
Requirements Engineering, 2004, Luuk Groenewegen 3.1

Ch. 3: Rs Elicitation & Analysis

to elicit means:

draw out

cause to come out

discover

reveal

criteria for the Requirements, once elicited:

- completeness

- consistency:

without contradiction

- without ambiguity

- relevance:

importance

- usefulness for practice:

realistic

Requirements Engineering, 2004, Luuk Groenewegen 3.2

much negotiation involved

not only to repair flaws

by removing contradiction

by removing ambiguity

but also to clarify

by removing vagueness

e.g. in expectation

by getting (better) understanding of

problem situation

kind of solution wanted

e.g.: what could be a solution

why does it work

Requirements Engineering, 2004, Luuk Groenewegen 3.3

therefore, this chapter is about the following

elicitation is not:

revealing by asking “them” what they want

elicit

analyze

negotiate

Requirements Engineering, 2004, Luuk Groenewegen 3.4

instead it is:

revealing what “they” would be wanting

if they had a clear understanding

problem is: if we cannot ask them,

where can we find what we need to know

either the Rs

or the information to base

the clear understanding on

to that aim

elicitation addresses

4 dimensions / fields / main directions

Requirements Engineering, 2004, Luuk Groenewegen 3.5

4 dimensions of elicitation:

- application domain,

general (background) knowledge

- problem situation

specific knowledge, far more detailed

than application domain knowledge

- business within which

also concrete knowledge

in this case of this one organization

but on a rather general level

business goal

other systems contributing to business

or this one system-to-be

- stakeholders’

constraints, needs, work conditions

concrete knowledge within business, e.g.

kind of support expected (for concrete goals)

Requirements Engineering, 2004, Luuk Groenewegen 3.6

inherent problems

first of all with the 4 dimensions:

- application domain

knowledge is distributed, inaccessible

- problem situation

those who know are too busy

- business

“unknown” politics, tactics, hidden agenda

- stakeholders

imprecise, unrealistic, unstable,

incomparable

Requirements Engineering, 2004, Luuk Groenewegen 3.7

second, there is an overall problem:

all kinds of change

so, for any structured Rs

elicitation, analysis, negotiation

- flexibility: to cope with change

- sensitivity: to have a good nose

for what (probably) will change

are much needed

but again,

easy to say, hard to do

some research results concerning flexibility:

JIT techniques (Just In Time)

Requirements Engineering, 2004, Luuk Groenewegen 3.8

3.1. RE’s Elicit-Analyse-Negotiate processes

characteristic is growth, incrementality

so process is strongly iterative, interleaved

elicit
analyze

negotiate

RoughRs (already in DB)

Rs’ selection
motivated
ready for Rs Doc

Rs’ consequences
& problems
in DB:
grouped, status,
priority, etc.

Requirements Engineering, 2004, Luuk Groenewegen 3.9

during elicitation

4 main activities

(“crossing over” the 4 dimensions)

- determine goals

business

problem outline

budget

schedule

interoperability

- get general knowledge

appl. domain

organization

existing system(s):

those related

those to be replaced

Requirements Engineering, 2004, Luuk Groenewegen 3.10

- organize knowledge

stakeholders

roles

prioritize goals / knowledge

group knowledge

filter knowledge

relate knowledge

- actual elicitation

stakeholders’ Rs

problem domain Rs

domain Rs

organization Rs

moreover:

explicit as well as implicit

global as well as detailed

Requirements Engineering, 2004, Luuk Groenewegen 3.11

during analysis

- check

necessity

consistency: overlap? --> contradiction?

completeness

feasibility

- specify model

declarative wrt system-to-be

and less standard (IOPENER!)

operational wrt business-as-is

operational/declarative wrt business-to-be

among other things, it results in problematic Rs

superfluous, irrelevant, conflicting,

incomplete, missing, unfeasible, unrealistic,

ambiguous, vague, ... , too whatever

Requirements Engineering, 2004, Luuk Groenewegen 3.12

during negotiation

concerning the problematic Rs mainly:

- discuss

- clarify

- prioritize

- agree

- decide

NB wrt consistency there exists

(in)consistency management

e.g. delay of (enforcing) solution

woven into lifecycle

is imaginable too

for other kinds of problematic Rs

Requirements Engineering, 2004, Luuk Groenewegen 3.13

3.2. Elicitation Techniques

--> structuring mechanisms:

- partitioning / grouping / aggregation

- abstraction / generalization

- projection / view(point)s / perspectives

this is architecture-like (logical)

also related to OO (Object-Orientation)

inherent problems

- time: people have other priorities

- REngineers: not prepared for

domain / organization / humans

in other words: (too technical) nerds

- stakeholders not willing

passive / active opposition

- appl domain knowledge

subtle / implicit / difficult to explain

- organization can be informal --> unclear

Requirements Engineering, 2004, Luuk Groenewegen 3.14

--> interviews

- closed vs open

standard questions

“just tell”

mix of these

- open-minded / good listener

- always a starting point

- check/improve by feedback

Requirements Engineering, 2004, Luuk Groenewegen 3.15

--> scenarios: like use cases

- global state descriptions

e.g. before / after

perhaps some intermediate

- normal flow of events

variants

exceptions

other ongoing activities / scenarios

--> interaction !!

overall inherent problem:

integration of the parts / partial insights

also this is consistency

Requirements Engineering, 2004, Luuk Groenewegen 3.16

--> soft system methods

NB

some relation with Integration-Orientation,

see *

it is a process-like description:

* - assess problem situation

* - describe problem situation

* - give a system-to-be description; viewpoints

* - integrate viewpoint descriptions

* - compare as-is vs to-be

* - evaluate differences

* - identify changes

- recommend migration activities

Requirements Engineering, 2004, Luuk Groenewegen 3.17

often there is

some architectural pattern for organizations

workflow: pipe and filter pattern

for any business activity

examples:

all waterfall-like process descriptions, e.g.

