

14

Top-Down Parsing

�LL methods (Left-to-right, Leftmost
derivation) and recursive-descent parsing

Grammar:

E → T + T

T → (E)

T → - E

T → id

Leftmost derivation:

E ⇒lm T + T

⇒lm id + T

⇒lm id + id

E E

T

+

T

idid

E

TT

+

E

T

+

T

id

Compiler Construction, Bart Kienhuis

8

15

�Productions of the form
A → A α

| β
| γ

are left recursive

�When one of the productions in a
grammar is left recursive then a predictive
parser may loop forever

Left Recursion (Recap)

16

General Left Recursion
Elimination

Arrange the nonterminals in some order A1, A2, …, An

for i = 1, …, n do

for j = 1, …, i-1 do
replace each

Ai → Aj γ
with

Ai → δ1 γ | δ2 γ | … | δk γ
where

Aj → δ1 | δ2 | … | δk

enddo
eliminate the immediate left recursion in Ai

enddo

Compiler Construction, Bart Kienhuis

9

17

Immediate Left-Recursion
Elimination

Rewrite every left-recursive production

A → A α
| β
| γ
| A δ

into a right-recursive production:

A → β AR

| γ AR

AR → α AR

| δ AR

| ε

18

Example Left Rec.
Elimination

A → B C | a

B → C A | A b
C → A B | C C | a

Choose arrangement: A, B, C

i = 1: nothing to do

i = 2, j = 1: B → C A | A b
⇒ B → C A | B C b | a b

⇒(imm) B → C A BR | a b BR

BR → C b BR | ε
i = 3, j = 1: C → A B | C C | a

⇒ C → B C B | a B | C C | a
i = 3, j = 2: C → B C B | a B | C C | a

⇒ C → C A BR C B | a b BR C B | a B | C C | a

⇒(imm) C → a b BR C B CR | a B CR | a CR

CR → A BR C B CR | C CR | ε

Compiler Construction, Bart Kienhuis

10

19

Left Factoring

�When a nonterminal has two or more
productions whose right-hand sides start with
the same grammar symbols, the grammar is not
LL(1) and cannot be used for predictive parsing

�Replace productions
A → α β1 | α β2 | … | α βn | γ

with
A → α AR | γ
AR → β1 | β2 | … | βn

20

Predictive Parsing

�Eliminate left recursion from grammar

�Left factor the grammar

�Compute FIRST and FOLLOW

�Two variants:

�Recursive (recursive calls)

�Non-recursive (table-driven)

Compiler Construction, Bart Kienhuis

11

21

FIRST (Use Defs from Book)

�FIRST(α) = the set of terminals that begin all
strings derived from α

FIRST(a) = {a} if a ∈ T
FIRST(ε) = {ε}
FIRST(A) = ∪A→α FIRST(α) for A→α ∈
P
FIRST(X1X2…Xk) =
if for all j = 1, …, i-1 : ε ∈ FIRST(Xj) then

add non-ε in FIRST(Xi) to
FIRST(X1X2…Xk)
if for all j = 1, …, k : ε ∈ FIRST(Xj) then

add ε to FIRST(X1X2…Xk)

22

FOLLOW (Use defs Book)

�FOLLOW(A) = the set of terminals that can
immediately follow nonterminal A

FOLLOW(A) =
for all (B → α A β) ∈ P do

add FIRST(β)\{ε} to FOLLOW(A)
for all (B → α A β) ∈ P and ε ∈ FIRST(β) do

add FOLLOW(B) to FOLLOW(A)
for all (B → α A) ∈ P do

add FOLLOW(B) to FOLLOW(A)
if A is the start symbol S then

add $ to FOLLOW(A)

Compiler Construction, Bart Kienhuis

12

23

EXAMPLE (From Book)

�Explain how FOLLOW works….

24

LL(1) Grammar

�A grammar G is LL(1) if for each collections of
productions

A → α1 | α2 | … | αn
for nonterminal A the following holds:

1. FIRST(αi) ∩ FIRST(αj) = ∅ for all i ≠ j
2. if αi ⇒

* ε then
2.a. αj ⇒

* ε for all i ≠ j
2.b. FIRST(αj) ∩ FOLLOW(A) = ∅

for all i ≠ j

Compiler Construction, Bart Kienhuis

13

25

Non-LL(1) Examples

For R:
FIRST(S) ∩ FOLLOW(R) ≠ ∅

S → a R a
R → S | ε

For R: S →* ε and ε →* ε
S → a R | ε
R → S | ε

FIRST(a S) ∩ FIRST(a) ≠ ∅S → a S | a

Left recursiveS → S a | a

Not LL(1) becauseGrammar

26

Recursive Descent Parsing

�Grammar must be LL(1)

�Every nonterminal has one (recursive)
procedure responsible for parsing the
nonterminal’s syntactic category of input tokens

�When a nonterminal has multiple productions,
each production is implemented in a branch of a
selection statement based on input look-ahead
information

Compiler Construction, Bart Kienhuis

14

27

Using FIRST and FOLLOW to
Write a Rec. Descent Parser

expr → term rest

rest → + term rest

| - term rest

| ε
term → id

procedure rest();

begin
if lookahead in FIRST(+ term rest) then

match(‘+’); term(); rest()

else if lookahead in FIRST(- term rest) then

match(‘-’); term(); rest()

else if lookahead in FOLLOW(rest) then

return
else error()

end;

FIRST(+ term rest) = { + }

FIRST(- term rest) = { - }

FOLLOW(rest) = { $ }

28

Non-Recursive Predictive
Parsing

�Given an LL(1) grammar G=(N,T,P,S)
construct a table M[A,a] for A ∈ N, a ∈ T
and use a driver program with a stack

Predictive parsing

program (driver)

Parsing table

M

$b+a

$

Z

Y

X

stack

input

output

Compiler Construction, Bart Kienhuis

15

29

Constructing a Predictive
Parsing Table

for each production A → α do

for each a ∈ FIRST(α) do

add A → α to M[A,a]

enddo

if ε ∈ FIRST(α) then

for each b ∈ FOLLOW(A) do

add A → α to M[A,b]

enddo

endif

enddo
Mark each undefined entry in M error

30

Example Table
E → T ER

ER → + T ER | ε
T → F TR

TR → * F TR | ε
F → (E) | id

F → (E)F → idF

TR → εTR → εTR → * F TRTR → εTR

T → F TRT → F TRT

ER → εER → εER → + T ERER

E → T ERE → T ERE

$)(*+id

idF → id

* + $)(F → (E)

εTR → ε

+ $)*TR → * F TR

+ $)(idT → F TR

εER → ε

$)+ER → + T ER

$)(idE → T ER

FOLLOW(A)FIRST(α)A → α

Compiler Construction, Bart Kienhuis

16

31

LL(1) Grammars are
Unambiguous

Ambiguous grammar

S → i E t S SR | a
SR → e S | ε
E → b

E → bE

SR → ε
SR → ε

SR → e S
SR

S → i E t S SRS → aS

$tieba

tbE → b

εSR → ε

e $eSR → e S

aS → a

e $i
S → i E t S

SR

FOLLOW(A)FIRST(α)A → α

Error: duplicate table entry

32

Predictive Parsing Program
(Driver)

push($)

push(S)

a := lookahead

repeat
X := pop()

if X is a terminal or X = $ then
match(X) // move to next token, a := lookahead

else if M[X,a] = X → Y1Y2…Yk then
push(Yk, Yk-1, …, Y2, Y1) // such that Y1 is on top

produce output and/or invoke actions

else error()

endif

until X = $

Compiler Construction, Bart Kienhuis

17

33

Example Table-Driven
Parsing

Stack

$E

$ERT

$ERTRF

$ERTRid

$ERTR

$ER

$ERT+

$ERT

$ERTRF

$ERTRid

$ERTR

$ERTRF*

$ERTRF

$ERTRid

$ERTR

$ER

$

Input

id+id*id$

id+id*id$

id+id*id$

id+id*id$

+id*id$

+id*id$

+id*id$

id*id$

id*id$

id*id$

*id$

*id$

id$

id$

$

$

$

Production applied

E → T ER

T → F TR

F → id

TR → ε

ER → + T ER

T → F TR

F → id

TR → * F TR

F → id

TR → ε

ER → ε

34

Panic Mode Recovery

synchsynchF → (E)synchsynchF → idF

TR → εTR → εTR → * F TRTR → εTR

synchsynchT → F TRsynchT → F TRT

ER → εER → εER → + T ERER

synchsynchE → T ERE → T ERE

$)(*+id

FOLLOW(E) = { $) }

FOLLOW(ER) = { $) }

FOLLOW(T) = { + $) }

FOLLOW(TR) = { + $) }

FOLLOW(F) = { * + $) }

Add synchronizing actions to

undefined entries based on FOLLOW

synch: pop A and skip input till synch token

or skip until FIRST(A) found

Compiler Construction, Bart Kienhuis

18

35

Phrase-Level Recovery

synchsynchF → (E)synchsynchF → idF

TR → εTR → εTR → * F TRTR → εinsert *TR

synchsynchT → F TRsynchT → F TRT

ER → εER → εER → + T ERER

synchsynchE → T ERE → T ERE

$)(*+id

Change input stream by inserting missing *

For example: id id is changed into id * id

insert *: insert missing * and redo the production

36

Error Productions

synchsynchF → (E)synchsynchF → idF

TR → εTR → εTR → * F TRTR → εTR → F TRTR

synchsynchT → F TRsynchT → F TRT

ER → εER → εER → + T ERER

synchsynchE → T ERE → T ERE

$)(*+id

E → T ER

ER → + T ER | ε
T → F TR

TR → * F TR | ε
F → (E) | id

Add error production:

TR → F TR

to ignore missing *, e.g.: id id