- complete lifecycle process

of software engineering

- complete RE process as in chapter 2

- complete elicitation&analysis process

as in beginning of this chapter

Requirements Engineering, 2004, Luuk Groenewegen 3.18

general, managed organizations:

embedded feedback loop pattern

(Dutch: besturingsparadigma)

Environment

input output

primary / production

process

standards external
data

(intern)

information

control

Management
(Managem)
InfoSystem

data

Requirements Engineering, 2004, Luuk Groenewegen 3.19

some remarks:

- this is not a UML diagram

- information and control are both data too

- standards and external data are optional

- pattern is recursive: it can re-occur

inside primary process

inside information system (IS)

inside management

- ICT can have overlap with Management and

with primary process (not only with IS)

Requirements Engineering, 2004, Luuk Groenewegen 3.20

wrt above embedded feedback loop pattern:

ASSIGNMENT1:

1. give a class diagram for it

2. give a collaboration diagram for it

3. give an activity diagram for it

4. give a sequence diagram for it

(NB: in UML 2.0)

ASSIGNMENT2:

specialize / refine the above four UML diagrams

towards the organization you work for

(or have worked for most recently);

in the fourth case you might involve an interac-

tion overview diagram

ASSIGNMENT3:

make sure you have incorporated details in order

to express a soft system-like / Integration-Ori-

ented approach

always: EXPLAIN

Requirements Engineering, 2004, Luuk Groenewegen 3.21

remarks wrt soft systems:

- take people serious

- invest in being trusted

- details

- non-standard approaches

- choose views (location, role, activity, ...)

- integrate

- confront / evaluate

internal: stakeholder

external: outsider

Requirements Engineering, 2004, Luuk Groenewegen 3.22

--> Reuse

- problem domain

- look&feel

- organization policy

aspects like:

security

auditibility

authorization

back-up

keeping informed

process support

...

but always: new Rs, how do they fit in above

Requirements Engineering, 2004, Luuk Groenewegen 3.23

3.3. Prototyping

2 kinds:

- throw away

the difficult Rs mainly

- evolutionary

starting with the easy Rs

gradually more complex Rs

good for (overall) Rs like

- feasibility

- usefulness

both wrt cost-profit balance

- interfaces

- acceptance test planning

- consistency

- completeness (although being incomplete)

Requirements Engineering, 2004, Luuk Groenewegen 3.24

no (so) good for

- performance

- reliability

- ...

“aspects”:

general, “cross-cutting” / “entangled”

lines of interest

additional drawback:

additional costs

- training in using prototype

- development

- misleading because of

being inherently incomplete

Requirements Engineering, 2004, Luuk Groenewegen 3.25

implementation of prototype:

- on paper

parts of Rdoc, e.g. the windows

- wizard of Oz

human simulating software

- automated

- 4GL

- visual

- internet (Java + JBeans +)

- in general, all new

high-level programming approaches

(scripting, mark-up, ...)

e.g. where COTS can be integrated

(Components Off The Shelf)

Requirements Engineering, 2004, Luuk Groenewegen 3.26

4.4. Rs Analysis and Negotiation

important observation:

analysis versus validation:

analysis:

- REngineer herhimself

- Rs still unfinished

validation:

- other reviewers

- Rs ready

on the other hand:

during validation much analysis is to be redone

Requirements Engineering, 2004, Luuk Groenewegen 3.27

checklist:

restricted as well as global

(e.g.)

- ambiguity

can be very expensive

- testable

otherwise one can never know

- more than 1 (in “one R”)

a hidden R is risky

- design-like

premature: unnecessarily restricting

the possible solutions

Requirements Engineering, 2004, Luuk Groenewegen 3.28

between the various Rs:

interaction / dependency matrix:

conflict (guessed): 1

overlap: 1000

independent: 0

adding a row:

still discriminates between the 3 categories

negotiation is needed

if two Rs conflict

it DOES NOT MEAN two stakeholders have

conflict

BUT two stakeholders have different responsi-

bilities (even: 1 stakeholder with 2 roles)

Requirements Engineering, 2004, Luuk Groenewegen 3.29

meeting in order to:

- explain

from all relevant sides

- discuss

by all parties

- prioritize

manager is NOT the overall boss here

- decide

register the arguments

after that:

- remove or change / reformulate

- re-elicit

- re-analyze

so we see a cycle

Requirements Engineering, 2004, Luuk Groenewegen 3.30

still missing as important part of analysis

(and elicit and negotiation)

modelling

- architectural: as bridge towards design

- specifying a certain problem situation

and conform Integration-Orientation:

what is known about organization & end

can and should be specified

so

- IT’s outer world

business: structure, goal, activity, interaction

environment (new forms of CRM):

 client: structure, interest, activity, interaction

